On Transverse Stability of Discrete Line Solitons

Dmitry Pelinovsky

Department of Mathematics, McMaster University, Canada URL: http://dmpeli.math.mcmaster.ca

Joint work with Jianke Yang (University of Vermont, USA)

BIRS workshop, November 5, 2012

- ▶ In many Hamiltonian PDEs, one-dimensional solitons are unstable with respect to transverse perturbations:
 - ► Two-dimensional nonlinear Schrödinger equation

$$iu_t + u_{xx} \pm u_{yy} + |u|^2 u = 0.$$

Dark solitons and KP-I equation

$$(u_t + uu_x + u_{xxx})_x = u_{yy}$$

- ▶ In many Hamiltonian PDEs, one-dimensional solitons are unstable with respect to transverse perturbations:
 - ► Two-dimensional nonlinear Schrödinger equation

$$iu_t + u_{xx} \pm u_{yy} + |u|^2 u = 0.$$

Dark solitons and KP-I equation

$$(u_t + uu_x + u_{xxx})_x = u_{yy}$$

- ▶ Old works: Kadomtsev-Petviashvili (1970), Zakharov-Rubenchik (1971), Zakharov (1975), Pelinovsky-Stepanyants (1993), Bridges (2000).
- ► Recent works: Rousset–Tzvetkov (2008), Johnson–Zumbrun (2010), Stefanov–Stanislavova (2011), Haragus (2012), ...

Mathematical techniques

- Direct perturbation theory for eigenvalues
- Multi-symplectic geometric perturbation theory
- Evans function and algebraic perturbation theory
- ► Functional analysis framework and negative index theory (*)

Lattice NLS equation

The discrete NLS (dNLS) equation

$$i\dot{u}_{m,n} + \epsilon(u_{m+1,n} + u_{m-1,n} + u_{m,n+1} + u_{m,n-1} - 4u_{m,n}) + |u_{m,n}|^2 u_{m,n} = 0,$$

where $(m, n) \in \mathbb{Z}^2$, $u_{m,n} \in \mathbb{C}$, and $\epsilon \in \mathbb{R}$.

The Gross-Pitaevskii equation with a periodic potential:

$$iu_t + u_{xx} + u_{yy} - V_0 \sin^2(x) \sin^2(y) u + |u|^2 u = 0,$$

where $(x, y) \in \mathbb{R}^2$, $u \in \mathbb{C}$, and $V_0 \in \mathbb{R}$.

Yang [PRA **84**, 033840 (2011)] found that line solitons can become stable with respect to transverse perturbations.

One-dimensional (stripe) dNLS lattice

$$i\frac{\partial u_m}{\partial t} + \epsilon (u_{m+1} + u_{m-1} - 2u_m) + \kappa \frac{\partial^2 u_m}{\partial y^2} + |u_m|^2 u_m = 0,$$

where $m \in \mathbb{Z}$, $y \in \mathbb{R}$, $u_m \in \mathbb{C}$, and $\epsilon, \kappa \in \mathbb{R}$.

Yang et al. [Opt. Lett. **37**, 1571 (2012)] found again numerically that line solitons can become transversely stable.

Our objective is to study this phenomenon analytically by using the negative index theory .

Stability of nonlinear waves in Hamiltonian systems

Consider an abstract Hamiltonian dynamical system

$$\frac{du}{dt} = J\nabla H(u), \quad u(t) \in X$$

where $X \subset L^2$ is a phase space, $J^+ = -J$ is the symplectic operator, and $H: X \to \mathbb{R}$ is the Hamiltonian function.

- Assume existence of the stationary state (nonlinear wave) $u_0 \in X$ such that $\nabla H(u_0) = 0$.
- Perform linearization at the stationary solution

$$u(t)=u_0+ve^{\lambda t},$$

where $(\lambda, \nu) \in \mathbb{C} \times X$ satisfies the spectral problem

$$JD^2H(u_0)v=\lambda v.$$

Main Questions

Consider the spectral stability problem:

$$JD^2H(u_0)v=\lambda v, \quad v\in X.$$

- Let stationary solutions u_0 decay exponentially as $|x| \to \infty$ (solitary waves, vortices, etc).
- ▶ Let the skew-symmetric operator *J* be invertible
- Let the self-adjoint operator $D^2H(u_0)$ have a positive essential spectrum and finitely many negative eigenvalues.

