Optimization of Polynomial Roots, Eigenvalues and Pseudospectra

Michael L. Overton
Courant Institute of Mathematical Sciences NYU
Banff Stability Workshop
Nov 5, 2012

```
Part I
Globally Optimizing
the Roots of a
Monic Polynomial
subject to One
Affine Constraint
with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)
The Root Radius
and the Root
Abscissa
Stability
Optimization over a
Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root
Abscissa: Real Case
Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex
Case

\section*{The Root Radius and the Root Abscissa}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT) The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

Let \(\rho\) denote the root radius of a polynomial:
\[
\rho(p)=\max \{|z|: p(z)=0, z \in \mathbf{C}\} .
\]

\section*{The Root Radius and the Root Abscissa}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT) The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

Stabilization

Let \(\rho\) denote the root radius of a polynomial:
\[
\rho(p)=\max \{|z|: p(z)=0, z \in \mathbf{C}\} .
\]

We say \(p\) is Schur stable if \(\rho(p)<1\).

\section*{The Root Radius and the Root Abscissa}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

\section*{The Root Radius and the Root Abscissa}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

\section*{Stability Optimization over a Polynomial Family}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa

\section*{Stability}

Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

As functions of the polynomial coefficients, the radius \(\rho\) and abscissa \(\alpha\) are

\section*{Stability Optimization over a Polynomial Family}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root Abscissa

\section*{Stability}

Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

As functions of the polynomial coefficients, the radius \(\rho\) and abscissa \(\alpha\) are
not convex

\section*{Stability Optimization over a Polynomial Family}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root Abscissa

\section*{Stability}

Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

As functions of the polynomial coefficients, the radius \(\rho\) and abscissa \(\alpha\) are

■ not convex
■ not Lipschitz near polynomials with a multiple root

\section*{Stability Optimization over a Polynomial Family}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa

\section*{Stability}

Optimization over a
Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

As functions of the polynomial coefficients, the radius \(\rho\) and abscissa \(\alpha\) are
- not convex

■ not Lipschitz near polynomials with a multiple root So, in general, global minimization of the radius or abscissa over an affine family of monic polynomials, pushing the roots as far as possible towards the origin or left in the complex plane, seems hard.

\section*{Stability Optimization over a Polynomial Family}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa

\section*{Stability}

Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case
Optimizing the Root Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex

As functions of the polynomial coefficients, the radius \(\rho\) and abscissa \(\alpha\) are

■ not convex
■ not Lipschitz near polynomials with a multiple root So, in general, global minimization of the radius or abscissa over an affine family of monic polynomials, pushing the roots as far as possible towards the origin or left in the complex plane, seems hard.

Indeed, variations on the question of whether a polynomial family contains one that is stable (has roots inside the unit circle or in the left-half plane) have been studied for decades.

\section*{Stability Optimization over a Polynomial Family}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa

\section*{Stability}

Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case
Optimizing the Root Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex

As functions of the polynomial coefficients, the radius \(\rho\) and abscissa \(\alpha\) are

■ not convex
■ not Lipschitz near polynomials with a multiple root So, in general, global minimization of the radius or abscissa over an affine family of monic polynomials, pushing the roots as far as possible towards the origin or left in the complex plane, seems hard.

Indeed, variations on the question of whether a polynomial family contains one that is stable (has roots inside the unit circle or in the left-half plane) have been studied for decades.
But if an affine family of monic polynomials of degree \(n\) has \(n-1\) free parameters, this question can be answered efficiently.

\section*{Stability Optimization over a Polynomial Family}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa

\section*{Stability}

Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case
Optimizing the Root Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex

As functions of the polynomial coefficients, the radius \(\rho\) and abscissa \(\alpha\) are
\(\square\) not convex
■ not Lipschitz near polynomials with a multiple root So, in general, global minimization of the radius or abscissa over an affine family of monic polynomials, pushing the roots as far as possible towards the origin or left in the complex plane, seems hard.

Indeed, variations on the question of whether a polynomial family contains one that is stable (has roots inside the unit circle or in the left-half plane) have been studied for decades.
But if an affine family of monic polynomials of degree \(n\) has \(n-1\) free parameters, this question can be answered efficiently.
Equivalently, there is just one affine constraint on the coefficients.

\section*{Optimizing the Root Radius, Real Case}

Theorem RRR. Let \(B_{0}, B_{1}, \ldots, B_{n}\) be real scalars (with

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a
Polynomial Family

\section*{Optimizing the Root}

Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex

\section*{Case}

\section*{Optimizing the Root Radius, Real Case}

Theorem RRR. Let \(B_{0}, B_{1}, \ldots, B_{n}\) be real scalars (with

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a
Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex

\section*{Case}

\section*{Optimizing the Root Radius, Real Case}

Theorem RRR. Let \(B_{0}, B_{1}, \ldots, B_{n}\) be real scalars (with

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a
Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex

\section*{Case}

\section*{Optimizing the Root Radius, Real Case}

\section*{Part I}

Globally Optimizing the Roots of a
Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a
Polynomial Family
Optimizing the Root Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex

\section*{Case}

Theorem RRR. Let \(B_{0}, B_{1}, \ldots, B_{n}\) be real scalars (with \(B_{1}, \ldots, B_{n}\) not all zero) and consider the affine family
\(P=\left\{z^{n}+a_{1} z^{n-1}+\ldots+a_{n-1} z+a_{n}: B_{0}+\sum_{j=1}^{n} B_{j} a_{j}=0, a_{i} \in \mathbf{R}\right\}\).
The optimization problem
\[
\rho^{*}:=\inf _{p \in P} \rho(p)
\]
has a globally optimal solution of the form
\[
p^{*}(z)=(z-\gamma)^{n-k}(z+\gamma)^{k} \in P
\]
for some integer \(k\) with \(0 \leq k \leq n\), where \(\gamma=\rho^{*}\).
Proof: uses implicit function theorem.
Algorithm: for each \(k=0, \ldots, n\), substitute coefficients of \((z-\gamma)^{n-k}(z+\gamma)^{k}\) into the constraint to give a polynomial with \(n\) roots that are candidates for \(\gamma\). Choose smallest such \(|\gamma|\).

\section*{Optimizing the Root Radius: Complex Case}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root
Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

\section*{Optimizing the Root Radius: Complex Case}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root Abscissa: Complex

\section*{Case}

Theorem RRC. Let \(B_{0}, B_{1}, \ldots, B_{n}\) be complex scalars (with
\(B_{1}, \ldots, B_{n}\) not all zero) and consider the affine family
\(P=\left\{z^{n}+a_{1} z^{n-1}+\ldots+a_{n-1} z+a_{n}: B_{0}+\sum_{j=1}^{n} B_{j} a_{j}=0, a_{i} \in \mathbf{C}\right\}\).
The optimization problem
\[
\rho^{*}:=\inf _{p \in P} \rho(p)
\]
has an optimal solution of the form
\[
p^{*}(z)=(z-\gamma)^{n} \in P
\]
with \(-\gamma\) given by a root of smallest magnitude of the polynomial
\[
h(z)=B_{n} z^{n}+B_{n-1}\binom{n}{n-1} z^{n-1}+\ldots+B_{1}\binom{n}{1} z+B_{0}
\]

\section*{Optimizing the Root Radius: Complex Case}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family Optimizing the Root Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root Abscissa: Complex

\section*{Case}

Theorem RRC. Let \(B_{0}, B_{1}, \ldots, B_{n}\) be complex scalars (with
\(B_{1}, \ldots, B_{n}\) not all zero) and consider the affine family
\(P=\left\{z^{n}+a_{1} z^{n-1}+\ldots+a_{n-1} z+a_{n}: B_{0}+\sum_{j=1}^{n} B_{j} a_{j}=0, a_{i} \in \mathbf{C}\right\}\).
The optimization problem
\[
\rho^{*}:=\inf _{p \in P} \rho(p)
\]
has an optimal solution of the form
\[
p^{*}(z)=(z-\gamma)^{n} \in P
\]
with \(-\gamma\) given by a root of smallest magnitude of the polynomial
\[
h(z)=B_{n} z^{n}+B_{n-1}\binom{n}{n-1} z^{n-1}+\ldots+B_{1}\binom{n}{1} z+B_{0}
\]

Proof: A complicated inductive argument.

\section*{Optimizing the Root Abscissa: Real Case}

Theorem RAR. Let \(B_{0}, B_{1}, \ldots, B_{n}\) be real scalars (with

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root
Abscissa: Real Case
Root Abscissa, Real
Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

\section*{Optimizing the Root Abscissa: Real Case}

Theorem RAR. Let \(B_{0}, B_{1}, \ldots, B_{n}\) be real scalars (with

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root
Abscissa: Real Case
Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex

\section*{Case}

Stabilization

\section*{Optimizing the Root Abscissa: Real Case}

Theorem RAR. Let \(B_{0}, B_{1}, \ldots, B_{n}\) be real scalars (with

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case Optimizing the Root Radius: Complex Case
Optimizing the Root
Abscissa: Real Case
Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root Abscissa: Complex

\section*{Case}

\section*{Root Abscissa, Real Case, Continued}

Furthermore, the optimal value \(\alpha^{*}\) is attained by a minimizing
polynomial \(p^{*}\) if and only if \(-\alpha^{*}\) is a root of \(h\) (as opposed to one of its derivatives), and in this case we can take
\[
p^{*}(z)=(z-\gamma)^{n} \in P
\]
with \(\gamma=\alpha^{*}\).
Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

\section*{Root Abscissa, Real Case, Continued}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

