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Introduction

Vortex rings

Kazuhiro Nogi/Agence France-Presse – Getty Images.

Beluga whales in Hamada blowing bubble rings at an aquarium.



Can do experiments with a cigar and a cardboard box. Or using more sophisticated

apparatus. . .



Or even more sophisticated apparatus. . . Stills from T. T. Lim’s videos at

(http://serve.me.nus.edu.sg/limtt/): colliding and leapfrogging rings.

Evident azimuthal instability. This has been looked at since the 1970s. Full equa-

tions are messy.

One approach (Widnall, Bliss & Tsai 1974) is to argue that for a thin vortex ring,

locally the vortex looks like a vortex filament and locally the effect of the rest of the

ring is a strain.

Hence examine the instability of a vortex in a strain field.

Other approaches are also possible, e.g. short-wavelength instability analysis (Hat-

tori & Fukumoto).



Wakes

Contrails left by aircraft are obvious in sky. Velocity perturbations induced by wakes

can be dangerous for (smaller) following aircraft. Important in airport management

and safety. Breakdown of wake due to instability. Instability of vortex filament

(including non-zero core size) in Saffman (1989; Chapter 10).

Crow instability Long wave cooperative instability acting on parallel vortex fila-

ments.

Left: from analysis of Flight 587 crash. Center: image from Crow (1970).



Short wave cooperative instability Bending modes of a vortex column may be un-

stable in a straining field. Focus of this talk.

Iso-levels of the axial vorticity perturbation component in a direct numerical sim-

ulation of a co-rotating dipole of aspect ratio a/b = 0.2 for Re = 5000: (a) linear

regime, (b) merger (Le Dizès and Laporte 2002, cited in Jacquin 2005).

Ultra short wave cooperative instability Elliptical instability. Generic mechanism for

instability of flow with elliptical streamlines (Pierrehumbert 1986; Bayly 1986 and

many others).



The Tsai–Widnall–Moore–Saffman instability

Fluid mechanics in one slide

Incompressible Euler equations:

Du

Dt
= −1

ρ
∇p, ∇ · u = 0.

These are basically Newton’s law and mass conservation for a fluid particle. ρ is

density, p is pressure, u is velocity. These are million dollar equations.

The vorticity is ω =∇× u and satisfies

Dω

Dt
= ω · ∇u.

The right-hand terms is vortex stretching.

A vortex jump is a step in vorticity. A vortex sheet is a delta function, corresponding

to a discontinuity in velocity. Unstable to Kelvin–Helmholtz instability.



Linearized equations

Euler equations for incompressible, inviscid flow linearized about 2D radial basic

state with streamfunction Ψ(r) and vertical velocity W (r). Take azimuthal depen-

dence eimθ and vertical dependence eik0z:

ut + imΩu + ik0Wu− 2Ωv = −pr,

vt + imΩv + ik0Wv +
Z

r2
u = −im

r
p,

wt + imΩw + ik0Ww = ik0p,

u′ +
u

r
+ imv + ik0w = 0.

Here Ω(r) = r−1Ψ′(r) is the angular velocity and Z(r) = r−1(r2Ω)′ is the vorticity.

Two-dimensional linearized equations can be written in streamfunction-vorticity

form

ζt + imΩζ − im

r
Z ′ψ = 0

with

ζ = Lmψ =
∂2ψ

∂r2
+

1

r

∂ψ

∂r
− m2

r2
ψ.



Strain

Infinitesimal two-dimensional strain at O(δ). Have to solve numerically in general.

Kelvin modes

The normal modes of a vortex are called Kelvin modes (sometimes expression

used only for waves on edge of a vorticity jump).

Obtained from radial Rayleigh equation. Rayleigh’s theorem in 2D geometry: if Z ′

does not change sign, the flow is stable (3D case is more complicated).

Kelvin modes can be found explicitly for the Rankine vortex and are discrete normal

modes.

For smooth vorticity distributions, there are no discrete modes for k0 = 0. Con-

tinuous spectrum exists. In general, obtain regular netrual modes and Landau

damping (see talk by Stéphane Le Dizès). Will not discuss WKBJ analysis.



General analysis

This is in Moore & Saffman (1975). Solution expanded as a double series in strain

perturbation. Required a discrete spectrum for the Kelvin modes.

