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Goal: Prove a Krein-like theorem for instabilities that emerge
from the continuous spectrum in a large class of Hamiltonian Eu-
lerian matter models (CHH). Motivate a nonlinear normal form
(pde).

∗With G. Hagstrom



Charged Particle on Slick Mountain

Falls and Rotates ⇒ Precession



Charged Particle on Quadratic Mountain

Simple model of FLR stabilization → plasma mirror machine.

Lagrangian:

L =
m

2

(
ẋ2 + ẏ2

)
+
eB

2
(ẏx− ẋy) +

K

2

(
x2 + y2

)

Hamiltonian:

H =
m

2

(
p2
x + p2

y

)
+ ωL (ypx − xpy)−

m

2

(
ω2
L − ω

2
0

) (
x2 + y2

)

Two frequencies:

ωL =
eB

2m
and ω0 =

√
K

m



Quadratic Mountain - Krein Crash

x, y ∼ eiωt = eλt



Quadratic Mountain Stable Normal Form

For large enough B system is stable and ∃ a coordinate change,

a canonical transformation (q, p)→ (Q,P ), to

H =
|ωf |

2

(
P2
f +Q2

f

)
−
|ωs|
2

(
P2
s +Q2

s

)

Slow mode is a negative energy mode – a stable oscillation that

lowers the energy relative to the equilibrium state.

Weierstrass (1894), Williamson (1936), ...

.

→ Later will do analog of this for continuous spectrum.
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June 2008 Alcator C-Mod, in-vessel inspection
localized melt damage most likely due to runaways

“Far away”

Melt damage at 
upper edges
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burned/melted by 
runaways
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Tokamak Issues

All interesting plasma magnetic confinement equilibria are either

spectrally unstable or spectrally stable with indefinite linearized

energy, i.e. have negative energy modes. Both can be dangerous.

PJM and D. Pfirsch (1989)
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Maxwell-Vlasov System

Vlasov Equation:

∂fα(x,v, t)

∂t
+ v · ∇fα +

eα

mα

(
E + v ×B

)
· ∇vfα =

∂fα

∂t

)
c
≈ 0

where f is phase space density, α = e, i is species index, and the
sources, charge density and current density, are given by

ρ(x, t) =
∑
α
eα

∫
R3
d3v fα , J(x, t) =

∑
α
eα

∫
R3
d3v vfα ,

which couple into

Maxwell’s Equations:

∂B

∂t
= −∇× E , ∇ ·B = 0

ε0
∂E

∂t
= ∇×B− µ0J , ε0∇ · E = ρ



Maxwell-Vlasov Regularity

Maxwell-Vlasov global existence: Open!

R. Glassey, J. Schaeffer, .....

“After 40 years we have precious little to show for it.”

Computation? age of solar system < age of universe
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Maxwell-Vlasov System (to scale)

∂fα(x, v, t)

∂t
+ v ·

∂fα

∂x
+ · · · = 0

(1)
←− person



Vlasov-Poisson System

Phase space density (1 + 1 + 1 field theory):

f : Π× R2 → R+ , f(x, v, t) ≥ 0

Conservation of phase space density:

∂f

∂t
+ v

∂f

∂x
+

e

m

∂φ[x, t; f ]

∂x

∂f

∂v
= 0

Poisson’s equation:

φxx = 4π
[
e
∫
R
f(x, v, t) dv − ρB

]

Energy:

H =
m

2

∫
Π

∫
R
v2f dxdv +

1

8π

∫
Π

(φx)2 dx



Fluid Two-Stream

Waterbag distribution function:





Two-Stream Instability ↔ Hamiltonian Hopf

Three equivalent definitions of negative energy modes:

• Von Laue 1905:

sgn

(
ω(k)

∂ε(k, ω(k))

∂ω

)

• Energy Casmir: δ2F = δ2(H + C)

• Symplectic signature: HL on eigenvector or two-form

Krein (1950) – Moser (1958) – Sturrock (1958)

Avoidance crossing etc. Sturrock → Cairns ....

Von Laue (wave) energy incorrect for continuous spectrum

pjm and Pfirsch (1992)
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Class of Hamiltonian Systems

• plasma physics (charged particles-electrostatic)

• vortex dynamics, QG, shear flow

• stellar dynamics

• statistical physics (XY-interaction)

• ...