Furthermore, the optimal value \(\alpha^{*}\) is attained by a minimizing polynomial \(p^{*}\) if and only if \(-\alpha^{*}\) is a root of \(h\) (as opposed to one of its derivatives), and in this case we can take
\[
p^{*}(z)=(z-\gamma)^{n} \in P
\]
with \(\gamma=\alpha^{*}\).
When the optimal abscissa is not attained, for all \(\epsilon>0\) can find an approximately optimal polynomial
\[
p_{\epsilon}(z):=\left(z-M_{\epsilon}\right)^{\ell}\left(z-\left(\alpha^{*}+\epsilon\right)\right)^{n-\ell} \in P
\]
with \(0<\ell \leq n\) and \(M_{\epsilon} \rightarrow-\infty\) as \(\epsilon \rightarrow 0\).

\section*{Root Abscissa, Real Case, Continued}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex

\section*{Case}

Furthermore, the optimal value \(\alpha^{*}\) is attained by a minimizing polynomial \(p^{*}\) if and only if \(-\alpha^{*}\) is a root of \(h\) (as opposed to one of its derivatives), and in this case we can take
\[
p^{*}(z)=(z-\gamma)^{n} \in P
\]
with \(\gamma=\alpha^{*}\).
When the optimal abscissa is not attained, for all \(\epsilon>0\) can find an approximately optimal polynomial
\[
p_{\epsilon}(z):=\left(z-M_{\epsilon}\right)^{\ell}\left(z-\left(\alpha^{*}+\epsilon\right)\right)^{n-\ell} \in P
\]
with \(0<\ell \leq n\) and \(M_{\epsilon} \rightarrow-\infty\) as \(\epsilon \rightarrow 0\).
Thus, as in the real radius case, two roots play a role, but only one is finite.

\section*{Root Abscissa, Real Case, Continued}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex

\section*{Case}

Furthermore, the optimal value \(\alpha^{*}\) is attained by a minimizing polynomial \(p^{*}\) if and only if \(-\alpha^{*}\) is a root of \(h\) (as opposed to one of its derivatives), and in this case we can take
\[
p^{*}(z)=(z-\gamma)^{n} \in P
\]
with \(\gamma=\alpha^{*}\).
When the optimal abscissa is not attained, for all \(\epsilon>0\) can find an approximately optimal polynomial
\[
p_{\epsilon}(z):=\left(z-M_{\epsilon}\right)^{\ell}\left(z-\left(\alpha^{*}+\epsilon\right)\right)^{n-\ell} \in P
\]
with \(0<\ell \leq n\) and \(M_{\epsilon} \rightarrow-\infty\) as \(\epsilon \rightarrow 0\).
Thus, as in the real radius case, two roots play a role, but only one is finite.

In practice, bad idea to make \(\epsilon\) too small: then \(\left|M_{\epsilon}\right|\) becomes large.

\section*{Optimizing the Abscissa: Real vs. Complex Case}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued

\section*{Optimizing the}

Abscissa: Real vs. Complex Case
Optimizing the Root Abscissa: Complex Case

We observed that, in the real case, the optimal value is not attained when one of the derivatives of \(h\) has a real root to the right of the rightmost real root of \(h\).

\section*{Optimizing the Abscissa: Real vs. Complex Case}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued

\section*{Optimizing the}

Abscissa: Real vs. Complex Case

We observed that, in the real case, the optimal value is not attained when one of the derivatives of \(h\) has a real root to the right of the rightmost real root of \(h\).

However, it is not possible that a derivative of \(h\) has a complex root to the right of the rightmost complex root of \(h\). This follows immediately from the Gauss-Lucas theorem.

\section*{Optimizing the Abscissa: Real vs. Complex Case}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a
Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued

\section*{Optimizing the}

Abscissa: Real vs. Complex Case

We observed that, in the real case, the optimal value is not attained when one of the derivatives of \(h\) has a real root to the right of the rightmost real root of \(h\).

However, it is not possible that a derivative of \(h\) has a complex root to the right of the rightmost complex root of \(h\). This follows immediately from the Gauss-Lucas theorem.

This suggests the optimal abscissa value might always be attained in the complex case.

\section*{Optimizing the Abscissa: Real vs. Complex Case}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued

We observed that, in the real case, the optimal value is not attained when one of the derivatives of \(h\) has a real root to the right of the rightmost real root of \(h\).

However, it is not possible that a derivative of \(h\) has a complex root to the right of the rightmost complex root of \(h\). This follows immediately from the Gauss-Lucas theorem.

This suggests the optimal abscissa value might always be attained in the complex case.

Indeed, this is the case...

\section*{Optimizing the Root Abscissa: Complex Case}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued
Optimizing the Abscissa: Real vs. Complex Case

\author{
Optimizing the Root
}

Abscissa: Complex

\section*{Case}

Theorem RAC. Let \(B_{0}, B_{1}, \ldots, B_{n}\) be complex scalars (with \(B_{1}, \ldots, B_{n}\) not all zero) and consider the affine family
\[
P=\left\{z^{n}+a_{1} z^{n-1}+\ldots+a_{n-1} z+a_{n}: B_{0}+\sum_{j=1}^{n} B_{j} a_{j}=0, a_{i} \in \mathbf{C}\right\}
\]

\section*{Optimizing the Root Abscissa: Complex Case}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued
Optimizing the Abscissa: Real vs.
Complex Case
Theorem RAC. Let \(B_{0}, B_{1}, \ldots, B_{n}\) be complex scalars (with
\(B_{1}, \ldots, B_{n}\) not all zero) and consider the affine family
\(P=\left\{z^{n}+a_{1} z^{n-1}+\ldots+a_{n-1} z+a_{n}: B_{0}+\sum_{j=1}^{n} B_{j} a_{j}=0, a_{i} \in \mathbf{C}\right\}\).
The optimization problem
\[
\alpha^{*}:=\inf _{p \in P} \alpha(p)
\]
has an optimal solution of the form
\[
p^{*}(z)=(z-\gamma)^{n} \in P
\]
with \(-\gamma\) given by a root with largest real part of the polynomial
\[
h(z)=B_{n} z^{n}+B_{n-1}\binom{n}{n-1} z^{n-1}+\ldots+B_{1}\binom{n}{1} z+B_{0}
\]

\section*{Example: Static Output Feedback Stabilization}

Given the dynamical system with input and output:

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex

\section*{Case}

\section*{Example: Static Output Feedback Stabilization}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a
Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex

\section*{Case}

Given the dynamical system with input and output:
\[
\dot{x}=F x+G u, \quad y=H x
\]
where \(F \in \mathbf{R}^{n \times n}, G \in \mathbf{R}^{n \times \ell}, H \in \mathbf{R}^{m \times n}\).
SOF: find a controller \(K \in \mathbf{R}^{\ell \times m}\) so that, setting \(u=K y\)
\[
\dot{x}=(F+G K H) x
\]
is stable, that is all eigenvalues of \(F+G K H\) are in the left half-plane, or prove that this is not possible.

\section*{Example: Static Output Feedback Stabilization}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a
Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex

\section*{Case}

Given the dynamical system with input and output:
\[
\dot{x}=F x+G u, \quad y=H x
\]
where \(F \in \mathbf{R}^{n \times n}, G \in \mathbf{R}^{n \times \ell}, H \in \mathbf{R}^{m \times n}\).
SOF: find a controller \(K \in \mathbf{R}^{\ell \times m}\) so that, setting \(u=K y\)
\[
\dot{x}=(F+G K H) x
\]
is stable, that is all eigenvalues of \(F+G K H\) are in the left half-plane, or prove that this is not possible.
A major open problem in control.

\section*{Example: Static Output Feedback Stabilization}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex

Given the dynamical system with input and output:
\[
\dot{x}=F x+G u, \quad y=H x
\]
where \(F \in \mathbf{R}^{n \times n}, G \in \mathbf{R}^{n \times \ell}, H \in \mathbf{R}^{m \times n}\).
SOF: find a controller \(K \in \mathbf{R}^{\ell \times m}\) so that, setting \(u=K y\)
\[
\dot{x}=(F+G K H) x
\]
is stable, that is all eigenvalues of \(F+G K H\) are in the left half-plane, or prove that this is not possible.
A major open problem in control.
But, if \(p=1\) and \(m=n-1\) (one input and \(n-1\) outputs)
\[
\operatorname{det}(\lambda I-F-G K H)=\operatorname{det}(\lambda I-F)+K H \operatorname{adj}(\lambda I-F) G .
\]

This is a monic polynomial with affine dependence on the \(n-1\) entries of \(K \in \mathbf{R}^{1 \times(n-1)}\) so the SOF problem can be solved explicitly using Theorem RAR.

\section*{Example: Frequency Domain Stabilization}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs. Complex Case
Optimizing the Root Abscissa: Complex Case

Stabilization

Another set of classical problems in control that, in a certain case, can be solved using the theorems given above.

\section*{Example: Frequency Domain Stabilization}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex Case

Another set of classical problems in control that, in a certain case, can be solved using the theorems given above.

An example: stabilizing the two-mass-spring dynamical system by a second-order controller.

\section*{Example: Frequency Domain Stabilization}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex

\section*{Case} case, can be solved using the theorems given above.

An example: stabilizing the two-mass-spring dynamical system by a second-order controller.

Then, maximizing the closed-loop asymptotic decay rate is equivalent to solving the optimization problem
\[
\min _{n \subset D} \max _{\sim \subset C}\{\operatorname{Re} z: p(z)=0\}
\]
where
\(P=\left\{\left(z^{4}+2 z^{2}\right)\left(x_{0}+x_{1} z+z^{2}\right)+y_{0}+y_{1} z+y_{2} z^{2}: x_{0}, x_{1}, y_{0}, y_{1}, y_{2} \in \mathbf{R}\right\}\)

Another set of classical problems in control that, in a certain Stabilization

\section*{Example: Frequency Domain Stabilization}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root Abscissa: Complex

Another set of classical problems in control that, in a certain case, can be solved using the theorems given above.

An example: stabilizing the two-mass-spring dynamical system by a second-order controller.

Then, maximizing the closed-loop asymptotic decay rate is equivalent to solving the optimization problem
\[
\min _{n \subset D} \max _{\sim \subset C}\{\operatorname{Re} z: p(z)=0\}
\]
where
\(P=\left\{\left(z^{4}+2 z^{2}\right)\left(x_{0}+x_{1} z+z^{2}\right)+y_{0}+y_{1} z+y_{2} z^{2}: x_{0}, x_{1}, y_{0}, y_{1}, y_{2} \in \mathbf{R}\right\}\)
We can minimize the root abscissa explicitly using Theorem RAR as \(P\) is a set of monic polynomials with degree 6 whose coefficients depend affinely on 5 real parameters.

\section*{Caveats}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a
Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

Multiple roots are very sensitive to perturbation!

\section*{Caveats}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex
Case

\section*{Multiple roots are very sensitive to perturbation!}

A random perturbation of size \(\epsilon\) to the coefficients of a polynomial with a root that has multiplicity \(k\) moves the roots by \(O\left(\epsilon^{1 / k}\right)\).

\section*{Caveats}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex

\section*{Case}

