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Spectral Stability

Nonlinear waves in Hamiltonian (conservative) systems are
critical points x∗ of an energy functional E [x ]

Linearized dynamics identifies possible unstable directions
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Spectral Stability

Nonlinear waves in Hamiltonian (conservative) systems are
critical points x∗ of an energy functional E [x ]

For constrained minimimizers motion in some directions may be
prohibited by an additional conserved quantity
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Linearized Hamiltonian Problems

Linearized Hamiltonian Problem
A Hamiltonian system linearized about its equilibrium has the
form

JLu = νu , J = −J∗,L = L∗ .

Typically L has a finite number of negative points in its spectrum

σ(L) = {σ1 < σ2 < · · · < σn < 0 < σn+1 < . . . } .

Linearized Energy
The operator L defines an indefinite linearized energy (u,Lu).
The sign of the energy for the (simple) characteristic value ν is
called the Krein signature

κL(ν) = sign (u,Lu) .
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Reformulation

Generalized Characteristic Value Problem

Let assume J is invertible, K = (iJ)−1, λ = iν. Then JLu = νu
reduces to

Lu − λKu = 0 , and (u,Lu) = λ (u,Ku) .

We define the Krein signature as

κ(λ) = κ(ν) := κK (ν) = sign (u,Ku) .

Non-Simple Characteristic Values
If λ is a non-simple characteristic value with the root space U,
then the number of positive (negative) eigenvalues of the matrix
(U,KU) is the positive (negative) Krein index κ±(λ) of λ. Then
the Krein signature of λ can be defined as

κ(λ) = κ+(λ)− κ−(λ) .
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Basic Properties of Krein Signature

Properties of Krein Signature
Let ν is a simple characteristic value of JLu = νu. Then

if ν ∈ iR then κ(ν) = ±1;
if Re ν 6= 0 then κ(ν) = 0;
if L is positive definite then σ(JL) ⊂ iR.

If ν is not semi-simple then both κ±(ν) are non-zero. For each
chain of root vectors the difference κ+ − κ− ∈ {−1,0,1}.
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Operator Pencils

Nonlinear Characteristic Value Problems

L(λ)u = 0.

Krein Signature
Analogously one can define Krein indeces and signature of
polynomial operator pencils (by extention from X to X n):

L(λ)u = (λnLn + λn−1Ln−1 · · ·+ L0)u = 0 .

Such a construction fails for nonpolynomial pencils (e.g.,
stability of solutions of ẋ(t) = Ax(t) + Bx(t − τ))

L(λ)u =
(
λ− A− e−τλB

)
u = 0 .
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Example: Avoided Collisions
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Example: Hamiltonian-Hopf Bifurcation
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Graphical Krein Signature

Extention of the Problem

Lu − λKu = µu .

If µ(λ0) = 0, then λ0 is a real characteristic value. The same
method also applies to general operator pencils L(λ)u = µu.
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Graphical Interpretation of Multiplicity

Classical Theorem
Let L be a selfadjoint holomorphic family of type (A) with
compact resolvent, and assume that L has an isolated real
characteristic value λ0. Then the following properties are
equivalent:
(a) λ0 has finite algebraic multiplicity m and geometric

multiplicity 1 with a chain of root vectors
{

u[0], . . . ,u[m−1]}.
(b) There exist an analytic eigenvalue branch µ = µ(λ),

vanishing at λ = λ0 to order m: µ(k)(λ0) = 0 for 0 ≤ k < m,
while µ(m)(λ0) 6= 0. The derivatives of the corresponding
orthonormal analytic eigenvector branch u = u(λ) allow to
select the chain of root vectors as

u[k ] =
1
k !

dku
dλk (λ0), k = 0,1, . . . ,m − 1.
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Graphical Krein Signature

Differentiation
Differentiate with respect to λ:

(L− λK − µ)u = 0, λ = λ0, µ = µ(λ0) = 0 .

(L− λK − µ)′u + (L− λK − µ)u′ = 0 .

(
(−K − µ′)u,u

)
+
(
(L− λK − µ)u′,u

)
= 0 .

κK (λ0) = sign(Ku,u) = −signµ′(λ0)(u,u)
= −signµ′(λ0) .
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Graphical Krein Signature

Definition
Let L(λ) be a self-adjoint holomorphic family of type (A) with
compact resolvent, and let λ0 be its isolated real characteristic
value of geometric multiplicity 1. Let µ = µ(λ) be a real analytic
eigenvalue branch vanishing on the order m, i.e., µ(m)(λ0) 6= 0.
Then

κG(λ0) :=

{
−sgnµ(m)(λ0) for m odd,
0 for m even.