• general transport via mean field theory



VP Cartoon– Symplectic Rearrangement

f(x, v, t) = f̊ ◦ z̊

f ∼ g if f = g ◦ z

with z symplectomorphism

, ~ 
1 

p = mv

µ volume measure

f(x, v, t) = f̊ (̊x(x, v, t), v̊(x, v, t))



Natural Hamiltonian Structure of Matter

Noncanonical Poisson Bracket:

{F,G} =
∫
Z
dqdp f

[
δF

δf
,
δG

δf

]
=
∫
Z
dqdpFfJGf =

〈
f, [Ff , Gf ]

〉

Cosymplectic Operator:

J · =
∂f

∂p

∂ ·
∂q
−
∂f

∂q

∂ ·
∂p

Vlasov:
∂f

∂t
= {f,H} = J

δH

δf
= −[f, E].

Casimir Degeneracy:

{C,F} = 0 ∀F for C[f ] =
∫
Z
dqdp C(f)

Too many variables and not canonical.

Recall Cartoon – Hamiltonian on leaf.



Linear Vlasov-Poisson System

Expand about Stable Homogeneous Equilibrium:

f = f0(v) + δf(x, v, t)

Linearized EOM:

∂δf

∂t
+ v

∂δf

∂x
+

e

m

∂δφ[x, t; δf ]

∂x

∂f0

∂v
= 0

δφxx = 4πe
∫
R
δf(x, v, t) dv

Linearized Energy (Kruskal-Oberman 1958):

HL = −
m

2

∫
Π

∫
R

v (δf)2

f ′0
dvdx+

1

8π

∫
Π

(δφx)2 dx



Sample Homogeneous Equilibria

← Maxwellian

BiMaxwellian →



Linear Hamiltonian Theory

Expand f-dependent Poisson bracket and Hamiltonian ⇒

∂δf

∂t
= {δf,HL}L ,

where quadratic Hamiltonian HL is the Kruskal-Oberman energy

and linear Poisson bracket is { , }L = { , }f0
.

Note:

δf not canonical

HL not diagonal



Landau’s Problem

Assume

δf =
∑
k

fk(v, t)eikx , δφ =
∑
k

φk(t)eikx

Linearized EOM:

∂fk
∂t

+ ikvfk + ikφk
e

m

∂f0

∂v
= 0 , k2φk = −4πe

∫
R
fk(v, t) dv

Three methods:

1. Laplace Transforms (Landau and others 1946)

2. Normal Modes (Van Kampen, Case,... 1955)

3. Coordinate Change ⇐⇒ Integral Transform (PJM, Pfirsch,
Shadwick, ... 1992)



Canonization & Diagonalization

Fourier Linear Poisson Bracket:

{F,G}L =
∞∑
k=1

ik

m

∫
R
f ′0

(
δF

δfk

δG

δf−k
−
δG

δfk

δF

δf−k

)
dv

Linear Hamiltonian:

HL = −
m

2

∑
k

∫
R

v

f ′0
|fk|2 dv +

1

8π

∑
k

k2|φk|2

=
∑
k,k′

∫
R

∫
R
fk(v)Ok,k′(v|v

′) fk′(v
′) dvdv′

Canonization:

qk(v, t) = fk(v, t) , pk(v, t) =
m

ikf ′0
f−k(v, t) =⇒

{F,G}L =
∞∑
k=1

∫
R

(
δF

δqk

δG

δpk
−
δG

δqk

δF

δpk

)
dv



Integral Transform

Definintion:

f(v) = G[g](v) := εR(v) g(v) + εI(v)H[g](v) ,

where

εI(v) = −π
ω2
p

k2

∂f0(v)

∂v
, εR(v) = 1 +H[εI](v) ,

and the Hilbert transform

H[g](v) :=
1

π
−
∫

g(u)

u− v
du ,

with −
∫

denoting Cauchy principal value of
∫
R.



Theorem (G1) G : Lp(R) → Lp(R), 1 < p < ∞, is a bounded

linear operator; i.e.

‖G[g]‖p ≤ Bp ‖g‖p ,

where Bp depends only on p.

Theorem (G2) If f ′0 ∈ L
q(R), stable, Hölder decay, then G[g]

has a bounded inverse,

G−1 : Lp(R)→ Lp(R) ,

for 1/p+ 1/q < 1, given by

g(u) = G−1[f ](u)

:=
εR(u)

|ε(u)|2
f(u)−

εI(u)

|ε(u)|2
H[f ](u) .

where |ε|2 := ε2
R + ε2

I .