Multiple roots are very sensitive to perturbation!
A random perturbation of size \(\epsilon\) to the coefficients of a polynomial with a root that has multiplicity \(k\) moves the roots by \(O\left(\epsilon^{1 / k}\right)\).

In practice, might want to locally optimize a more robust measure of stability: see Part III.

\section*{Caveats}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case
Optimizing the Root
Abscissa: Complex

\section*{Case}

Multiple roots are very sensitive to perturbation!
A random perturbation of size \(\epsilon\) to the coefficients of a polynomial with a root that has multiplicity \(k\) moves the roots by \(O\left(\epsilon^{1 / k}\right)\).

In practice, might want to locally optimize a more robust measure of stability: see Part III.

Independently of this, the monomial basis is a poor choice numerically unless the polynomial has very small degree.

\section*{Caveats}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex

\section*{Case}

Multiple roots are very sensitive to perturbation!
A random perturbation of size \(\epsilon\) to the coefficients of a polynomial with a root that has multiplicity \(k\) moves the roots by \(O\left(\epsilon^{1 / k}\right)\).

In practice, might want to locally optimize a more robust measure of stability: see Part III.

Independently of this, the monomial basis is a poor choice numerically unless the polynomial has very small degree.

Nonetheless, the optimal value can be computed accurately even if \(n\) is fairly large.

\section*{Caveats}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a
Polynomial Family
Optimizing the Root Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex

\section*{Case}

Multiple roots are very sensitive to perturbation!
A random perturbation of size \(\epsilon\) to the coefficients of a polynomial with a root that has multiplicity \(k\) moves the roots by \(O\left(\epsilon^{1 / k}\right)\).

In practice, might want to locally optimize a more robust measure of stability: see Part III.

Independently of this, the monomial basis is a poor choice numerically unless the polynomial has very small degree.

Nonetheless, the optimal value can be computed accurately even if \(n\) is fairly large.

Affpolymin: publicly available Matlab code implementing the algorithms implicit in Theorems RRR, RRC, RAR, RAC.

\section*{References for Part I}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

Explicit Solutions for Root Optimization of a Polynomial Family with One Affine Constraint
V.D. Blondel, M. Gürbüzbalaban, A. Megretski, M.L. Overton, to appear in IEEE Trans. Auto. Control.

\section*{References for Part I}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root Radius: Complex Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued
Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex Case

Explicit Solutions for Root Optimization of a Polynomial Family with One Affine Constraint
V.D. Blondel, M. Gürbüzbalaban, A. Megretski, M.L. Overton, to appear in IEEE Trans. Auto. Control.

Based in part on a remarkable 1979 Ph.D. thesis by Raymond Chen, University of Florida.

\section*{References for Part I}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a
Polynomial Family
Optimizing the Root
Radius, Real Case
Optimizing the Root
Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real
Case, Continued
Optimizing the
Abscissa: Real vs.
Complex Case Optimizing the Root Abscissa: Complex Case

\section*{References for Part I}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

The Root Radius and the Root
Abscissa
Stability
Optimization over a Polynomial Family
Optimizing the Root Radius, Real Case Optimizing the Root Radius: Complex
Case
Optimizing the Root Abscissa: Real Case Root Abscissa, Real Case, Continued Optimizing the Abscissa: Real vs. Complex Case Optimizing the Root Abscissa: Complex

\section*{Case}

Explicit Solutions for Root Optimization of a Polynomial Family with One Affine Constraint
V.D. Blondel, M. Gürbüzbalaban, A. Megretski, M.L. Overton, to appear in IEEE Trans. Auto. Control.

Based in part on a remarkable 1979 Ph.D. thesis by Raymond Chen, University of Florida.

The control applications are due to Chen, Rantzer and Henrion.
A publicly available Matlab code implementing the constructive algorithms implicit in the theorems:
www.cs.nyu.edu/overton/software/affpoly/

Part I
Globally Optimizing
the Roots of a
Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)
Part II
Optimization of
Eigenvalues
with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the

\section*{Part II}

Optimization of Eigenvalues with J.V. Burke (Wash.) K.K. Gade (NYU) S. Grundel (NYU) A.S. Lewis (Cornell)

\section*{The Spectral Radius and the Spectral Abscissa}

Now let \(\rho: \mathbf{C}^{n \times n} \rightarrow \mathbf{R}\) denote spectral radius:
\[
\rho(A)=\max \{|z|: \operatorname{det}(A-z I)=0, z \in \mathbf{C}\} .
\]

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius
and the Spectral
Abscissa
No Extension of
Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the

\section*{The Spectral Radius and the Spectral Abscissa}

Now let \(\rho: \mathbf{C}^{n \times n} \rightarrow \mathbf{R}\) denote spectral radius:
\[
\rho(A)=\max \{|z|: \operatorname{det}(A-z I)=0, z \in \mathbf{C}\} .
\]

Let \(\alpha: \mathbf{C}^{n \times n} \rightarrow \mathbf{R}\) denote spectral abscissa:
\[
\alpha(A)=\max \{\operatorname{Re}(z): \operatorname{det}(A-z I)=0, z \in \mathbf{C}\} .
\]

Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius
and the Spectral
Abscissa
No Extension of
Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the
Transition Matrix,

\section*{The Spectral Radius and the Spectral Abscissa}

Now let \(\rho: \mathbf{C}^{n \times n} \rightarrow \mathbf{R}\) denote spectral radius:
\[
\rho(A)=\max \{|z|: \operatorname{det}(A-z I)=0, z \in \mathbf{C}\} .
\]

Let \(\alpha: \mathbf{C}^{n \times n} \rightarrow \mathbf{R}\) denote spectral abscissa:
\[
\alpha(A)=\max \{\operatorname{Re}(z): \operatorname{det}(A-z I)=0, z \in \mathbf{C}\} .
\]

An eigenvalue is active if its modulus (real part) equals the spectral radius (abscissa).

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius
and the Spectral
Abscissa
No Extension of
Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,

\section*{The Spectral Radius and the Spectral Abscissa}

Now let \(\rho: \mathbf{C}^{n \times n} \rightarrow \mathbf{R}\) denote spectral radius:
\[
\rho(A)=\max \{|z|: \operatorname{det}(A-z I)=0, z \in \mathbf{C}\} .
\]

Let \(\alpha: \mathbf{C}^{n \times n} \rightarrow \mathbf{R}\) denote spectral abscissa:
\[
\alpha(A)=\max \{\operatorname{Re}(z): \operatorname{det}(A-z I)=0, z \in \mathbf{C}\} .
\]

An eigenvalue is active if its modulus (real part) equals the spectral radius (abscissa).
\(\rho(A)<1\) is the stability condition for the discrete-time dynamical system \(\xi_{k+1}=A \xi_{k}\).
Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius
and the Spectral
Abscissa
No Extension of
Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,

\section*{The Spectral Radius and the Spectral Abscissa}

Now let \(\rho: \mathbf{C}^{n \times n} \rightarrow \mathbf{R}\) denote spectral radius:
\[
\rho(A)=\max \{|z|: \operatorname{det}(A-z I)=0, z \in \mathbf{C}\} .
\]

Let \(\alpha: \mathbf{C}^{n \times n} \rightarrow \mathbf{R}\) denote spectral abscissa:
\[
\alpha(A)=\max \{\operatorname{Re}(z): \operatorname{det}(A-z I)=0, z \in \mathbf{C}\} .
\]

An eigenvalue is active if its modulus (real part) equals the spectral radius (abscissa).
\(\rho(A)<1\) is the stability condition for the discrete-time dynamical system \(\xi_{k+1}=A \xi_{k}\).
\(\alpha(A)<0\) is the stability condition for the continuous-time dynamical system \(\dot{\xi}=A \xi\).

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of
Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,

\section*{The Spectral Radius and the Spectral Abscissa}

Now let \(\rho: \mathbf{C}^{n \times n} \rightarrow \mathbf{R}\) denote spectral radius:
\[
\rho(A)=\max \{|z|: \operatorname{det}(A-z I)=0, z \in \mathbf{C}\} .
\]

Let \(\alpha: \mathbf{C}^{n \times n} \rightarrow \mathbf{R}\) denote spectral abscissa:
\[
\alpha(A)=\max \{\operatorname{Re}(z): \operatorname{det}(A-z I)=0, z \in \mathbf{C}\} .
\]

An eigenvalue is active if its modulus (real part) equals the spectral radius (abscissa).
\(\rho(A)<1\) is the stability condition for the discrete-time dynamical system \(\xi_{k+1}=A \xi_{k}\).
\(\alpha(A)<0\) is the stability condition for the continuous-time dynamical system \(\dot{\xi}=A \xi\).

The spectral functions \(\rho\) and \(\alpha\) are not convex and are not Lipschitz near a matrix with an active multiple eigenvalue.

\section*{No Extension of Part I}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral Abscissa
No Extension of

\section*{Part I}

The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
The spectral radius and abscissa are the radius and abscissa of the characteristic polynomial of a matrix, but the results of Part I do not extend to the more general case of an affine family of \(n \times n\) matrices depending on \(n-1\) parameters.

\section*{No Extension of Part I}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral Abscissa
No Extension of

\section*{Part I}

The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,

\section*{No Extension of Part I}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of

\section*{Part I}

The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
The spectral radius and abscissa are the radius and abscissa of the characteristic polynomial of a matrix, but the results of Part I do not extend to the more general case of an affine family of \(n \times n\) matrices depending on \(n-1\) parameters.

For example, consider the matrix family
\[
A(x)=\left[\begin{array}{cc}
x & 1 \\
-1 & x
\end{array}\right] .
\]

This matrix depends affinely on a single parameter \(x\), but its characteristic polynomial, a monic polynomial of degree 2 , does not, so the results of Part I do not apply.

The minimal spectral radius of \(A(x)\) is attained by \(x=0\), for which the eigenvalues are \(\pm \mathbf{i}\).

\section*{The Diaconis-Holmes-Neal Sampler}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the
A nonreversable Markov chain for Monte Carlo simulation. For \(x \in(0,1)\), the transition matrix is \(A(x) \in \mathbf{R}^{2 n \times 2 n}\) is


\section*{The Diaconis-Holmes-Neal Sampler}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of
Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the

\section*{Transition Matrix,}

A nonreversable Markov chain for Monte Carlo simulation. For \(x \in(0,1)\), the transition matrix is \(A(x) \in \mathbf{R}^{2 n \times 2 n}\) is


