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The references

A general criterion concerning stability of gyroscopic systems has been
widely discussed since the work of Thomson and Tait in the nineteenth
century (see [4]). There is a recent formulation in a paper of Krechetnikov
and Marsden [2].

Our main objective is to construct gyroscopic systems which appear to
contradict this criterion.

In the process we provide new algebraic arguments for some general
propositions to be found in the standard reference work of Merkin, [3].
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Algebraic/Mechanical systems:

A system is a set of constant coefficient differential equations:

Mq̈(t) + (D + G )q̇(t) + (K + L)q(t) = f (t),

where t ∈ R is the time, f (t) and q(t) take values in Rn.
M, D, K ∈ Rn×n are symmetric, M > 0. G , L ∈ Rn×n are
skew-symmetric:

DT = D, GT = −GT , KT = K , LT = −L.

In general, M > 0, D ≥ 0, L = 0. The system is gyroscopic if G 6= 0.
Associated quadratic eigenvalue problem:(

Mλ2 + (D + G )λ + (K + L)
)
x = 0

associated with the matrix function

L(λ) := Mλ2 + (D + G )λ + (K + L), λ ∈ C.
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The spectrum of L(λ) is the set of all e.v. of L(λ), i.e.

{λ ∈ C : detL(λ) = 0}.

M > 0 → spectrum a bounded set in the complex plane.

Definitions:
(a) L(λ) is stable if all e.v. are in the open left half of the complex plane.
(This is sometimes referred to as “strong stability”.)
(b) L(λ) is weakly stable if all e.v. are in the closed left half of the
complex plane, there is at least one pure-imaginary e.v, and all such
pure-imaginary e.v. are semisimple.
The term marginal stability refers to the extreme case of weak stability in
which all e.v. are pure-imaginary and semisimple.
(c) L(λ) is unstable if it is neither stable nor weakly stable - so that there
is at least one e.v. which is either in the open right half-plane, or is
pure-imaginary and defective (and there may be several such “unstable”
e.v.).
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Semisimple?

L(λ) := Mλ2 + (D + G )λ + (K + L), λ ∈ C.

How do we decide whether eigenvalue λ0 is semisimple?

TEST: Given ev λ0 we have L(λ0)v = 0 for some v 6= 0 (v is an
eigenvector).

Define L(1)(λ) = 2Mλ + (D + G ). If we have nonzero solutions v , w for
both

L(λ0)v = 0, and L(λ0)w = −L(1)(λ0)v ,

then λ0 is not semisimple - and conversely.
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Special case - no damping.

Define

L(λ) := Mλ2 + Gλ + K , M > 0.

(a)Hamiltonian symmetry: The spectrum of L(λ) is symmetric with
respect to both the real and imaginary axes. To verify this observe that

L(λ)∗ = L(−λ̄), L(λ)T = L(−λ).

Thus, if λ is an ev so are λ̄, −λ, and −λ̄.
(b) A matrix A in R2n×2n is said to be Hamiltonian if (JA)T = JA where

J =

[
0 In
−In 0

]
.

(c) A matrix A in C2n×2n is said to be Hamiltonian if (JA)∗ = JA.
The spectrum of a real Hamiltonian matrix is symmetric wrt both axes.
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No damping - contd.

Now consider the sytem:

L(λ) := Mλ2 + Gλ + K , M > 0, K ≥ 0.

Briefly, the following result says that this system is marginally stable if
K > 0 and is unstable if K ≥ 0 and is singular.

Theorem

For the spectrum of L(λ):
(a) Nonzero evs are pure-imaginary and semisimple.
(b) There is an ev equal to zero iff det K = 0 and, in this case, the zero ev
is defective.

Apply the TEST: The system is marginally stable if K > 0 and will be
unstable only when K ≥ 0 and is singular. Then the zero ev of L(λ) is
defective.
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No damping - contd.

Relax the (negative semidef.) condition on K and consider

L(λ) := Mλ2 + Gλ + K , M > 0, detK < 0.

In mechanics (see [3]) the degree of instability of a system is the number
of negative ev. of K . So detK < 0 is equivalent to K has an odd number
of negative ev.. We have Theorem 6.3 of [3]:

Theorem

If det K < 0 then L(λ) is unstable.

