Graphical Krein Signature and its Applications

Richard Kollár
Comenius University Bratislava

Joint work with Peter Miller (U Michigan)

BIRS, 11/05/2012

Spectral Stability

Nonlinear waves in Hamiltonian (conservative) systems are critical points x^{*} of an energy functional $\mathcal{E}[x]$

Spectral Stability

Nonlinear waves in Hamiltonian (conservative) systems are critical points x^{*} of an energy functional $\mathcal{E}[x]$

Linearized dynamics identifies possible unstable directions

Spectral Stability

Nonlinear waves in Hamiltonian (conservative) systems are critical points x^{*} of an energy functional $\mathcal{E}[x]$

For constrained minimimizers motion in some directions may be prohibited by an additional conserved quantity

Linearized Hamiltonian Problems

Linearized Hamiltonian Problem

A Hamiltonian system linearized about its equilibrium has the form

$$
J L u=\nu u, \quad J=-J^{*}, L=L^{*} .
$$

Typically L has a finite number of negative points in its spectrum

$$
\sigma(L)=\left\{\sigma_{1}<\sigma_{2}<\cdots<\sigma_{n}<0<\sigma_{n+1}<\ldots\right\}
$$

Linearized Hamiltonian Problems

Linearized Hamiltonian Problem

A Hamiltonian system linearized about its equilibrium has the form

$$
J L u=\nu u, \quad J=-J^{*}, L=L^{*} .
$$

Typically L has a finite number of negative points in its spectrum

$$
\sigma(L)=\left\{\sigma_{1}<\sigma_{2}<\cdots<\sigma_{n}<0<\sigma_{n+1}<\ldots\right\}
$$

Linearized Energy

The operator L defines an indefinite linearized energy ($u, L u$). The sign of the energy for the (simple) characteristic value ν is called the Krein signature

$$
\kappa_{L}(\nu)=\operatorname{sign}(u, L u) .
$$

Reformulation

Generalized Characteristic Value Problem

Let assume J is invertible, $K=(i J)^{-1}, \lambda=i \nu$. Then $J L u=\nu u$ reduces to

$$
L u-\lambda K u=0, \quad \text { and } \quad(u, L u)=\lambda(u, K u)
$$

We define the Krein signature as

$$
\kappa(\lambda)=\kappa(\nu):=\kappa_{K}(\nu)=\operatorname{sign}(u, K u) .
$$

Reformulation

Generalized Characteristic Value Problem

Let assume J is invertible, $K=(i J)^{-1}, \lambda=i \nu$. Then $J L u=\nu u$ reduces to

$$
L u-\lambda K u=0, \quad \text { and } \quad(u, L u)=\lambda(u, K u)
$$

We define the Krein signature as

$$
\kappa(\lambda)=\kappa(\nu):=\kappa_{K}(\nu)=\operatorname{sign}(u, K u) .
$$

Non-Simple Characteristic Values

If λ is a non-simple characteristic value with the root space U, then the number of positive (negative) eigenvalues of the matrix $(U, K U)$ is the positive (negative) Krein index $\kappa^{ \pm}(\lambda)$ of λ. Then the Krein signature of λ can be defined as

$$
\kappa(\lambda)=\kappa^{+}(\lambda)-\kappa^{-}(\lambda)
$$

Basic Properties of Krein Signature

Basic Properties of Krein Signature

Properties of Krein Signature

Let ν is a simple characteristic value of $J L u=\nu u$. Then

- if $\nu \in \mathbb{i} \mathbb{R}$ then $\kappa(\nu)= \pm 1$;
- if $\operatorname{Re} \nu \neq 0$ then $\kappa(\nu)=0$;
- if L is positive definite then $\sigma(J L) \subset i \mathbb{R}$.

If ν is not semi-simple then both $\kappa^{ \pm}(\nu)$ are non-zero. For each chain of root vectors the difference $\kappa^{+}-\kappa^{-} \in\{-1,0,1\}$.

Operator Pencils

Nonlinear Characteristic Value Problems

$$
\mathcal{L}(\lambda) u=0 .
$$

Operator Pencils

Nonlinear Characteristic Value Problems

$$
\mathcal{L}(\lambda) u=0
$$

Krein Signature

Analogously one can define Krein indeces and signature of polynomial operator pencils (by extention from X to X^{n}):

$$
\mathcal{L}(\lambda) u=\left(\lambda^{n} L_{n}+\lambda^{n-1} L_{n-1} \cdots+L_{0}\right) u=0 .
$$

Such a construction fails for nonpolynomial pencils (e.g., stability of solutions of $\dot{x}(t)=A x(t)+B x(t-\tau))$

$$
\mathcal{L}(\lambda) u=\left(\lambda-A-e^{-\tau \lambda} B\right) u=0 .
$$

Example: Avoided Collisions

Example: Hamiltonian-Hopf Bifurcation

Graphical Krein Signature

Extention of the Problem

$$
L u-\lambda K u=\mu u
$$

If $\mu\left(\lambda_{0}\right)=0$, then λ_{0} is a real characteristic value. The same method also applies to general operator pencils $\mathcal{L}(\lambda) u=\mu u$.

Graphical Krein Signature

Extention of the Problem

$$
L u-\lambda K u=\mu u
$$

If $\mu\left(\lambda_{0}\right)=0$, then λ_{0} is a real characteristic value. The same method also applies to general operator pencils $\mathcal{L}(\lambda) u=\mu u$.