Diaconis et. al. showed that for \(x=1 / n\), the corresponding nonreversible chain reaches a stationary state in \(O(n)\) steps, compared to \(O\left(n^{2}\right)\) steps for a similar reversible chain.

\section*{The Reduced Spectral Radius}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of
Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the
The rate of convergence is determined by
\[
\tilde{\rho}(A(x))=\max \{|z|: \operatorname{det}(A(x)-z I)=0, z \in \mathbf{C}, z \neq 1\} .
\]

It is easy to prove that this is minimized over \(x \in[0,1]\) by
\[
x_{\mathrm{opt}}=\frac{\sin (\pi / n)}{1+\sin (\pi / n)}>\frac{1}{n}
\]

\section*{The Reduced Spectral Radius}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced Spectral Radius
Eigenvalues of the

\section*{Transition Matrix,}
\(n=10\)
Eigenvalues of the
The rate of convergence is determined by
\[
\tilde{\rho}(A(x))=\max \{|z|: \operatorname{det}(A(x)-z I)=0, z \in \mathbf{C}, z \neq 1\} .
\]

It is easy to prove that this is minimized over \(x \in[0,1]\) by
\[
x_{\mathrm{opt}}=\frac{\sin (\pi / n)}{1+\sin (\pi / n)}>\frac{1}{n}
\]

For \(x<x_{\mathrm{opt}}\), the active eigenvalues (the ones with largest modulus excluding 1) all occur in conjugate pairs.

\section*{The Reduced Spectral Radius}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced Spectral Radius

The rate of convergence is determined by
\[
\tilde{\rho}(A(x))=\max \{|z|: \operatorname{det}(A(x)-z I)=0, z \in \mathbf{C}, z \neq 1\} .
\]

It is easy to prove that this is minimized over \(x \in[0,1]\) by
\[
x_{\mathrm{opt}}=\frac{\sin (\pi / n)}{1+\sin (\pi / n)}>\frac{1}{n}
\]

For \(x<x_{\mathrm{opt}}\), the active eigenvalues (the ones with largest modulus excluding 1) all occur in conjugate pairs.

For \(x=x_{\mathrm{opt}}\), one conjugate pair has coalesced to a double real eigenvalue (corresponding to a \(2 \times 2\) Jordan block).

\section*{The Reduced Spectral Radius}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)


■ Blue: eigenvalues when \(x=1 / n\) (all complex)

Eigenvalues of the Transition Matrix, \(n=10\)

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the


■ Blue: eigenvalues when \(x=1 / n\) (all complex)
- Red: eigenvalues when \(x=x_{\mathrm{opt}}\) (one double real eigenvalue)

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of
Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,


■ Blue: eigenvalues when \(x=1 / n\) (all complex)
■ Red: eigenvalues when \(x=x_{\mathrm{opt}}\) (one double real eigenvalue)
■ Black: eigenvalues when \(x>x_{\text {opt }}\) ( \(\tilde{\rho}\) increases rapidly)

\section*{Reduced Spectral Radius as a Function of \(x\)}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of
Part
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the


Transition Matrix,

\section*{Reduced Spectral Radius as a Function of \(x\)}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the


Note the big improvement changing \(x\) from \(1 / n\) to \(x_{\text {opt }}\).

\section*{Reduced Spectral Radius as a Function of \(x\)}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the


Note the big improvement changing \(x\) from \(1 / n\) to \(x_{\text {opt }}\).
Much better to underestimate \(x_{\mathrm{opt}}\) than overestimate. Similar plots apply to optimal damping for one-dimensional wave equation, optimal choice of parameter for SOR (successive over-relaxation), etc etc.

Transition Matrix,

\section*{Reduced Spectral Radius as a Function of \(x\)}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the

\section*{Transition Matrix,}
\(n=10\)
Eigenvalues of the


Note the big improvement changing \(x\) from \(1 / n\) to \(x_{\mathrm{opt}}\).
Much better to underestimate \(x_{\mathrm{opt}}\) than overestimate. Similar plots apply to optimal damping for one-dimensional wave equation, optimal choice of parameter for SOR (successive over-relaxation), etc etc.
Convergence rate deteriorates as \(n\) increases.

\section*{Adding More Parameters}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the

\section*{Adding More Parameters}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of
Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the
Not surprising that with one free parameter, we can only make one pair of eigenvalues coalesce.
Let's change \(A(x)\) to have multiple parameters:

\section*{Adding More Parameters}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the

Not surprising that with one free parameter, we can only make one pair of eigenvalues coalesce.
Let's change \(A(x)\) to have multiple parameters:


\section*{Still doubly stochastic. Can we now reduce \(\tilde{\rho}\) further?}

\section*{Adding More Parameters}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius Eigenvalues of the Transition Matrix, \(n=10\)
Eigenvalues of the
Not surprising that with one free parameter, we can only make one pair of eigenvalues coalesce.
Let's change \(A(x)\) to have multiple parameters:


Still doubly stochastic. Can we now reduce \(\tilde{\rho}\) further?
No! It appears that \(\mathbf{x}_{\mathrm{opt}}=\left[x_{\mathrm{opt}}, \ldots, x_{\mathrm{opt}}\right]^{T}\) is locally optimal.

\section*{Checking Local Optimality}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the

Numerically: by running an optimization method suitable for nonsmooth objectives at randomly generated points near \(\mathbf{x}_{\text {opt }}\). We repeatedly obtained convergence to \(\mathbf{x}_{\mathrm{opt}}\).

\section*{Checking Local Optimality}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the

Numerically: by running an optimization method suitable for nonsmooth objectives at randomly generated points near \(\mathbf{x}_{\text {opt }}\). We repeatedly obtained convergence to \(\mathrm{x}_{\mathrm{opt}}\).

Theoretically: by variational analysis. We found that
■ \(\mathrm{x}_{\text {opt }}\) satisfies a necessary condition for local optimality

\section*{Checking Local Optimality}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,

Numerically: by running an optimization method suitable for nonsmooth objectives at randomly generated points near \(\mathbf{x}_{\text {opt }}\). We repeatedly obtained convergence to \(\mathrm{x}_{\mathrm{opt}}\).

Theoretically: by variational analysis. We found that
■ \(\mathrm{x}_{\text {opt }}\) satisfies a necessary condition for local optimality
■ if we remove some redundancy by setting \(x_{j}=x_{n-1-j}\) for \(j=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor\) and \(x_{n-1}=x_{n}\), we find \(\mathbf{x}_{\text {opt }}\) satisfies a sufficient condition for local optimality.

\section*{Checking Local Optimality}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
Numerically: by running an optimization method suitable for nonsmooth objectives at randomly generated points near \(\mathbf{x}_{\text {opt }}\). We repeatedly obtained convergence to \(\mathrm{x}_{\mathrm{opt}}\).

Theoretically: by variational analysis. We found that
- \(\mathrm{x}_{\text {opt }}\) satisfies a necessary condition for local optimality

■ if we remove some redundancy by setting \(x_{j}=x_{n-1-j}\) for \(j=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor\) and \(x_{n-1}=x_{n}\), we find \(\mathbf{x}_{\text {opt }}\) satisfies a sufficient condition for local optimality.

Special analysis needed because optimization objective is not Lipschitz at a matrix with an active multiple eigenvalue.

\section*{Checking Local Optimality}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
Numerically: by running an optimization method suitable for nonsmooth objectives at randomly generated points near \(\mathbf{x}_{\text {opt }}\). We repeatedly obtained convergence to \(\mathrm{x}_{\mathrm{opt}}\).

Theoretically: by variational analysis. We found that
■ \(\mathrm{x}_{\text {opt }}\) satisfies a necessary condition for local optimality
■ if we remove some redundancy by setting \(x_{j}=x_{n-1-j}\) for \(j=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor\) and \(x_{n-1}=x_{n}\), we find \(\mathbf{x}_{\text {opt }}\) satisfies a sufficient condition for local optimality.

Special analysis needed because optimization objective is not Lipschitz at a matrix with an active multiple eigenvalue.
Essential to the analysis: each active eigenvalue corresponds to a single Jordan block, in this case with sizes \(2,1, \ldots, 1\).

\section*{Checking Local Optimality}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the

\section*{Transition Matrix,}

Numerically: by running an optimization method suitable for nonsmooth objectives at randomly generated points near \(\mathbf{x}_{\text {opt }}\). We repeatedly obtained convergence to \(\mathrm{x}_{\mathrm{opt}}\).

Theoretically: by variational analysis. We found that
■ \(\mathrm{x}_{\text {opt }}\) satisfies a necessary condition for local optimality
■ if we remove some redundancy by setting \(x_{j}=x_{n-1-j}\) for \(j=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor\) and \(x_{n-1}=x_{n}\), we find \(\mathbf{x}_{\text {opt }}\) satisfies a sufficient condition for local optimality.

Special analysis needed because optimization objective is not Lipschitz at a matrix with an active multiple eigenvalue.
Essential to the analysis: each active eigenvalue corresponds to a single Jordan block, in this case with sizes \(2,1, \ldots, 1\).
Too complicated to explain in talk, but see references for more information.

\section*{Surface Approximation By Subdivision}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the
Transition Matrix,

An example from surface approximation by subdivision: several fixed eigenvalues, want to reduce modulus of others to optimize the smoothness of the surface: after much numerical computation, found that all can be reduced nearly to zero

\section*{Surface Approximation By Subdivision}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,

An example from surface approximation by subdivision: several fixed eigenvalues, want to reduce modulus of others to optimize the smoothness of the surface: after much numerical computation, found that all can be reduced nearly to zero

■ triangular mesh case: optimal multiple zero eigenvalue verified analytically, with multiple Jordan blocks of order 2, 1, 1, 1.

\section*{Surface Approximation By Subdivision}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
An example from surface approximation by subdivision: several fixed eigenvalues, want to reduce modulus of others to optimize the smoothness of the surface: after much numerical computation, found that all can be reduced nearly to zero

■ triangular mesh case: optimal multiple zero eigenvalue verified analytically, with multiple Jordan blocks of order 2, 1, 1, 1.