Theorem: Agreement of Signatures

κK (λ0) = κG(λ0) .
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Evans Function

Spectrum Detecting Function
Let D(λ) : C→ C is a continuous function such that D(λ0) = 0
if and only if λ0 is a characteristic value of L(λ)u = 0 and the
multiplicties agree (e.g. D(λ) = detL(λ) for matrices). We call
such spectra detecting function the Evans function.

Typical Construction

y ′ = B(x , λ)y .

where the n × n system has an asymptotic exponential
dichotomy: k -dimensional unstable space at x = −∞ and
(n − k)-dimensional stable space at x =∞.

For which λ do these spaces intersect?
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Evans Function

Wronskian [Evans (1974), AGJ (1990)]

E(λ) = a(x)det(W u
−∞(x , λ),W s

∞(x , λ)) = 0 .
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Properties of the Evans function

Evans function
Zeros of D(λ) with Imλ ≥ 0 are the char. values of iJL;
the symmetry of iJLu = λu implies D(λ) ∈ R for λ ∈ R.

Can one calculate Krein signature from the Evans
function?

Evans-Krein Function
E(λ, µ) is any spectrum detecting function of (Lλ− µI)u = 0.

Mutual Relation (Same Construction)

D(λ) = E(λ,0) .
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Krein Signature from Evans Function

Formula for Krein Signature
By differentiating E(λ, µ(λ)) by λ at a simple characteristic
value λ = λ0 and the eigenvalue µ(λ) = 0 along a particular
branch µ(λ) we obtain

Eλ(λ0,0) + Eµ(λ0,0)µ′(λ0) = 0 .

For a simple characteristic value λ0 also Eµ(λ0,0) 6= 0:

κ(λ0) = −signµ′(λ0) = sign
Eλ(λ0,0)
Eµ(λ0,0)

.

Krein Signature Forumula

κ(λ0) = sign
D′(λ)

Eµ(λ0,0)
.
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Krein Signature from Evans Function

Advantages
Preserved dichotomy;
The same construction as the traditional Evans function;
Minimal changes to existing codes;
Easy to calculate;
Only continutity of spectrum necessary (for simple
eigenvalues).
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Comparison of Evans functions
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Graphical Proof of Index Theorems

Graphical Count
Let L(λ) be a selfadjoint polynomial matrix pencil of odd degree
p = 2`+ 1 acting on X = CN . Then

N − 2N−(L0)− Z ↓+(L)− Z ↓−(L)−
∑
λ>0

κ(λ) +
∑
λ<0

κ(λ) = 0.
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Graphical Proof of Index Theorems

Graphical Count
Also, the following inequalities hold true:

N±(L) ≥
∣∣∣N−(L0) + Z ↓±(L)− N∓(Lp)

∣∣∣ .
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Corollaries of Graphical Index Theorem

Corollaries
The generalization for unbounded operators is sometimes
straightfoward but sometimes requires technical tricks.

Vakhitov-Kolokolov [’73], Grillakis-Shatah-Strauss [’87],
Binding-Browne [’88], Kapitula-Kevrekidis-Sandstede [’04],
Pelinovsky [’04]:

Nr + 2Nc + 2N−i = n(L)− n(D) ,

Grillakis [’88], Jones [’88]:

1
2

NR(JL) ≥ |N−(M+)− N−(M−)| , M± := PL±P.

Various counts for quadratic eigenvalue pencils
(Chugunova & Pelinovsky [’10]).
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Hamiltonian-Hopf Bifurcations
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Hamiltonian-Hopf Bifurcations
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Hamiltonian-Hopf Bifurcations

Main Question
Can the extra information on Krein signature help to predict
Hamiltonian-Hopf bifurcations?

Necessary Condition
Mixed signature of eigenvalues is a necessary condition for a
Hamiltonian-Hopf bifurcation (a Krein collision). [Gelfand &
Lidskii (1955), Arnold & Avez (1968), Yakubovitch & Starzhinskii
(1975)]

Sufficient Condition
What is the sufficient condition?
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Preservation of Branch Crossings

Perturbed system
Is there a Hamiltonian-Hopf bifurcation if one perturbes the
problem

(L + tL1 − λK )u = 0 = µ(λ) ?
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Arbitrary Perturbations

Generic Case
Two close eigenvalues of opposite Krein signature generically
undergo an Hamiltonian-Hopf bifurcation. [MacKay & Saffman
(1986)]
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Positive Perturbations

Periodic Systems
If L1 is positive (or negative) definite then an Hamiltonian-Hopf
bifurcation is avoided, i.e,. an eigenvalue of any higher
multiplicity unfolds according to Krein signatures of colliding
eigenvalues [Krein & Ljubarskii (1970)].
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Preservation of Intersections

Surprise
Crossings of eigenvalue branches under a positive perturbation
do not need to be preserved!
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Avoided Hamiltonian-Hopf Bifurcations