Eventually a solvability condition is obtained in the case of degeneracy, i.e. equal

frequencies. To find numbers, matrix elements must be computed, as was done by

Tsai & Widnall (1976). In the absence of axial flow, instability can be shown without

computing any matrix elements:

ω2
1 = ν2Q2 −R2,

where ω1 is the correction to the frequency, ν measures the departure from the

resonant wavenumber, and P and Q are real numbers that depend on the basic

state.





Explicit results for the Rankine vortex (Fukumoto 2003)

Fukumoto (2003) was able to compute all the matrix elements exactly and correct

mistakes in previous work.

How can one learn more about this problem? Rankine vortices are special, so one

would like to examine smooth vorticity profiles, which do not have discrete normal

modes in 2D. What happens? What happens in the initial-value problem? What

about the infinitesimal strain assumption?

Interested in case when vortex is stable in the absence of strain, so not unstable

modes, unlike Stèphane’s talk.



Non-infinitesimal strain

Moore & Saffman (1975) explicitly discusses the case of non-infinitesimal strain:

An exact solution of this problem for general F is not be hoped for, though an exact

solution is known when ω is constant inside a finite core and zero elsewhere (Moore

& Saffman 1971) and when the core is stagnant, or hollow (M. Hill, unpublished).

Robinson & Saffman (1984) studied the three-dimensional instability of a steady

elliptical vortex in strain (a Moore–Saffman vortex). Note that Moore & Saffman

had originally studied the two-dimensional instability. Miyazaki, Imai & Fukumoto

(1994) looked at the 3D instability of Kirchhoff’s elliptical vortex which rotates rigidly

about a vertical axis. In both cases, the basic state vorticity is an elliptical vortex

path, so elliptical coordinates are used.

What about other solutions with finite strain? How does one study the stability if

they’re not elliptic?



Hollow vortices

What is a hollow vortex? Fluid inside the vortex is stagnant in moving reference

frame. If the vortex translates at a constant speed, pressure inside is constant.

Boundary condition can be written as velocity of the fluid on the boundary is con-

stant. If the vortex rotates (no known results), pressure field inside should be con-

sistent with solid body rotation.

Few known hollow vortices:

• Pocklington (1894). Compressible extension by Pullin & Moore, Heister et

al. (1990) and Leppington (2006).

• Hill (1975): hollow vortex in strain. But wait. . .

• Baker, Saffman & Sheffield (1976): array of hollow vortices. Compressible

extension by Ardalon, Meiron & Pullin (1995).

• Crowdy and Roenby: hollow vortex surrounded by point vortices.

• Green and Crowdy: double vortex street.

Why? Always useful to find exact solutions to Euler equations. Also have advan-

tage over vortex patches of involving a thermodynamic quantity, so useful as start-

ing point for compressible vortices.

Here Basic state for TWMS is Hill’s hollow vortex in strain.



Hill’s Hollow Vortex

Not to be confused with Hill’s Spherical Vortex. First reference in Baker, Saffman &

Sheffield (1976); subsequently in papers by Baker and Pullin. Thesis never finished

and work never published. I eventually found Mary Hill, who gave up science many

years ago.



Problem statement

Turns out to be a very interesting problem. What is the shape of a hollow vortex in

a strain field with potential γzn at infinity?

hollow vortex

Free boundary value problem. Solve by constructing conformal map (classical

technique, cf. Birkhoff & Zarantanello). Map inside of unit circle |ζ| = 1 to out-

side of vortex, with z ∼ aζ−1 for large |z|.

Find

z(ζ) = a

[
1

ζ
− 2iβ

(n− 1)
ζn−1 +

β2ζ2n−1

(2n− 1)

]
,

where µ is related to the strain and must be smaller than µc for univalent solutions.
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Hollow vortex shapes for n = 2 with µ = 0.05, 0.245, 0.5 and µ = µ(2)
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c (right). Each vortex has area π.



Stability

Results for γ = 0 vortex can be found analytically. In non-dimensional form

σ±m = i(m±
√
|m|), m 6= 0,

Audience participation question: the hollow vortex has a vortex sheet on the bound-

ary, so why no Kelvin–Helmholtz instability?

There are modes sharing eigenvalues:

σ−1 = σ+
−1 = 0, σ+

1 = σ−4 = 2i, σ−−1 = σ+
−4 = −2i.

This suggests the possibility of resonance between modes with common eigenfre-

quencies.

For n = 2, the configuration is always unstable to a mode with growth rate ω = 2γ
for small γ: this corresponds to the instability associated with a point vortex situated

at the stagnation point of a linear straining flow.