- quadrilateral mesh case: numerically reduced moduli of eigenvalues to about \(10^{-4}\) and estimated that the apparently optimal multiple zero eigenvalue has multiple Jordan blocks of order 5, 3, 2, 2.

\section*{Surface Approximation By Subdivision}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the

An example from surface approximation by subdivision: several fixed eigenvalues, want to reduce modulus of others to optimize the smoothness of the surface: after much numerical computation, found that all can be reduced nearly to zero

■ triangular mesh case: optimal multiple zero eigenvalue verified analytically, with multiple Jordan blocks of order 2, 1, 1, 1.
- quadrilateral mesh case: numerically reduced moduli of eigenvalues to about \(10^{-4}\) and estimated that the apparently optimal multiple zero eigenvalue has multiple Jordan blocks of order 5, 3, 2, 2.
In both cases, the active eigenvalue zero has not only algebraic multiplicity \(>1\) but also geometric multiplicity \(>1\). The latter results from special structure and will not occur generically.

\section*{Numerical Optimization of Nonsmooth, Nonconvex \(f\)}

Ordinary gradient method with line search: fails, typically

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the

\section*{Numerical Optimization of Nonsmooth, Nonconvex \(f\)}

Ordinary gradient method with line search: fails, typically
converges to some arbitrary point where \(f\) is not differentiable. Gradient sampling with line search: for locally Lipschitz \(f\) can prove convergence to nonsmooth stationary points of \(f\) (typically local minimizers where \(f\) is not differentiable).
Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,

\section*{Numerical Optimization of Nonsmooth, Nonconvex \(f\)}

Ordinary gradient method with line search: fails, typically
converges to some arbitrary point where \(f\) is not differentiable. Gradient sampling with line search: for locally Lipschitz \(f\) can prove convergence to nonsmooth stationary points of \(f\) (typically local minimizers where \(f\) is not differentiable).
BFGS quasi-Newton method with line search: empirically same property with much less computation.
Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,

\section*{Numerical Optimization of Nonsmooth, Nonconvex \(f\)}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of
Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the

\section*{Transition Matrix,}

Ordinary gradient method with line search: fails, typically converges to some arbitrary point where \(f\) is not differentiable. Gradient sampling with line search: for locally Lipschitz \(f\) can prove convergence to nonsmooth stationary points of \(f\) (typically local minimizers where \(f\) is not differentiable).
BFGS quasi-Newton method with line search: empirically same property with much less computation.
When using these methods to minimize the nonsmooth, nonconvex, non-Lipschitz functions \(\rho(A(x))\) or \(\alpha(A(x))\), make no attempt to predict active eigenvalues or estimate their multiplicities; just use gradients which exist at almost every \(x\)
\[
\frac{\partial}{\partial x_{k}} \alpha(A(x))=\left\langle\frac{\partial A}{\partial x_{k}}(x), \frac{1}{v^{*} u} v u^{*}\right\rangle=\operatorname{Re} \frac{u^{*} \frac{\partial A}{\partial x_{k}}(x) v}{u^{*} v}
\]
where \(v\) and \(u\) are right and left eigenvectors for the rightmost eigenvalue \(\lambda\).

\section*{Numerical Optimization of Nonsmooth, Nonconvex \(f\)}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral Abscissa
No Extension of Part I
The Diaconis-Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,

Ordinary gradient method with line search: fails, typically converges to some arbitrary point where \(f\) is not differentiable. Gradient sampling with line search: for locally Lipschitz \(f\) can prove convergence to nonsmooth stationary points of \(f\) (typically local minimizers where \(f\) is not differentiable).
BFGS quasi-Newton method with line search: empirically same property with much less computation.
When using these methods to minimize the nonsmooth, nonconvex, non-Lipschitz functions \(\rho(A(x))\) or \(\alpha(A(x))\), make no attempt to predict active eigenvalues or estimate their multiplicities; just use gradients which exist at almost every \(x\)
\[
\frac{\partial}{\partial x_{k}} \alpha(A(x))=\left\langle\frac{\partial A}{\partial x_{k}}(x), \frac{1}{v^{*} u} v u^{*}\right\rangle=\operatorname{Re} \frac{u^{*} \frac{\partial A}{\partial x_{k}}(x) v}{u^{*} v}
\]
where \(v\) and \(u\) are right and left eigenvectors for the rightmost eigenvalue \(\lambda\).
Hanso (Hybrid Algorithm for Nonsmooth Optimization):
publicly available Matlab software.

\section*{References for Part II}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,
\(n=10\)
Eigenvalues of the

Optimizing Matrix Stability, J.V. Burke, A.S. Lewis and M.L. Overton, Proc. American Mathematical Society (2001)
Variational Analysis of Non-Lipschitz Spectral Functions J.V. Burke and M.L. Overton, Math. Programming (2001)

\section*{References for Part II}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,

\section*{References for Part II}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

The Spectral Radius and the Spectral
Abscissa
No Extension of
Part I
The Diaconis-
Holmes-Neal
Sampler
The Reduced
Spectral Radius
Eigenvalues of the
Transition Matrix,

Optimizing Matrix Stability, J.V. Burke, A.S. Lewis and M.L. Overton, Proc. American Mathematical Society (2001)
Variational Analysis of Non-Lipschitz Spectral Functions J.V. Burke and M.L. Overton, Math. Programming (2001)

Optimizing the Asymptotic Convergence Rate of the Diaconis-Holmes-Neal Sampler, K. K. Gade and M.L. Overton, Advances in Applied Mathematics (2007)
Eigenvalue Optimization in C \({ }^{2}\) Subdivision and Boundary Subdivision, Sara Grundel, Ph.D. thesis, NYU, 2011.

A Robust Gradient Sampling Method for Nonsmooth, Nonconvex Optimization J.V. Burke, A.S. Lewis and M.L. Overton, SIAM J. Optimization (2006)
Nonsmooth Optimization via Quasi-Newton Methods, A.S. Lewis and M.L. Overton, to appear in Math. Programming.

Part I
Globally Optimizing
the Roots of a
Monic Polynomial
subject to One
Affine Constraint
with
V. Blondel (Louvain)
M. Gürbüzbalaban
(NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues
with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

\section*{Part III}

Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Pseudospectra
Orr-Sommerfeld
Matrix ( \(n=99\),

\section*{Pseudospectra}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

The area swept out in the complex plane by the eigenvalues under perturbation.
\[
\sigma_{\epsilon}(A)=\{z \in \mathbf{C}: \operatorname{det}(A+E-z I)=0 \text { for some } E \text { with }\|E\| \leq \epsilon\}
\]

\section*{Pseudospectra}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

The area swept out in the complex plane by the eigenvalues under perturbation.
\(\sigma_{\epsilon}(A)=\{z \in \mathbf{C}: \operatorname{det}(A+E-z I)=0\) for some \(E\) with \(\|E\| \leq \epsilon\}\)
A more robust measure of system behaviour than eigenvalues.

\section*{Pseudospectra}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

The area swept out in the complex plane by the eigenvalues under perturbation.
\(\sigma_{\epsilon}(A)=\{z \in \mathbf{C}: \operatorname{det}(A+E-z I)=0\) for some \(E\) with \(\|E\| \leq \epsilon\}\)
A more robust measure of system behaviour than eigenvalues.
\[
\begin{aligned}
& \text { For }\|\cdot\|=\|\cdot\|_{2}, \\
& \qquad \sigma_{\epsilon}(A)=\left\{z \in \mathbf{C}:\left\|(A-z I)^{-1}\right\| \geq \epsilon^{-1}\right\}
\end{aligned}
\]

\section*{Pseudospectra}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

The area swept out in the complex plane by the eigenvalues under perturbation.
\(\sigma_{\epsilon}(A)=\{z \in \mathbf{C}: \operatorname{det}(A+E-z I)=0\) for some \(E\) with \(\|E\| \leq \epsilon\}\)
A more robust measure of system behaviour than eigenvalues.
For \(\|\cdot\|=\|\cdot\|_{2}\),
\[
\begin{aligned}
\sigma_{\epsilon}(A) & =\left\{z \in \mathbf{C}:\left\|(A-z I)^{-1}\right\| \geq \epsilon^{-1}\right\} \\
& =\left\{z \in \mathbf{C}: s_{n}(A-z I) \leq \epsilon\right\}
\end{aligned}
\]
where \(s_{n}\) denotes smallest singular value:
\[
A-z I=U \operatorname{diag}(s) V^{*}
\]
with \(U^{*} U=V^{*} V=I\).

\section*{Pseudospectra}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

The area swept out in the complex plane by the eigenvalues under perturbation.
\(\sigma_{\epsilon}(A)=\{z \in \mathbf{C}: \operatorname{det}(A+E-z I)=0\) for some \(E\) with \(\|E\| \leq \epsilon\}\)
A more robust measure of system behaviour than eigenvalues.
For \(\|\cdot\|=\|\cdot\|_{2}\),
\[
\begin{aligned}
\sigma_{\epsilon}(A) & =\left\{z \in \mathbf{C}:\left\|(A-z I)^{-1}\right\| \geq \epsilon^{-1}\right\} \\
& =\left\{z \in \mathbf{C}: s_{n}(A-z I) \leq \epsilon\right\}
\end{aligned}
\]
where \(s_{n}\) denotes smallest singular value:
\[
A-z I=U \operatorname{diag}(s) V^{*}
\]
with \(U^{*} U=V^{*} V=I\).
Let \(f(x, y)=s_{n}(A-(x+i y) I)\). Then pseudospectra are lower level sets of \(f\).

\section*{Pseudospectra}

\section*{Orr-Sommerfeld Matrix ( \(n=99, \epsilon=10^{-4}, 10^{-3}, 10^{-2}\) )}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Pseudospectra
Orr-Sommerfeld
Matrix ( \(n=99\),


Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Pseudospectra
Orr-Sommerfeld
Matrix ( \(n=99\),


Black dots are eigenvalues and colored curves are pseudospectral boundaries. Note the pseudospectra are not convex.

\section*{Constructing \(E\) given \(z \in \partial \sigma_{\epsilon}(A)\)}

\section*{Let}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Pseudospectra
Orr-Sommerfeld
Matrix ( \(n=99\),
\[
A-z I=U \operatorname{diag}(s) V^{*}=\sum_{j=1}^{n} s_{j} u_{j} v_{j}^{*}, \quad s_{n}=\epsilon
\]
\[
\text { with } U^{*} U=V^{*} V=I
\]

\section*{Constructing \(E\) given \(z \in \partial \sigma_{\epsilon}(A)\)}

Let
\[
A-z I=U \operatorname{diag}(s) V^{*}=\sum_{j=1}^{n} s_{j} u_{j} v_{j}^{*}, \quad s_{n}=\epsilon
\]
with \(U^{*} U=V^{*} V=I\).
Then if we set \(u=u_{n}, v=v_{n}, E=-\epsilon u v^{*}\) we have
\[
\operatorname{det}(A-z I+E)=0
\]
so \(z\) is an eigenvalue of \(A+E\).

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

\section*{Constructing \(E\) given \(z \in \partial \sigma_{\epsilon}(A)\)}

Let
\[
A-z I=U \operatorname{diag}(s) V^{*}=\sum_{j=1}^{n} s_{j} u_{j} v_{j}^{*}, \quad s_{n}=\epsilon
\]
with \(U^{*} U=V^{*} V=I\).
Then if we set \(u=u_{n}, v=v_{n}, E=-\epsilon u v^{*}\) we have
\[
\operatorname{det}(A-z I+E)=0
\]
so \(z\) is an eigenvalue of \(A+E\).
Key point: can choose \(E\) to have rank one.
```