Preservation of Intersections
Preservation of an intersection of eigenvalue branches µ(λ)

a very singular case of implicit function theory;
it requires an infinite set of conditions to be met;
but it is common in simple examples.
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Sufficient Condition

Sparse Matrices
The intersection of two eigenvalue branches µ(λ) of

L(λ, t) = L + tL1 − λK at t = 0,µ = µ0, λ = λ0

is preserved for small t 6= 0 if

L− µ0I = UDU†, D is a diagonal matrix,

and

U†KU =



∗ 0 0 ∗ 0 0
0 ∗ 0 0 0 ∗
0 0 ∗ 0 ∗ 0
∗ 0 0 ∗ 0 0
0 0 ∗ 0 ∗ 0
0 ∗ 0 0 0 ∗

 , U†L1U =



0 0 0 0 0 0
0 0 ∗ 0 ∗ 0
0 ∗ 0 0 0 ∗
0 0 0 0 0 0
0 ∗ 0 0 0 ∗
0 0 ∗ 0 ∗ 0
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Preservation of Intersections

Necessary Condition
The intersection of two eigenvalue branches µ(λ) of L(λ, t) at
t = 0 is preserved for small t 6= 0 only if

k12(`11 − `22) = `12(k11 − k22) ,

where
kij = u†i Kuj , `ij = u†i L1uj ,

where Ker (L0 − λ0K ) = span {u1,u2}.

The condition is equivalent to vanishing of the Hessian:

det
(

D2
t det(L0 − λK + tL1 − µI)

)
= 0, t = 0, λ = λ0, µ = µ0 .
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Conclusions

A geometric interpretation of Krein signature — graphical
Krein signature (generalizes beyond the scope of
polynomial pencils).

Introduction of the Evans-Krein function: allows to
calculate Krein signature directly.

Unified geometric interpretation of index theorems.

A new mechanism for avoidance of Hamiltonian-Hopf
bifurcations (necessary, necessary and sufficient, and
various typical classes of sufficient conditions).
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Quadratic Characteristic Value Problem

Quadratic Characteristic Value Problem
Find λ ∈ C such that

x = λBx +
1
λ

Cx

admits a nonzero solution on a Hilbert space X .

Assumptions
B and C are compact self-adjoint operators on X ;
B is positive;
C is non-negative with both infinitely dimensional kernel
and range.
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Main Theorem

(i) Reλ > 0.
(ii) Imλ 6= 0, then 1

2‖B‖ < |λ| < 2‖C‖.
(iii) Zero is the only possible

accumulation point.
(iv) Infinite sequence of real λ→ 0,

and an infinite sequence of real
λ→∞.
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Intuition

x = λBx + (1/λ)Cx .

If 0 < λ� 1 then λBx is very small

x ≈ (1/λ)Cx , or λx ≈ Cx .

Similarly for λ� 1 the term (1/λ)Cx is small

(1/λ)x ≈ Bx .

Hence one expects
a sequence λ→ 0 due to the spectrum of the operator C
(stratification);
a sequence λ→∞ due to the spectrum of the operator B
(dissipation).
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Previous Results

Previous approach: Greenlee [1974], Krein & Langer [1978]
Gurski & K & Pego [2004].

Extend the problem to a space X × X , substitute µ = λ− 1
λ

and reformulate the problem as

Az = µz .

The operator A is not self-adjoint, only if it is considered in
an appropriate indefinite metric space (similar to linearized
Hamiltonian systems JLu = νu).
One needs a theory on spectra of self-adjoint operators in
indefinite metric spaces.
To relate the spectrum of A to spectrum of non-linear
characteristic problem, mini-max estimates were used.
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Continuation of Characteristic Values

Perturbation Argument
Consider λ� 1:

λu = Cu + λ2Bu = (C + λ2B)u .

The operator
C + λ2B ≈ C .

Problem: The perturbation is not arbitrary small but only small
and finite.
Solution: Introduce a new small parameter ε into a problem.
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Modified Characteristic Value Problem

λu = (C + ε2B)u .

Operator C + ε2B
compact self-adjoint (for ε ∈ R);
non-negative for ε = 0;
positive for ε > 0.

Spectrum of C + ε2B

Spectrum σ(C) = {0, λ0
1, λ

0
2, . . . ; λ0

1 ≥ λ
0
2 > · · · > 0};

Spectrum σ(C + ε2B) = {λε1, λε2, . . . ; λε1 > λε2 > · · · > 0};
Individual eigenvalues of C + ε2B (a compact self-adjoint
family) are continuous in ε [Kato 1976].
Real eigenvalues λ = ε correspond to real characteristic
values of non-linear problem.
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Spectrum of C + ε2B
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Spectrum of C + ε2B
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