Question: Is there a relation between unstable eigenvalues of $JD^2H(u_0)$ and negative eigenvalues of $D^2H(u_0)$?

State of the art

Consider the spectral stability problem:

$$JD^2H(u_0)v=\lambda v, \quad v\in X.$$

For simplicity, assume a zero-dimensional kernel of $D^2H(u_0)$. If λ is an eigenvalue, so is $-\lambda$, $\bar{\lambda}$, and $-\bar{\lambda}$.

- ► Grillakis, Shatah, Strauss, 1990 Orbital Stability Theory:
 - ▶ If $D^2H(u_0)$ has no negative eigenvalue, then $JD^2H(u_0)$ has no unstable eigenvalues.
 - ▶ If $D^2H(u_0)$ has an odd number of negative eigenvalues, then $JD^2H(u_0)$ has at least one real unstable eigenvalue.

State of the art

Consider the spectral stability problem:

$$JD^2H(u_0)v=\lambda v, \quad v\in X.$$

For simplicity, assume a zero-dimensional kernel of $D^2H(u_0)$. If λ is an eigenvalue, so is $-\lambda$, $\bar{\lambda}$, and $-\bar{\lambda}$.

- ► Grillakis, Shatah, Strauss, 1990 Orbital Stability Theory:
 - ▶ If $D^2H(u_0)$ has no negative eigenvalue, then $JD^2H(u_0)$ has no unstable eigenvalues.
 - ▶ If $D^2H(u_0)$ has an odd number of negative eigenvalues, then $JD^2H(u_0)$ has at least one real unstable eigenvalue.

Negative Index Theory

► Kapitula, Kevrekidis, Sandstede, 2004:

$$N_{\rm re}(JD^2H(u_0)) + 2N_{\rm c}(JD^2H(u_0)) + 2N_{\rm im}^-(JD^2H(u_0)) = N_{\rm neg}(D^2H),$$

where $N_{\rm re}$ is the number of positive real eigenvalues, $N_{\rm c}$ is the number of complex eigenvalues in the first quadrant, and $N_{\rm im}^-$ is the number of positive imaginary eigenvalues of negative Krein signature.

▶ Suppose that $\lambda \in i\mathbb{R}$ is a simple isolated eigenvalue of $JD^2H(u_0)$ with the eigenvector v. Then, the sign of

$$E_{\omega}''(v) = \langle D^2 H(u_0) v, v \rangle_{L^2}$$

is called the Krein signature of the eigenvalue λ .

Sharp Negative Index Theory

Consider the spectral stability problem:

$$L_+u = -\lambda w$$
, $L_-w = \lambda u$, $u, w \in X$,

and assume again zero-dimensional kernels of L_+ and L_- .

▶ Pelinovsky, 2005 Sharp Negative Index Theory:

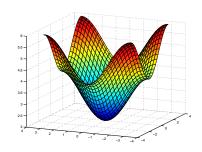
$$\left\{ \begin{array}{l} N_{\rm re}^-(JD^2H(u_0)) + N_{\rm c}(JD^2H(u_0)) + N_{\rm im}^-(JD^2H(u_0)) = N_{\rm neg}(L_+), \\ N_{\rm re}^+(JD^2H(u_0)) + N_{\rm c}(JD^2H(u_0)) + N_{\rm im}^-(JD^2H(u_0)) = N_{\rm neg}(L_-), \end{array} \right.$$

where $N_{\rm re}^+$ ($N_{\rm re}^-$) is the number of positive eigenvalues with positive (negative) quadratic form $\langle L_+ u, u \rangle_{L^2}$.

Linearized dNLS equation:

$$i\dot{u}_{m,n} + \epsilon(u_{m+1,n} + u_{m-1,n} + u_{m,n+1} + u_{m,n-1} - 4u_{m,n}) = 0.$$

Bifurcations of stationary solitons occur from critical points of the dispersion surface, where $\nabla \omega = 0$.



Linear waves $e^{ikm+ipn-i\omega t}$ with $(k,p)\in [-\pi,\pi]\times [-\pi,\pi]$ satisfies the dispersion relation

$$\omega(k,p) = \epsilon(4-2\cos(k)-2\cos(p))$$

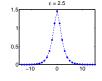
Critical points at (0,0), $(\pi,0)$, $(0,\pi)$, and (π,π) .