Part
Optimization of
Pseudospectra
with
J.V. Burke (U.
Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

```

\section*{Pseudospectra}

Constructing \(E\) given \(z \in \partial \sigma_{\epsilon}(A)\)
Let
\[
A-z I=U \operatorname{diag}(s) V^{*}=\sum_{j=1}^{n} s_{j} u_{j} v_{j}^{*}, \quad s_{n}=\epsilon
\]
with \(U^{*} U=V^{*} V=I\).
Then if we set \(u=u_{n}, v=v_{n}, E=-\epsilon u v^{*}\) we have
\[
\operatorname{det}(A-z I+E)=0
\]
so \(z\) is an eigenvalue of \(A+E\).
Key point: can choose \(E\) to have rank one. Furthermore
\[
(A-z I) v=\epsilon u, \quad u^{*}(A-z I)=\epsilon v^{*}
\]

Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N. Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Constructing \(E\) given \(z \in \partial \sigma_{\epsilon}(A)\)
Let

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)
\[
A-z I=U \operatorname{diag}(s) V^{*}=\sum_{j=1}^{n} s_{j} u_{j} v_{j}^{*}, \quad s_{n}=\epsilon
\]
with \(U^{*} U=V^{*} V=I\).
Then if we set \(u=u_{n}, v=v_{n}, E=-\epsilon u v^{*}\) we have
\[
\operatorname{det}(A-z I+E)=0
\]
so \(z\) is an eigenvalue of \(A+E\).
Key point: can choose \(E\) to have rank one. Furthermore
\[
(A-z I) v=\epsilon u, \quad u^{*}(A-z I)=\epsilon v^{*}
\]
so
\[
(A-z I+E) v=0, \quad u^{*}(A-z I+E)=0 .
\]

Thus the right and left singular vectors of \(A-z I\) for the singular value \(\epsilon\) are also right and left eigenvectors of \(A+E\) for the eigenvalue \(z\).

\section*{Pseudospectral Radius and Abscissa}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Pseudospectral radius: modulus of outermost point in \(\sigma_{\epsilon}(A)\)
\[
\rho_{\epsilon}(A)=\max \left\{|z|: z \in \sigma_{\epsilon}(A)\right\}
\]

\section*{Pseudospectral Radius and Abscissa}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Pseudospectral radius: modulus of outermost point in \(\sigma_{\epsilon}(A)\)
\[
\rho_{\epsilon}(A)=\max \left\{|z|: z \in \sigma_{\epsilon}(A)\right\}
\]

Pseudospectral abscissa: real part of rightmost point in \(\sigma_{\epsilon}(A)\)
\[
\alpha_{\epsilon}(A)=\max \left\{\operatorname{Re} z: z \in \sigma_{\epsilon}(A)\right\}
\]

\section*{Pseudospectral Radius and Abscissa}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Pseudospectral radius: modulus of outermost point in \(\sigma_{\epsilon}(A)\)
\[
\rho_{\epsilon}(A)=\max \left\{|z|: z \in \sigma_{\epsilon}(A)\right\}
\]

Pseudospectral abscissa: real part of rightmost point in \(\sigma_{\epsilon}(A)\)
\[
\alpha_{\epsilon}(A)=\max \left\{\operatorname{Re} z: z \in \sigma_{\epsilon}(A)\right\}
\]

Computing these quantities: nontrivial because \(\sigma_{\epsilon}(A)\) is not convex.

\section*{Pseudospectral Radius and Abscissa}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Pseudospectral radius: modulus of outermost point in \(\sigma_{\epsilon}(A)\)
\[
\rho_{\epsilon}(A)=\max \left\{|z|: z \in \sigma_{\epsilon}(A)\right\}
\]

Pseudospectral abscissa: real part of rightmost point in \(\sigma_{\epsilon}(A)\)
\[
\alpha_{\epsilon}(A)=\max \left\{\operatorname{Re} z: z \in \sigma_{\epsilon}(A)\right\}
\]

Computing these quantities: nontrivial because \(\sigma_{\epsilon}(A)\) is not convex.

Criss-cross algorithm for computing the pseudospectral abscissa \(\alpha_{\epsilon}(A)\) : based on repeatedly computing eigenvalues of \(2 n \times 2 n\) Hamiltonian matrices and checking whether any are imaginary, and computing SVDs for each imaginary eigenvalue.

\section*{Pseudospectral Radius and Abscissa}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban (NYU)
A.S. Lewis (Cornell)

Pseudospectral radius: modulus of outermost point in \(\sigma_{\epsilon}(A)\)
\[
\rho_{\epsilon}(A)=\max \left\{|z|: z \in \sigma_{\epsilon}(A)\right\}
\]

Pseudospectral abscissa: real part of rightmost point in \(\sigma_{\epsilon}(A)\)
\[
\alpha_{\epsilon}(A)=\max \left\{\operatorname{Re} z: z \in \sigma_{\epsilon}(A)\right\}
\]

Computing these quantities: nontrivial because \(\sigma_{\epsilon}(A)\) is not convex.

Criss-cross algorithm for computing the pseudospectral abscissa \(\alpha_{\epsilon}(A)\) : based on repeatedly computing eigenvalues of \(2 n \times 2 n\) Hamiltonian matrices and checking whether any are imaginary, and computing SVDs for each imaginary eigenvalue.
Too expensive if \(n\) large.

\section*{Approximating the Pseudospectral Abscissa if \(n\) is Big}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

We want a rightmost point \(z\) of \(\sigma_{\epsilon}(A)\), so \(s_{n}(A-z I)=\epsilon\). Let \(v\) and \(u\) be corresponding right and left singular vectors. We know that \(z\) is an eigenvalue of \(B=A-\epsilon u v^{*}\) with right and left eigenvectors \(v\) and \(u\).

\section*{Approximating the Pseudospectral Abscissa if \(n\) is Big}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

We want a rightmost point \(z\) of \(\sigma_{\epsilon}(A)\), so \(s_{n}(A-z I)=\epsilon\). Let \(v\) and \(u\) be corresponding right and left singular vectors. We know that \(z\) is an eigenvalue of \(B=A-\epsilon u v^{*}\) with right and left eigenvectors \(v\) and \(u\).

Let us generate a sequence
\[
B^{(k)}=A-\epsilon u^{(k)}\left(v^{(k)}\right)^{*}
\]
with \(\left\|u^{(k)}\right\|=\left\|v^{(k)}\right\|=1\). We want \(u^{(k)} \rightarrow u, v^{(k)} \rightarrow v\).

\section*{Approximating the Pseudospectral Abscissa if \(n\) is Big}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of
Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban (NYU)
A.S. Lewis (Cornell)

We want a rightmost point \(z\) of \(\sigma_{\epsilon}(A)\), so \(s_{n}(A-z I)=\epsilon\). Let \(v\) and \(u\) be corresponding right and left singular vectors. We know that \(z\) is an eigenvalue of \(B=A-\epsilon u v^{*}\) with right and left eigenvectors \(v\) and \(u\).

Let us generate a sequence
\[
B^{(k)}=A-\epsilon u^{(k)}\left(v^{(k)}\right)^{*}
\]
with \(\left\|u^{(k)}\right\|=\left\|v^{(k)}\right\|=1\). We want \(u^{(k)} \rightarrow u, v^{(k)} \rightarrow v\).
No Hamiltonian eigenvalue decompositions or SVDs allowed. The only matrix operations are the computation of eigenvalues with largest real part and their corresponding right and left eigenvectors, which can be done efficiently using the implicitly restarted Arnoldi method (ARPACK).

\section*{RP-Compatible Right and Left Eigenvectors}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

\section*{Part III}

Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

A pair of right and left eigenvectors \(p\) and \(q\) for a simple eigenvalue \(\lambda\) is called \(R P\)-compatible if \(\|p\|=\|q\|=1\) and \(p^{*} q\) is real and positive, and therefore in the interval \((0,1]\).

\section*{RP-Compatible Right and Left Eigenvectors}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

A pair of right and left eigenvectors \(p\) and \(q\) for a simple eigenvalue \(\lambda\) is called \(R P\)-compatible if \(\|p\|=\|q\|=1\) and \(p^{*} q\) is real and positive, and therefore in the interval \((0,1]\).
This defines right and left eigenvectors uniquely up to \(p \leftarrow e^{i \theta} p\), \(q \leftarrow e^{i \theta} q\).

\section*{New Algorithm to Approximate \(\alpha_{\epsilon}(A)\)}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)
1. Let \(z^{(0)}\) be a rightmost eigenvalue of \(A\), with RP-compatible right and left eigenvectors \(v^{(0)}\) and \(u^{(0)}\). Set \(B^{(0)}=A-\epsilon u^{(0)}\left(v^{(0)}\right)^{*}\).

\section*{New Algorithm to Approximate \(\alpha_{\epsilon}(A)\)}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)
1. Let \(z^{(0)}\) be a rightmost eigenvalue of \(A\), with RP-compatible right and left eigenvectors \(v^{(0)}\) and \(u^{(0)}\). Set \(B^{(0)}=A-\epsilon u^{(0)}\left(v^{(0)}\right)^{*}\).
2. For \(k=1,2, \ldots\) : let \(z^{(k)}\) be a rightmost eigenvalue of \(B^{(k)}\) with RP-compatible right and left eigenvectors \(v^{(k)}\) and \(u^{(k)}\). Set \(B^{(k+1)}=A-\epsilon u^{(k)}\left(v^{(k)}\right)^{*}\).

\section*{New Algorithm to Approximate \(\alpha_{\epsilon}(A)\)}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

\section*{Part III}

Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)
1. Let \(z^{(0)}\) be a rightmost eigenvalue of \(A\), with RP-compatible right and left eigenvectors \(v^{(0)}\) and \(u^{(0)}\). Set \(B^{(0)}=A-\epsilon u^{(0)}\left(v^{(0)}\right)^{*}\).
2. For \(k=1,2, \ldots\) : let \(z^{(k)}\) be a rightmost eigenvalue of \(B^{(k)}\) with RP-compatible right and left eigenvectors \(v^{(k)}\) and \(u^{(k)}\). Set \(B^{(k+1)}=A-\epsilon u^{(k)}\left(v^{(k)}\right)^{*}\).

Clearly, \(\operatorname{Re} z^{(k)} \leq \alpha_{\epsilon}(A)\) for all \(k\).

\section*{New Algorithm to Approximate \(\alpha_{\epsilon}(A)\)}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues
with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)
1. Let \(z^{(0)}\) be a rightmost eigenvalue of \(A\), with RP-compatible right and left eigenvectors \(v^{(0)}\) and \(u^{(0)}\). Set \(B^{(0)}=A-\epsilon u^{(0)}\left(v^{(0)}\right)^{*}\).