In contrast, n = 3 and higher modes are linearly stable. Instability would be a

finite-area effect.



Formulation

BSS derive linearized equations to describe the stability of their basic state working

in the potential plane: W = φ + iψ is the independent variable. The perturbation

velocity potential Φ is a harmonic function in ψ < 0 decaying as ψ → −∞. In

these coordinates, the dynamic and kinematic boundary conditions are

1

q2
0

∂δ

∂t
+
∂δ

∂φ
=
∂Φ

∂ψ
,

1

q2
0

∂Φ

∂t
+
∂Φ

∂φ
+

(
∂

∂ψ

1

2

q2

q2
0

)
ψ=0

δ = 0.

Now work in the ζ-plane. Equations on boundary become

1

q2
0

∂δ

∂t
+

1

φθ

∂δ

∂θ
=

1

ψρ

∂Φ

∂ρ
,

1

q2
0

∂Φ

∂t
+

1

φθ

∂Φ

∂θ
+

(
1

ψρ

∂

∂ρ

1

2

q2

q2
0

)
ρ=ρ0

δ = 0,

Finally

σΦ + Q
∂Φ

∂θ
= Gδ, σδ + Q

∂δ

∂θ
= −Q∂Φ

∂ρ
,

where σ = 2πλa2/q0Γ is the non-dimensional growth rate, and where Q and G are

known functions.



Results
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Imaginary and real parts of σ for the vortex in strain with n = 2, 3, 4.



3D instability

Only vertical dependence is in wavenumber of perturbation. Take vertical depen-

dence eik0z and solve

∇2
hφ− k2

0φ = 0.

Can still use the the mapping from z to ζ and

∇2
h = 4

∂2

∂z∂z̄
= 4

∣∣∣∣dζdz

∣∣∣∣2 ∂2

∂ζ∂ζ̄
,

to obtain

∇2
ζφ− k2

0|z′|2φ = 0,

Unlike the 2D case, the different azimuthal modes are coupled. Need to solve

numerically.

Can add a vertical velocityW . W cannot depend on the vertical coordinate and the

vertical momentum equation gives W = W (ψ). The boundary conditions become

1

q2
0

∂δ

∂t
+

(
∂

∂φ
+

ik0W0

q2
0

)
δ =

∂Φ

∂ψ
,

∂Φ

∂t
+

(
∂

∂φ
+

ik0W0

q2
0

)
Φ+

(
∂

∂ψ

1

2

q2 + W 2

q2
0

)
ψ=0

δ = 0,

where W0 is the (constant) value of W on the boundary of the vortex (a streamline

of the basic state). If there is no axial flow, the boundary conditions are unchanged.
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Frequencies for vortex column, i.e. µ = 0. Can find these frequencies from an

explicit dispersion relation. Different from usual figure since not Rankine vortex.
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Frequencies for vortex column with µ = 0.1, 0.2, 0.3, 0.4.



The initial-value problem

Use the Laplace transform. The strain correction is steady. The terms forced by

the coupling between strain and Kelvin modes satisfy a forced linear equation in

which the forcing can be obtained as a Laplace transform.

Critical issue becomes the initial condition for the Kelvin mode. The initial condition

for the forced response can be taken to be zero.

Strain correction

Look for solution ψ = (r2 + fs)e
2iθ + c.c. (note r2 is irrotational). Then fs satisfies

ΩL2fs −
Z ′

r
fs = rZ ′.

Solve numerically.
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The 2D problem

Kelvin modes

Solution is ψK =
∑

m ψK,meimθ + c.c., so ψK,−m = ψ∗K,m. Modes satisfy

∂

∂t
LmψK,m + imΩLmψK,m −

im

r
Z ′ψK,m = 0.

Normal mode solutions correspond to setting ∂t = iω

Solve initial-value problem numerically using Laplace transforms:

(s + imΩ)Lmψ̄K,m −
im

r
Z ′ψ̄K,m = Lmζ

(0)
K,m,

Will need to think about the initial condition.



Resonant terms

Need to solve

∂

∂t
ζ + Ωζθ −

Z ′

r
ψθ = −1

r

[
∂ψs
∂r

∂ζK
∂θ

+
∂ψK
∂r

∂ζs
∂θ
− ∂ψs

∂θ

∂ζK
∂r
− ∂ψK

∂θ

∂ζs
∂r

]
.