Minimum point Γ : k = p = 0, $\omega(0,0) = 0$

Line solitons $u_{m,n}(t)=e^{i\mu^2t}\psi_m$ satisfy the 1D dNLS equation

$$-\mu^2 \psi_m + \epsilon (\psi_{m+1} + \psi_{m-1} - 2\psi_m) + |\psi_m|^2 \psi_m = 0,$$

A fundamental soliton exists for any $\epsilon>0$ (Hermann, 2011)



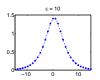
Continuous approximation $\psi_m \sim \sqrt{2} \mu \, \mathrm{sech} \left(\frac{\mu m}{\sqrt{\epsilon}} \right)$ as $\mu \to 0$ (Bambusi and Penati, 2010).

Saddle point $X: k = 0, p = \pi, \omega(0, \pi) = 4\epsilon$

Line solitons $u_{m,n}(t)=(-1)^n \mathrm{e}^{i(\mu^2-4\epsilon)t}\psi_m$ satisfy the same 1D dNLS equation

$$-\mu^2 \psi_m + \epsilon (\psi_{m+1} + \psi_{m-1} - 2\psi_m) + |\psi_m|^2 \psi_m = 0,$$

Another family of line solitons exist.



Saddle point X': $k=\pi$, p=0, $\omega(\pi,0)=4\epsilon$

Line solitons $u_{m,n}(t)=(-1)^m e^{i(-\mu^2-4\epsilon)t}\psi_m$ satisfy the 1D dNLS equation

$$\mu^2 \psi_m - \epsilon (\psi_{m+1} + \psi_{m-1} - 2\psi_m) + |\psi_m|^2 \psi_m = 0.$$

No line solitons exist because

$$\mu^{2} \|\psi\|_{l^{2}}^{2} + \epsilon \langle \psi, (-\Delta)\psi \rangle + \|\psi\|_{l^{4}}^{4} = 0$$

yields a contradiction.

Maximum point $M: k = \pi$, $p = \pi$, $\omega(\pi, \pi) = 8\epsilon$

Line solitons $u_{m,n}(t)=(-1)^{m+n}e^{i(-\mu^2-8\epsilon)t}\psi_m$ satisfy the same 1D dNLS equation

$$\mu^2 \psi_m - \epsilon (\psi_{m+1} + \psi_{m-1} - 2\psi_m) + |\psi_m|^2 \psi_m = 0.$$

No line solitons exist.

Minimum point Γ : k = p = 0, $\omega(0,0) = 0$

At the minimum point Γ , we can substitute

$$u_{m,n}(t) = U(X, Y, t)e^{i\mu^2 t}, X = \frac{m}{\sqrt{\epsilon}}, Y = \frac{n}{\sqrt{\epsilon}}$$

and obtain an elliptic 2D NLS equation as $\epsilon \to \infty$:

$$i\frac{\partial U}{\partial t} + \frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2} + (|U|^2 - \mu^2)U = 0.$$

Line solitons are unstable as $\epsilon \to \infty$.

Would the same be true for all $\epsilon > 0$?

Saddle point X: k=0, $p=\pi$, $\omega(0,\pi)=4\epsilon$

At the saddle point X, we can substitute

$$u_{m,n}(t)=(-1)^nU(X,Y,T)e^{i(\mu^2-4\epsilon)t},\ X=rac{m}{\sqrt{\epsilon}},\ Y=rac{n}{\sqrt{\epsilon}}$$

and obtain a hyperbolic 2D NLS equation as $\epsilon \to \infty$:

$$i\frac{\partial U}{\partial t} + \frac{\partial^2 U}{\partial X^2} - \frac{\partial^2 U}{\partial Y^2} + (|U|^2 - \mu^2)U = 0.$$

Line solitons are unstable as $\epsilon \to \infty$.

Would the same be true for all $\epsilon > 0$?