2. For \(k=1,2, \ldots\) : let \(z^{(k)}\) be a rightmost eigenvalue of \(B^{(k)}\) with RP-compatible right and left eigenvectors \(v^{(k)}\) and \(u^{(k)}\). Set \(B^{(k+1)}=A-\epsilon u^{(k)}\left(v^{(k)}\right)^{*}\).

Clearly, \(\operatorname{Re} z^{(k)} \leq \alpha_{\epsilon}(A)\) for all \(k\).
Almost always: \(z^{(k)} \rightarrow z\), a locally rightmost point of \(\sigma_{\epsilon}(A)\), and \(v^{(k)}\) and \(u^{(k)}\) converge to right and left singular vectors \(v\) and \(u\) corresponding to smallest singular value of \(A-z I\).

\section*{New Algorithm to Approximate \(\alpha_{\epsilon}(A)\)}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues
with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)
1. Let \(z^{(0)}\) be a rightmost eigenvalue of \(A\), with RP-compatible right and left eigenvectors \(v^{(0)}\) and \(u^{(0)}\). Set \(B^{(0)}=A-\epsilon u^{(0)}\left(v^{(0)}\right)^{*}\).
2. For \(k=1,2, \ldots\) : let \(z^{(k)}\) be a rightmost eigenvalue of \(B^{(k)}\) with RP-compatible right and left eigenvectors \(v^{(k)}\) and \(u^{(k)}\). Set \(B^{(k+1)}=A-\epsilon u^{(k)}\left(v^{(k)}\right)^{*}\).

Clearly, \(\operatorname{Re} z^{(k)} \leq \alpha_{\epsilon}(A)\) for all \(k\).
Almost always: \(z^{(k)} \rightarrow z\), a locally rightmost point of \(\sigma_{\epsilon}(A)\), and \(v^{(k)}\) and \(u^{(k)}\) converge to right and left singular vectors \(v\) and \(u\) corresponding to smallest singular value of \(A-z I\).
Often, but not always, \(z\) is a globally rightmost point so
\(\operatorname{Re} z=\alpha_{\epsilon}(A)\).

\section*{New Algorithm to Approximate \(\alpha_{\epsilon}(A)\)}

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues
with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban (NYU)
A.S. Lewis (Cornell)
1. Let \(z^{(0)}\) be a rightmost eigenvalue of \(A\), with RP-compatible right and left eigenvectors \(v^{(0)}\) and \(u^{(0)}\). Set \(B^{(0)}=A-\epsilon u^{(0)}\left(v^{(0)}\right)^{*}\).
2. For \(k=1,2, \ldots\) : let \(z^{(k)}\) be a rightmost eigenvalue of \(B^{(k)}\) with RP-compatible right and left eigenvectors \(v^{(k)}\) and \(u^{(k)}\). Set \(B^{(k+1)}=A-\epsilon u^{(k)}\left(v^{(k)}\right)^{*}\).

Clearly, \(\operatorname{Re} z^{(k)} \leq \alpha_{\epsilon}(A)\) for all \(k\).
Almost always: \(z^{(k)} \rightarrow z\), a locally rightmost point of \(\sigma_{\epsilon}(A)\), and \(v^{(k)}\) and \(u^{(k)}\) converge to right and left singular vectors \(v\) and \(u\) corresponding to smallest singular value of \(A-z I\).
Often, but not always, \(z\) is a globally rightmost point so \(\operatorname{Re} z=\alpha_{\epsilon}(A)\).
We have theorems characterizing fixed points of the algorithm and proving local convergence at a geometric rate for \(\epsilon\) small.

\section*{Orr-Sommerfeld Matrix ( \(n=99, \epsilon=10^{-4}, 10^{-2}\) )}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

\section*{Pseudospectra}

Orr-Sommerfeld


\section*{Part I}

Globally Optimizing
the Roots of a
Monic Polynomial subject to One
Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

\section*{Pseudospectra}

Orr-Sommerfeld


\section*{Minimizing \(\alpha_{\epsilon}(A(x))\) over Parametrized Matrix \(A(x)\)}

For given \(x\) in parameter space \(\mathbf{R}^{p}\), compute \(\alpha_{\epsilon}(A(x))\) by criss-cross algorithm if \(n\) small and otherwise by the new algorithm.

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

\section*{Minimizing \(\alpha_{\epsilon}(A(x))\) over Parametrized Matrix \(A(x)\)}

For given \(x\) in parameter space \(\mathbf{R}^{p}\), compute \(\alpha_{\epsilon}(A(x))\) by criss-cross algorithm if \(n\) small and otherwise by the new algorithm.
Like \(\alpha, \alpha_{\epsilon}\) is nonsmooth and nonconvex, but unlike \(\alpha\), it is locally Lipschitz for \(\epsilon>0\) (although \(\sigma_{\epsilon}\) is not).

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

\section*{Part III}

Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

\section*{Minimizing \(\alpha_{\epsilon}(A(x))\) over Parametrized Matrix \(A(x)\)}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of
Eigenvalues
with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

For given \(x\) in parameter space \(\mathbf{R}^{p}\), compute \(\alpha_{\epsilon}(A(x))\) by criss-cross algorithm if \(n\) small and otherwise by the new algorithm.
Like \(\alpha, \alpha_{\epsilon}\) is nonsmooth and nonconvex, but unlike \(\alpha\), it is locally Lipschitz for \(\epsilon>0\) (although \(\sigma_{\epsilon}\) is not).
Derivatives:
\[
\frac{\partial}{\partial x_{k}} \alpha_{\epsilon}(A(x))=\left\langle\frac{\partial A}{\partial x_{k}}(x), \frac{1}{v^{*} u} v u^{*}\right\rangle=\operatorname{Re} \frac{u^{*} \frac{\partial A}{\partial x_{k}}(x) v}{u^{*} v}
\]
where \(v\) and \(u\) are right and left singular vectors for the singular value \(\epsilon\) of \(A-z I\) with \(z\) the rightmost point of \(\sigma_{\epsilon}(A)\), equivalently RP-compatible right and left eigenvectors for the eigenvalue \(z\) of \(A-\epsilon u v^{*}\).

\section*{Minimizing \(\alpha_{\epsilon}(A(x))\) over Parametrized Matrix \(A(x)\)}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of
Eigenvalues
with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

For given \(x\) in parameter space \(\mathbf{R}^{p}\), compute \(\alpha_{\epsilon}(A(x))\) by criss-cross algorithm if \(n\) small and otherwise by the new algorithm.
Like \(\alpha, \alpha_{\epsilon}\) is nonsmooth and nonconvex, but unlike \(\alpha\), it is locally Lipschitz for \(\epsilon>0\) (although \(\sigma_{\epsilon}\) is not).
Derivatives:
\[
\frac{\partial}{\partial x_{k}} \alpha_{\epsilon}(A(x))=\left\langle\frac{\partial A}{\partial x_{k}}(x), \frac{1}{v^{*} u} v u^{*}\right\rangle=\operatorname{Re} \frac{u^{*} \frac{\partial A}{\partial x_{k}}(x) v}{u^{*} v}
\]
where \(v\) and \(u\) are right and left singular vectors for the singular value \(\epsilon\) of \(A-z I\) with \(z\) the rightmost point of \(\sigma_{\epsilon}(A)\), equivalently RP-compatible right and left eigenvectors for the eigenvalue \(z\) of \(A-\epsilon u v^{*}\).
As earlier, use Gradient Sampling or BFGS.

\section*{Minimizing \(\alpha_{\epsilon}(A(x))\) over Parametrized Matrix \(A(x)\)}

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of
Eigenvalues
with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban (NYU)
A.S. Lewis (Cornell)

For given \(x\) in parameter space \(\mathbf{R}^{p}\), compute \(\alpha_{\epsilon}(A(x))\) by criss-cross algorithm if \(n\) small and otherwise by the new algorithm.
Like \(\alpha, \alpha_{\epsilon}\) is nonsmooth and nonconvex, but unlike \(\alpha\), it is locally Lipschitz for \(\epsilon>0\) (although \(\sigma_{\epsilon}\) is not).
Derivatives:
\[
\frac{\partial}{\partial x_{k}} \alpha_{\epsilon}(A(x))=\left\langle\frac{\partial A}{\partial x_{k}}(x), \frac{1}{v^{*} u} v u^{*}\right\rangle=\operatorname{Re} \frac{u^{*} \frac{\partial A}{\partial x_{k}}(x) v}{u^{*} v}
\]
where \(v\) and \(u\) are right and left singular vectors for the singular value \(\epsilon\) of \(A-z I\) with \(z\) the rightmost point of \(\sigma_{\epsilon}(A)\), equivalently RP-compatible right and left eigenvectors for the eigenvalue \(z\) of \(A-\epsilon u v^{*}\).
As earlier, use Gradient Sampling or BFGS.
Example: \(A(x)=F+G K H\) with \(x=\operatorname{vec}(K)\), a static output feedback control design problem for a turbo generator with \(n=10, \ell=m=2\), so controller \(K \in \mathbf{R}^{2 \times 2}\).

\section*{A Turbo Generator Control Problem}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban (NYU)
A.S. Lewis (Cornell)

Pseudospectra for Turbo-Generator with No Feedback



Pseudospectra for open-loop turbo generator plant with no feedback. Matrix ( \(n=99\),

\section*{Turbo Generator with Optimized Eigenvalues}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)


Pseudospectra for turbo generator plant with feedback computed by minimizing the spectral abscissa \(\alpha\)

\author{
Pseudospectra
}

\section*{Turbo Generator with Optimized \(\epsilon\)-Pseudospectrum}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Pseudospectra for Turbo-Generator when \(1 \sigma^{-1.5}\)-Pseudospectrum is Optimized



Pseudospectra for turbo generator plant with feedback computed by minimizing the pseudospectral abscissa \(\alpha_{\epsilon}\) with \(\epsilon=10^{-1.5}\)

\section*{Turbo Generator with Optimized Dist. to Instability}

\section*{Part I}

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)

M . Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Pseudospectra for Turbo-Generator when Complex Stability Radius is Optimized



Pseudospectra for turbo generator plant with feedback computed by maximizing the distance to instability: largest \(\epsilon\) so that \(\alpha_{\epsilon}(A(x)) \leq 0\).

\section*{References for Part III}

Origins of Pseudospectra in 1980s:

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Landau, Varah, Godunov, Demmel, Wilkinson, Trefethen, ?.
```