The strain couples modes m and m + 2. Limit ourselves to the case (−1, 1) case

for now and write ψK,1 = gK. Then

∂

∂t
L1ψ+ΩL1ψ−

Z ′

r
ψ = − 1

4r
[−if ′sL1g

∗
K + 2ig′∗KL2fs − 2ifs(L1g

∗
K)′ + iψK(L2f

∗
s )′xb] .



Exact solution for the (−1, 1) resonance

The radial Rayleigh equation can be solved exactly for m = ±1. Start with

ζt ± iΩζ ∓ ir−1Z ′ψ = g(r, t),

with

ζ = ψ′′ +
1

r
ψ′ − 1

r2
ψ.

Now take the Laplace transform in time:

(s± iΩ)ζ̄ ∓ ir−1Z ′ψ̄ = ζ0(r) + ḡ(r, s).

Follow Llewellyn Smith (1995) and write ψ = r(s± iΩ)f . This leads to

[r3(s± iΩ)2f ′]′ = r2[ζ0(r) + g(r, s)].

The solution to this equation that decays at infinity is

ψ = −r(s± iΩ)

∫ ∞

r

m(v)

(s± iΩ)2
dv

with

m(v) =
1

v3

∫ v

0
u2[ζ0(u) + g(u, s)] du =

∂

∂v

(
ψ0(v)

v

)
+

1

v3

∫ v

0
u2g(u, s) du.



Go back to LS95 and check that long-time result for evolution of Kelvin mode is

correct. Result is

ψ ∼ −πM
Γ
rΩ

for long time, where M =
∫ ∞

0 u2ζ0(u) du. For Gaussian vorticity Z = e−r
2

, Γ = π.

Take ζ0 = e−r
2

(the actual form is irrelevant) so that M = π1/2/4.
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Numerical solution
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Time evolution of resonant mode induced by m = 1 Kelvin mode as above for

t = 0, 5, 10, 15 (solid: real part, dashed: imaginary part).



The 3D problem

The next step. . .



Conclusion

Hollow vortices

• Have obtained solution for hollow vortex in strain field. Presumably this is what

Mary Hill found.

• Examined two-dimensional stability of hollow vortex in strain.

• Same technique works for three-dimensional stability and is a general method

for examining the stability of free-streamline solutions to the Euler equations.

• Used the same method to examine the stability of Pocklington’s hollow vortex.

Stable if sufficiently close to vortex pair.

• Next steps: Sadovskii vortices with delta and Heaviside functions of vorticity.

Relevant to bluff-body wakes from Prandtl–Batchelor theorem. Surface ten-

sion: expect to stabilize vortex. Stability method should still apply (with some

changes in boundary conditions) but need to compute basic states again.



The initial-value problem

• Strain correction is simple to obtain.

• Kelvin mode evolution for 2D case has been computed. Agrees with exact

m = ±1 solution.

• Exact 2D solution is available for (−1, 1) resonance. Asymptotics should be

possible.

• Have started with numerics. Need to be compared to asymptotics.

• 3D case remains to be investigated.



Density effects

Dolphins!

Rings seem very stable. Led to wonder about density effects in vortex ring stability

and hence in TWMS. Current work with Laurent Lacaze (IMFT).

Set density ρ = ρi and ρ = ρo for r < 1 and r > 1 respectively. Two profiles

(i) Rankine and (ii) modified Rankine depending on continuity condition (modified

Rankine probably not physical).

Analysis as in usual MS case. Θ is the density ratio.

Related to previous work on vortex stability with density differences by Jacquin and

coworkers.
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Dispersion curves as a function of Θ for the Rankine vortex (top row) and Modified

Rankine vortex (bottom row). Frequency and growth rate are shown: m = 1 (blue),

m = 2 (red), m = 3 (green) and m = 10 (black).



Numerical solution

Since Φ is harmonic, the functions Φ and δ can be written in the fluid region as

Φ =

∞∑
n=−∞

Φne
inθρ|n|, δ =

∞∑
n=−∞

δne
inθ.

Obtain matrix equations

−i

∞∑
m=−∞

Qn−mmΦm +

∞∑
m=−∞

Gn−mδm = σΦn,

−
∞∑

m=−∞

Qn−m|m|Φm − i

∞∑
m=−∞

Qn−mmδm = σδn

(Gn and Qn obtained using FFT).

Truncate and solve for the vector r = [Φ−N , · · · ,Φ0, · · · ,ΦN , δ−N , · · · , δ0, · · · , δN ]T :

generalized eigenvalue problem.
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