Instability Theorem

Linearizing at the discrete line soliton,

$$u_{m,n}(t) = e^{i\mu^2 t} \left[\psi_m + v_{m,n}(t) \right], \quad v_{m,n}(t) = e^{\lambda t + ipn} \left(U_m + iW_m \right),$$

we obtain the linear stability problem

$$L_{+}(p)U = -\lambda W, \quad L_{-}(p)W = \lambda U,$$

where

$$(L_{+}U)_{m} = -\epsilon \left[U_{m+1} + U_{m-1} + (2\cos(p) - 4)U_{m} \right] + (\mu^{2} - 3\psi_{m}^{2})U_{m},$$

$$(L_{-}W)_{m} = -\epsilon \left[W_{m+1} + W_{m-1} + (2\cos(p) - 4)W_{m} \right] + (\mu^{2} - \psi_{m}^{2})W_{m}.$$

Fix $\mu=1$ and consider a fundamental (positive, 1-humped) soliton:

$$\psi_{m} = \delta_{m,0} + \epsilon (\delta_{m,1} + \delta_{m,0} + \delta_{m,-1}) + \mathcal{O}(\epsilon^{2}).$$

Theorem

Consider the fundamental soliton bifurcating from the Γ point. For any $\epsilon > 0$, there is $p_0(\epsilon) \in (0,\pi]$ such that for any p with $0 < |p| < p_0(\epsilon)$ the linear-stability problem admits a pair of real eigenvalues $\pm \lambda(\epsilon,p)$ with $\lambda(\epsilon,p) > 0$.

In addition, $p_0(\epsilon) = \pi$ if $0 < \epsilon < \frac{1}{2}$. Furthermore, for any $p \in [-\pi, \pi]$, the eigenvalue $\lambda(\epsilon, p)$ has the following asymptotic expansion in the anti-continuum limit,

$$\lambda^2(\epsilon, p) = 8\epsilon \sin^2\left(\frac{p}{2}\right) + \mathcal{O}(\epsilon^2) \text{ as } \epsilon \to 0.$$

We have

$$L_{\pm}(p) = L_{\pm}(0) + 2\epsilon \left[1 - \cos(p)\right] \ge L_{\pm}(0).$$

- ▶ $L_{-}(0)\psi = 0$ with $\psi > 0$. Hence $L_{-}(0) \ge 0$ and 0 is at the bottom of $L_{-}(0)$.
- ▶ By the perturbation theory, $L_{-}(p) > 0$ for all $p \neq 0$.
- $ightharpoonup L_+(0)$ has at least one negative eigenvalue

$$\langle L_{+}(0)\psi,\psi\rangle = -2\|\psi\|_{l^{4}}^{4} < 0,$$

moreover, there is only one negative eigenvalue for any $\epsilon > 0$.

▶ $L_+(p)$ has exactly one negative and no zero eigenvalues for small $p \neq 0$.

Negative Index Theory:

$$N_{
m real}^- + N_{
m imag}^- + N_{
m comp} = n(L_+(p)) = 1, \ N_{
m real}^+ + N_{
m imag}^- + N_{
m comp} = n(L_-(p)) = 0,$$
 $p \neq 0$

where

- ▶ $N_{\rm real}^+$ ($N_{\rm real}^-$) are the numbers of real positive eigenvalues λ with positive (negative) quadratic form $\langle L_+(p)U,U\rangle$ at the eigenvector (U,W) of the linear stability problem;
- ▶ N_{imag}^- is the number of purely imaginary eigenvalues λ with $\mathrm{Im}(\lambda) > 0$ and negative quadratic form $\langle L_+(p)U, U \rangle$;
- ▶ N_{comp} is the number of complex eigenvalues λ with $\text{Re}(\lambda) > 0$ and $\text{Im}(\lambda) > 0$.

Hence

$$\label{eq:Nreal} N_{\rm real}^- = 1, \quad N_{\rm real}^+ = N_{\rm imag}^- = N_{\rm comp} = 0.$$

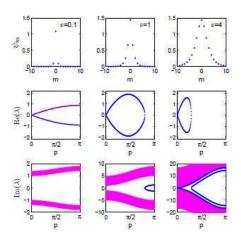


Figure : Left: $\epsilon = 0.1$; middle: $\epsilon = 1$; right: $\epsilon = 4$.