Pseudospectra
Orr-Sommerfeld

References for Part III

Part I
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU) A. Megretski (MIT)

Part II
Optimization of Eigenvalues with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Origins of Pseudospectra in 1980s:
Landau, Varah, Godunov, Demmel, Wilkinson, Trefethen, ?. Spectra and Pseudospectra
L. N. Trefethen and M. Embree

Princeton University Press (2005).

References for Part III

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of
Eigenvalues
with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban (NYU)
A.S. Lewis (Cornell)

Origins of Pseudospectra in 1980s:
Landau, Varah, Godunov, Demmel, Wilkinson, Trefethen, ?.
Spectra and Pseudospectra
L. N. Trefethen and M. Embree

Princeton University Press (2005).
Optimization and Pseudospectra, with Applications to Robust Stability, J.V. Burke, A.S. Lewis and M.L. Overton, SIAM J. Matrix Anal. Appl. (2003).

A Nonsmooth, Nonconvex Optimization Approach to Robust Stabilization by Static Output Feedback and Low-Order Controllers, J.V. Burke, A.S. Lewis and M.L. Overton, Fourth IFAC Symposium on Robust Control Design, Milan (2003).
Fast algorithms for the approximation of the pseudospectral abscissa and pseudospectral radius of a matrix, N. Guglielmi and M.L. Overton, SIAM J. Matrix Anal. Appl. (2011)
Some Regularity Results for the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix, M. Gürbüzbalaban and M.L. Overton, SIAM J. Optimization (2012)

References for Part III

Part
Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of
Eigenvalues
with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban (NYU)
A.S. Lewis (Cornell)

Origins of Pseudospectra in 1980s:
Landau, Varah, Godunov, Demmel, Wilkinson, Trefethen, ?. Spectra and Pseudospectra
L. N. Trefethen and M. Embree

Princeton University Press (2005).
Optimization and Pseudospectra, with Applications to Robust Stability, J.V. Burke, A.S. Lewis and M.L. Overton, SIAM J. Matrix Anal. Appl. (2003).

A Nonsmooth, Nonconvex Optimization Approach to Robust Stabilization by Static Output Feedback and Low-Order Controllers, J.V. Burke, A.S. Lewis and M.L. Overton, Fourth IFAC Symposium on Robust Control Design, Milan (2003).
Fast algorithms for the approximation of the pseudospectral abscissa and pseudospectral radius of a matrix, N. Guglielmi and M.L. Overton, SIAM J. Matrix Anal. Appl. (2011)
Some Regularity Results for the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix, M. Gürbüzbalaban and M.L.
Overton, SIAM J. Optimization (2012)

Part I

Globally Optimizing the Roots of a Monic Polynomial subject to One Affine Constraint with
V. Blondel (Louvain)
M. Gürbüzbalaban (NYU)
A. Megretski (MIT)

Part II
Optimization of
Eigenvalues
with
J.V. Burke (Wash.)
K.K. Gade (NYU)
S. Grundel (NYU)
A.S. Lewis (Cornell)

Part III
Optimization of
Pseudospectra
with
J.V. Burke (U.

Wash.)
N.Guglielmi
(L'Aquila)
M. Gürbüzbalaban
(NYU)
A.S. Lewis (Cornell)

Thanks a lot for your attention!