Diagonalization

Mixed Variable Generating Functional:

F[q, P ′] =
∞∑
k=1

∫
R
qk(v)G[P ′k](v) dv

Canonical Coordinate Change (q, p)←→ (Q′, P ′):

pk(v) =
δF[q, P ′]

δqk(v)
= G[Pk](v) , Q′k(u) =

δF[q, P ′]

δPk(u)
= G†[qk](u)

New Hamiltonian:

HL = 1
2

∞∑
k=1

∫
R
duσk(u)ωk(u)

[
Q2
k(u) + P2

k (u)
]

where ωk(u) = |ku| and the signature is

σk(v) := −sgn(vf ′0(v))



Sample Homogeneous Equilibria

← Maxwellian

BiMaxwellian →



Hamiltonian Spectrum

Hamiltonian Operator:

fkt = −ikvfk +
if ′0
k

∫
R
dv̄ fk(v̄, t) =: Tkfk ,

Complete System:

fkt = Tkfk and f−kt = T−kf−k , k ∈ R+

Lemma If λ is an eigenvalue of the Vlasov equation linearized

about the equilibrium f ′0(v), then so are −λ and λ∗ . Thus if

λ = γ + iω, then eigenvalues occur in the pairs, ±γ and ±iω,

for purely real and imaginary cases, respectively, or quartets,

λ = ±γ ± iω, for complex eigenvalues.



Spectral Stability

Definition The dynamics of a Hamiltonian system linearized

around some equilibrium solution, with the phase space of solu-

tions in some Banach space B, is spectrally stable if the spectrum

σ(T ) of the time evolution operator T is purely imaginary.

Theorem If for some k ∈ R+ and u = ω/k in the upper half

plane the plasma dispersion relation,

ε(k, u) := 1− k−2
∫
R
dv

f ′0
u− v

= 0 ,

then the system with equilibrium f0 is spectrally unstable. Oth-

erwise it is spectrally stable.



Nyquist Method

f ′0 ∈ C
0,α(R)⇒ ε ∈ Cω(uhp).

Therefore, Argument Principle ⇒ winding # = # zeros of ε

Stable →



Spectral Theorem

Set k = 1 and consider T : f 7→ ivf− if ′0
∫
f in the space W1,1(R).

W1,1(R) is Sobolev space containing closure of functions

‖f‖1,1 = ‖f‖1 + ‖f ′‖1 =
∫
R
dv(|f |+ |f ′|)

Definition Resolvent of T is R(T, λ) = (T −λI)−1 and λ ∈ σ(T ).
(i) λ in point spectrum, σp(T ), if R(T, λ) not injective. (ii) λ
in residual spectrum, σr(T ), if R(T, λ) exists but not densely
defined. (iii) λ in continuous spectrum, σc(T ), if R(T, λ) exists,
densely defined but not bounded.

Theorem Let λ = iu. (i) σp(T ) consists of all points iu ∈ C,
where ε = 1 − k−2 ∫

Rdv f
′
0/(u− v) = 0. (ii) σc(T ) consists of all

λ = iu with u ∈ R \ (−iσp(T ) ∩ R). (iii) σr(T ) contains all the
points λ = iu in the complement of σp(T ) ∪ σc(T ) that satisfy
f ′0(u) = 0.

cf. e.g. P. Degond (1986). Similar but different.



The CHH Bifurcation

• Usual case: f0(v, vd) one-parameter family of equilibria. Vary

vd, embedded mode appears in continuous spectrum, then

ε(k, ω) has a root in uhp.

• But all equilibria infinitesmally close to instability in Lp(R).

Need measure of distance to bifurcation.

• Waterbag ‘onion’ replacement for f0 has ordinary Hamilto-

nian Hopf bifurcation. Thus, gives a discretization of the

continuous spectrum.



Single-Wave Behavior- Nonlinear

Behavior near marginality in many simulations in various physical

contexts



Single-Wave Model

Asymptotics with trapping scaling ... ⇒

Qt + [Q, E] = 0 , E = y2/2− ϕ

iAt =
〈
Q e−ix

〉
, ϕ = Aeix +A∗e−ix ,

where

[f, g] := fxgy − fygx , 〈 · 〉 :=
1

2π

∫ ∞
−∞

dy
∫ 2π

0
dx · (2)

and

Q(x, y, t) = density (vorticity), ϕ(x, t)=potential (streamfunc-

tion), A(t)=single-wave of amplitude, E= particle energy

Model has continuous spectrum with embedded mode that can

be pushed into instability and then tracked nonlinearly.



Summary – Conclusions

For large class of Hamiltonian pdes with continuous spectrum:

• Diagonalization by G-transform defines signature for cont. spec.

• Variety of Krein-like theorems, e.g. valley theorem of next talk

Single-wave model is nonlinear normal form:

• Read all about it in Balmforth, PJM, and Thiffeault RMP soon.