Stability Theorem

Linearizing at the discrete line soliton,

$$u_{m,n}(t) = (-1)^n e^{i(\mu^2 - 4\epsilon)t} \left[\psi_m + v_{m,n}(t) \right], \ v_{m,n}(t) = e^{\lambda t + ipn} \left(U_m + iW_m \right)$$

we obtain the linear stability problem

$$L_{+}(p)U = -\lambda W, \quad L_{-}(p)W = \lambda U,$$

where

$$(L_{+}U)_{m} = -\epsilon \left[U_{m+1} + U_{m-1} - 2\cos(p)U_{m} \right] + (\mu^{2} - 3\psi_{m}^{2})U_{m},$$

$$(L_{-}W)_{m} = -\epsilon \left[W_{m+1} + W_{m-1} - 2\cos(p)W_{m} \right] + (\mu^{2} - \psi_{m}^{2})W_{m}.$$

Theorem

Consider the fundamental soliton bifurcating from the X point. There exists $\epsilon_0 > 0$ such that for any $\epsilon \in (0, \epsilon_0)$ and $p \in [\pi, \pi]$, the linear-stability problem does not admit any unstable eigenvalues but admits a pair of purely imaginary eigenvalues $\pm i\omega(\epsilon, p)$ of negative Krein signature.

For any $p \in [-\pi, \pi]$ and small ϵ , this eigenvalue $\omega(\epsilon, p)$ has the following asymptotic expression,

$$\omega^2(\epsilon, p) = 8\epsilon \sin^2\left(\frac{p}{2}\right) + \mathcal{O}(\epsilon^2) \text{ as } \epsilon \to 0.$$

▶ We have

$$L_{\pm}(p) = L_{\pm}(0) - 2\epsilon [1 - \cos(p)].$$

- ▶ $L_{-}(0)\psi = 0$ with $\psi > 0$. Hence $L_{-}(0) \ge 0$ and 0 is at the bottom of $L_{-}(0)$.
- ▶ By the perturbation theory, $L_{-}(p)$ has exactly one negative eigenvalue for small $\epsilon > 0$ and $p \neq 0$.
- ▶ $L_+(0)$ has exactly one negative eigenvalue and no zero eigenvalue for any $\epsilon > 0$.
- ▶ $L_+(p)$ has exactly one negative and no zero eigenvalues for small $\epsilon > 0$ and $p \neq 0$.

Negative Index Theory:

$$\begin{array}{l} N_{\mathrm{real}}^- + N_{\mathrm{imag}}^- + N_{\mathrm{comp}} = n(L_+(p)) = 1, \\ N_{\mathrm{real}}^+ + N_{\mathrm{imag}}^- + N_{\mathrm{comp}} = n(L_-(p)) = 1, \end{array} p \neq 0, \label{eq:normalization}$$

At p=0, a double zero eigenvalue exists, which splits for $p \neq 0$ outside the continuous spectrum. Hence,

$$N_{\rm imag}^-=1, \quad N_{\rm real}^+=N_{\rm real}^-=N_{\rm comp}=0, \label{eq:Nimag}$$

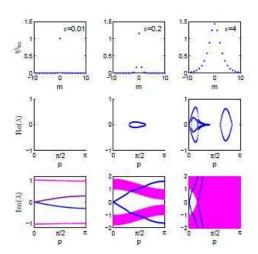


Figure : Left: $\epsilon = 0.01$; middle: $\epsilon = 0.2$; right: $\epsilon = 4$.

Consider the 1D Stripe dNLS lattice:

$$i\frac{\partial u_m}{\partial t} + \epsilon (u_{m+1} + u_{m-1} - 2u_m) + \kappa \frac{\partial^2 u_m}{\partial y^2} + |u_m|^2 u_m = 0, \quad m \in \mathbb{Z},$$

where $\epsilon > 0$ is small and $\kappa = \pm 1$.

Consider the 1D Stripe dNLS lattice:

$$i\frac{\partial u_m}{\partial t} + \epsilon (u_{m+1} + u_{m-1} - 2u_m) + \kappa \frac{\partial^2 u_m}{\partial y^2} + |u_m|^2 u_m = 0, \quad m \in \mathbb{Z},$$

where $\epsilon > 0$ is small and $\kappa = \pm 1$.

