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Bifurcation

I Bifurcation ∼ ”Qualitative change in the dynamics.”

I What signifies such a change and can we develop a
mathematical theory (in analogy to deterministic setting)?

I History: [Arnold98] distinguishes Phenomenological (P)
bifurcations, characterized by a change in the shape of the
stationary measure, from Dynamic (D) bifurcations,
characterized by a change in the Lyapunov exponent
spectrum.
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Case study.

dx = (αx − x3)dt + σdWt with Wiener process Wt

I If σ = 0: classical pitchfork bifurcation with exchange of
stability from x = 0 to branches x = ±

√
α when α > 0.

I If σ 6= 0, a stationary distribution arises that changes shape
when α increases through 0. ([Arnold] ”P-bifurcation”)

I [Crauel & Flandoli 1998] for all α
I Strictly negative Lyapunov exponent

([Arnold] no ”D-bifurcation” )
I Unique attracting random fixed point:

”Additive noise destroys a pitchfork bifurcation.”
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SDE as Random Dynamical System

I (Ω,F ,P) probability space, with Ω = C0(R,R)

I θ : R× Ω→ Ω, θ0ω = ω, θt+sω = θtθsω.

I PθtA = PA (measure preserving)

I θtA = A ∀t =⇒ PA ∈ {0, 1} (ergodicity)

I Skew product flow: Θ : R× Ω× R→ Ω× R with
Θt(ω, x) = (θtω, φ(t, ω)x).

I Invariant probability measure µ on (Ω× R,F × B);
(i) µ(ΘtA) = µ(A) and (ii) πΩµ = P.

I Disintegration of µ: ∃{µω}ω∈Ω prob meas on (R,B) such that
µ(A) =

∫
Ω

∫
R 1A(ω, x)dµω(x)dP(ω).
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Random pitchfork analysis.

dx = (αx − x3)dt + σdWt

Arnold98, CF98: SDE has unique stationary measure
ρ(B) =

∫
R T (x ,B)dρ(x) ∀B ∈ B(R) (where T (x ,B) denotes the

transition probability of the induced Markov semi-group) with
density pα,σ(x) = Nα,σ exp( 1

σ2 (αx2 − 1
4x

4)) corresponding to
global random attractor {aα(ω)}ω∈Ω with invariant measure µ of
the RDS with disintegration µω = limt→∞ φ(t, θ−tω)ρ = δaα(ω)

(random Dirac measure, i.e. random fixed point) and Lyapunov
exponent λ(µ) = − 2

σ2

∫
R(αx − x3)2pα,σ(x)dx < 1.1

1Lyapunov exponent: λ = limt→±∞ ln ||Φ(t, ω)x ||.
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Qualitative change in the attractivity.

I {aα(ω)}ω∈Ω is locally uniformly attractive if ∃δ > 0 such that

lim
t→∞

sup
x∈(−δ,δ)

ess supω∈Ω |φ(t, ω)(aα(ω)− x)− aα(ω))| = 0

I Theorem: (i) If α < 0, the random attractor {aα(ω)}ω∈Ω is
locally uniformly attractive (even globally uniformly
exponential attractive),
(ii) if If α > 0, this is no longer the case.

I In fact |φ(t, ω)(aα(ω)− x)− aα(ω))| ≤ K (ω) exp(−λt)x ,
where K (ω) < K̂ <∞ iff α < 0.
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Finite-time Lyapunov exponents.

I λα(T , ω) := 1
T ln

∣∣∣∂φα∂x (T , ω, aα(ω))
∣∣∣ . (random variable!)

I Lyapunov exponent is λα := limT→∞ λα(T , ω).

I Theorem: (i) If α < 0, the random attractor is finite-time
attractive: λα(ω) ≤ α < 0. (ii) If α < 0, the random attractor
is not finite-time attractive and P{ω ∈ Ω : λα(T , ω) > 0} > 0.

I Corollary: The (negative) Lyapunov exponent can only be
observed ”almost surely” in finite time, if α < 0.
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Lyapunov spectrum

I Linear RDS in RN :
φ(t, ω)(ax1 + bx2) = aφ(t, ω)x1 + bφ(t, ω)x2.
Denoted as Φ : R× Ω→ RN×N .

I Osceledets: (under mild assumptions) ∃k Lyapunov exponents
λ1 < λ2 < . . . < λk and RN = W1(ω)⊕ . . .Wk(ω) so that
λi := limt→±∞

1
|t| ln ||Φ(t, ω)|| for 0 6= x ∈Wi (ω).

I But we have just seen that ”bifurcation” is not necessarily
associated with a change of stability in the Lyapunov
spectrum.

I We claim that a better concept for this purpose is the
Dichotomy spectrum
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Dichotomy spectrum

I Definition: (θ,Φ) has an exponential dichotomy wrt growth
rate γ ∈ R if there exists a splitting RN = S(ω)⊕ U(ω),
measurable and invariant (Φ(t, ω)S(ω) = S(θtω), etc),
satisfying for some K , ε > 0
||Φ(t, ω)x || ≤ Ke(γ−ε)t ||x ||, for all t ≥ 0 n x ∈ S(ω).
||Φ(t, ω)x || ≥ K−1e(γ+ε)t ||x ||, for all t ≥ 0, x ∈ U(ω).

I Dichotomy spectrum Σ := R \
⋃

growth rates γ{γ}.
I Spectral Theorem: Σ = I1 ∪ . . . ∪ Ik with Ii = {Wi (ω)}ω∈Ω

and corresponding decomposition RN = W1(ω)⊕ . . .∪Wk(ω).

I In the pitchfork example, Σ = (−∞, α], so that the random
pitchfork bifurcation corresponds to a loss of hyperbolicity of
the Dichotomy spectrum.
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Topological versus uniform topological equivalence.

I RDSs φ1(t, ω) and φ2(t, ω) are topologically conjugate iff ∃
homeomorphism h : Ω× R→ R so that for all ω ∈ Ω,
φ2(t, ω)h(ω, x) = h(θtω, φ1(t, ω)x) for all t, x .

I Theorem: For the pitchfork example all φα are topologically
equivalent.

I Theorem: A topological conjugacy h from φα to φα′ with
sgn(α) = −sgn(α′) cannot be uniformly continuous.
Proof: uniformly continuous conjugacies preserve local
uniform attractivity.
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Main result and some questions:

I Additive noise does not destroy a random pitchfork
bifurcation. (cf [CF98])

I Is a change in the signature of the Dichotomy Spectrum a
good indicator for bifurcation of RDS?

I Is uniform topological equivalence a suitable equivalence
relation to define the notion of bifurcation in RDS?
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