Proof: Use the Hamiltonian symmetry: The product of conjugate pure
imaginary ev is positive. So detK < 0 implies that there is at least one ev
which is not pure imag.. The Ham’n symmetry implies there must be at
least one unstable ev..
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Relative sizes of G and K : admit K < 0

Theorem

(Hagedorn 1975) If 4K < −GGT then there are no pure-imaginary ev.

Define |G | = (GTG )1/2 ≥ 0.

Theorem

(Barkwell/Lancaster, 1992) If K < 0 and

|G | ≥ kI − k−1K for some k > 0

then the system Iλ2 + Gλ + K is marginally stable.

Notice the double negative - the system is unstable if G = 0.
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Gyroscopic systems with damping

L(λ) := Mλ2 + (D + G )λ + K .

Recall result of p.10: When D = 0 system is marginally stable if K > 0
and is unstable if K ≥ 0 and is singular.
What is the effect of adding damping term D ≥ 0?

(Theorems 6.4 and 6.5 of [3].)

Theorem

If M > 0, K > 0 and D ≥ 0 then L(λ) above is either stable or weakly
stable (whatever G = −GT may be).

Rather delicate proof uses our TEST to show that, when K > 0, all ev are
in the closed left half-plane and pure-imaginary ev are semisimple.
NB: Can start with stable gyro system Mλ2 + Gλ + K - add damping, and
stability is retained.
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Getting ev off the imaginary axis

Theorem

(Wimmer, 1974, Lancaster/Tismenetsky, 1983) Let M,K ,D be n × n
Hermitian matrices with M and K nonsingular, D ≥ 0 real, and

L(λ) := Mλ2 + (D + G )λ + K .

Then π(L) ≤ ν(M) + ν(K ) and ν(L) ≤ π(M) + π(K ). If also[
0 KM−1

I GM−1

]
,

[
0
D

]
is controllable, then L has no pure imaginary eigenvalues and

π(L) = ν(K ) + ν(M), ν(L) = π(K ) + π(M).
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Corollary

Corollary

If M > 0, K > 0 and D ≥ 0 then L is stable iff the controllability
condition holds.

xxxxxxxxxxxxxxxxxxxxxxxxxxx

A “MIXED” SYSTEM: Form a direct sum of two systems. THE FIRST:

L1(λ) = I1λ
2 + G1λ + K1, K1 < 0

with GT
1 = −G1 and

|G1| ≥ kI1 − k−1K1, k > 0.

so that L1(λ) is marginally stable.
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The second system:

L2(λ) = I2λ
2 + D2λ + K2,

with D2 > 0, and K2 > 0.
Now form the monic system

L0(λ) = Iλ2 + (D + G )λ + K :=

[
L1(λ) 0

0 L2(λ)

]
.

Since the component systems are at least weakly stable, so is the direct
sum. For the coefficients we have:

D =

[
0 0
0 D2

]
≥ 0, G =

[
G1 0
0 0

]
= −GT , K =

[
K1 0
0 K2

]
and recall K1 < 0, K2 > 0: we have “unstable potential energy”.
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A mixed system

By applying real congruence transformations to L0(λ). we generate a
family of “gyroscopically stabilized” weakly stable systems (all with
unstable potential energy, K1 < 0).

The damping

[
0 0
0 D2

]
can be “increased” without disturbing the

stability (as long as the increase is confined to D2).
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An inconsistent statement?

A statement of Kretchetnikov and Marsden [2] (2007) which they
associate with Thomson, Tait, and Chetayev:

A TTC Proposition: If a system with an unstable potential energy is
stabilized with gyroscopic forces, then this stability is lost after the
addition of arbitrarily small dissipation.
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A counter-example

Example: The system

L(λ) = Iλ2 +

 0 3 0
−3 0 0
0 0 2

λ +

 −1 0 0
0 −1 0
0 0 1


is the direct sum of a 2× 2 and a 1× 1 system and is weakly stable. The
system

L2(λ) =

 6 4 6
4 3 5
6 5 11

λ2 +

 2 5 9
−1 2 6
3 6 18

λ +

 −4 −2 0
−2 −1 1
0 1 7


(with unstable P.E.) is congruent to L(λ). Increases in damping of the
form  1 1 3

1 1 3
3 3 9

 ε ≥ 0

do not disturb the equilibrium - i.e. the weak stability.
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Time to go!
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