Linearizing at the discrete line soliton,

$$u_m(y,t) = e^{i\mu^2 t} [\psi_m + v_m(y,t)], \ v_m(y,t) = e^{\lambda t + ipy} (U_m + iW_m),$$

we obtain the linear stability problem

$$L_{+}(p)U = -\lambda W, \quad L_{-}(p)W = \lambda U,$$

where

$$(L_{+}(p)U)_{m} = -\epsilon(U_{m+1} + U_{m-1} - 2U_{m}) + (\mu^{2} + \kappa p^{2} - 3\psi_{m}^{2})U_{m},$$

$$(L_{-}(p)W)_{m} = -\epsilon(W_{m+1} + W_{m-1} - 2W_{m}) + (\mu^{2} + \kappa p^{2} - \psi_{m}^{2})W_{m}.$$

- At $\epsilon=0$, the linear system has two semi-simple eigenvalue of infinite multiplicity at $\lambda=\pm i(1+\kappa p^2)$ and two simple eigenvalues at $\lambda=\pm\sqrt{\kappa p^2(2-\kappa p^2)}$.
- We also have

$$L_{\pm}(p)=L_{\pm}(0)+\kappa p^2.$$

- At $\epsilon=0$, the linear system has two semi-simple eigenvalue of infinite multiplicity at $\lambda=\pm i(1+\kappa p^2)$ and two simple eigenvalues at $\lambda=\pm\sqrt{\kappa p^2(2-\kappa p^2)}$.
- We also have

$$L_{\pm}(p)=L_{\pm}(0)+\kappa p^2.$$

- ▶ For $\kappa=1$ and $\epsilon=0$, simple eigenvalues $\lambda=\pm p\sqrt{2-p^2}$ are real for $p\in(0,\sqrt{2})$ and purely imaginary eigenvalues for $p>\sqrt{2}$ bounded away from the continuum spectrum.
- ▶ For small $\epsilon > 0$, the negative index count gives

$$N_{\mathrm{real}}^- = 1, \quad p \in (0, p_0(\epsilon))$$

and

$$n(L_{+}(p)) = n(L_{-}(p)) = 0, \quad p > p_{0}(\epsilon),$$

where $p_0(\epsilon) = \sqrt{2} + \mathcal{O}(\epsilon)$.

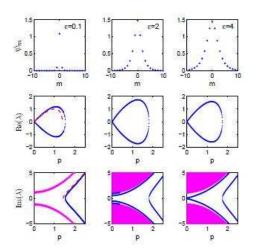


Figure : Left: $\epsilon = 0.1$; middle: $\epsilon = 2$; right: $\epsilon = 4$.

- For $\kappa=-1$ and $\epsilon=0$, simple eigenvalues $\lambda=\pm ip\sqrt{2+p^2}$ are in resonance with the essential spectrum $\lambda=\pm i(1-p^2)$ at $p=p_c=\frac{1}{2}$.
- ▶ The simple eigenvalues have negative Krein signature and the essential spectrum has positive Krein signature for $p \in (-1,1)$. For small $\epsilon > 0$, the resonance gives rise to complex instabilities with $N_{\text{comp}} = 1$ for p near p_c .
- Asymptotic theory gives

$$\lambda(\epsilon,p) = \frac{3}{4}i + \frac{i\epsilon}{15}(14 + 17\delta) + \frac{2\epsilon}{15}\sqrt{15 - 4(1 - 2\delta)^2} + \mathcal{O}(\epsilon^2),$$
 where $\delta = (p^2 - p_c^2)/\epsilon$.

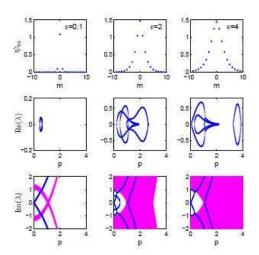


Figure : Left: $\epsilon = 0.1$; middle: $\epsilon = 2$; right: $\epsilon = 4$.

Summary

- Transverse stability problems are much easier than regular stability problems because symmetry-breaking perturbations remove kernels of the linearized operators.
- ► Applications of the negative index theory are developed in regular *I*² spaces, there is no necessity of constrained spaces.
- ▶ Lattice problems have additional simplifications near the anti-continuum limit, where asymptotic methods can be used in conjugation with the negative stability theory.
- ▶ Discretization may induce transverse stability of continuously unstable solitons. The role of discretization may be taken by the periodic potentials in the continuous NLS equations.