Graphical Interpretation of Multiplicity

Classical Theorem

Let \mathcal{L} be a selfadjoint holomorphic family of type (A) with compact resolvent, and assume that \mathcal{L} has an isolated real characteristic value λ_{0}. Then the following properties are equivalent:
(a) λ_{0} has finite algebraic multiplicity m and geometric multiplicity 1 with a chain of root vectors $\left\{u^{[0]}, \ldots, u^{[m-1]}\right\}$.
(b) There exist an analytic eigenvalue branch $\mu=\mu(\lambda)$, vanishing at $\lambda=\lambda_{0}$ to order $m: \mu^{(k)}\left(\lambda_{0}\right)=0$ for $0 \leq k<m$, while $\mu^{(m)}\left(\lambda_{0}\right) \neq 0$. The derivatives of the corresponding orthonormal analytic eigenvector branch $u=u(\lambda)$ allow to select the chain of root vectors as

$$
u^{[k]}=\frac{1}{k!} \frac{d^{k} u}{d \lambda^{k}}\left(\lambda_{0}\right), \quad k=0,1, \ldots, m-1 .
$$

Graphical Krein Signature

Differentiation

Differentiate with respect to λ :

$$
\begin{gathered}
(L-\lambda K-\mu) u=0, \quad \lambda=\lambda_{0}, \mu=\mu\left(\lambda_{0}\right)=0 . \\
(L-\lambda K-\mu)^{\prime} u+(L-\lambda K-\mu) u^{\prime}=0 . \\
\left(\left(-K-\mu^{\prime}\right) u, u\right)+\left((L-\lambda K-\mu) u^{\prime}, u\right)=0 . \\
\kappa_{K}\left(\lambda_{0}\right)=\operatorname{sign}(K u, u)=-\operatorname{sign} \mu^{\prime}\left(\lambda_{0}\right)(u, u) \\
=-\operatorname{sign} \mu^{\prime}\left(\lambda_{0}\right) .
\end{gathered}
$$

Graphical Krein Signature

Definition

Let $\mathcal{L}(\lambda)$ be a self-adjoint holomorphic family of type (A) with compact resolvent, and let λ_{0} be its isolated real characteristic value of geometric multiplicity 1 . Let $\mu=\mu(\lambda)$ be a real analytic eigenvalue branch vanishing on the order m, i.e., $\mu^{(m)}\left(\lambda_{0}\right) \neq 0$. Then

$$
\kappa_{G}\left(\lambda_{0}\right):= \begin{cases}-\operatorname{sgn} \mu^{(m)}\left(\lambda_{0}\right) & \text { for } m \text { odd } \\ 0 & \text { for } m \text { even }\end{cases}
$$

Graphical Krein Signature

Definition

Let $\mathcal{L}(\lambda)$ be a self-adjoint holomorphic family of type (A) with compact resolvent, and let λ_{0} be its isolated real characteristic value of geometric multiplicity 1 . Let $\mu=\mu(\lambda)$ be a real analytic eigenvalue branch vanishing on the order m, i.e., $\mu^{(m)}\left(\lambda_{0}\right) \neq 0$. Then

$$
\kappa_{G}\left(\lambda_{0}\right):= \begin{cases}-\operatorname{sgn} \mu^{(m)}\left(\lambda_{0}\right) & \text { for } m \text { odd } \\ 0 & \text { for } m \text { even }\end{cases}
$$

Theorem: Agreement of Signatures

$$
\kappa_{K}\left(\lambda_{0}\right)=\kappa_{G}\left(\lambda_{0}\right)
$$

Evans Function

Spectrum Detecting Function

Let $D(\lambda): \mathbb{C} \rightarrow \mathbb{C}$ is a continuous function such that $D\left(\lambda_{0}\right)=0$ if and only if λ_{0} is a characteristic value of $\mathcal{L}(\lambda) u=0$ and the multiplicties agree (e.g. $D(\lambda)=\operatorname{det} \mathcal{L}(\lambda)$ for matrices). We call such spectra detecting function the Evans function.

Evans Function

Spectrum Detecting Function

Let $D(\lambda): \mathbb{C} \rightarrow \mathbb{C}$ is a continuous function such that $D\left(\lambda_{0}\right)=0$ if and only if λ_{0} is a characteristic value of $\mathcal{L}(\lambda) u=0$ and the multiplicties agree (e.g. $D(\lambda)=\operatorname{det} \mathcal{L}(\lambda)$ for matrices). We call such spectra detecting function the Evans function.

Typical Construction

$$
y^{\prime}=B(x, \lambda) y
$$

where the $n \times n$ system has an asymptotic exponential dichotomy: k-dimensional unstable space at $x=-\infty$ and $(n-k)$-dimensional stable space at $x=\infty$.

Evans Function

Spectrum Detecting Function

Let $D(\lambda): \mathbb{C} \rightarrow \mathbb{C}$ is a continuous function such that $D\left(\lambda_{0}\right)=0$ if and only if λ_{0} is a characteristic value of $\mathcal{L}(\lambda) u=0$ and the multiplicties agree (e.g. $D(\lambda)=\operatorname{det} \mathcal{L}(\lambda)$ for matrices). We call such spectra detecting function the Evans function.

Typical Construction

$$
y^{\prime}=B(x, \lambda) y
$$

where the $n \times n$ system has an asymptotic exponential dichotomy: k-dimensional unstable space at $x=-\infty$ and $(n-k)$-dimensional stable space at $x=\infty$.

For which λ do these spaces intersect?

Evans Function

Evans Function

Wronskian [Evans (1974), AGJ (1990)]

$$
E(\lambda)=a(x) \operatorname{det}\left(W_{-\infty}^{u}(x, \lambda), W_{\infty}^{s}(x, \lambda)\right)=0
$$

Properties of the Evans function

Evans function

- Zeros of $D(\lambda)$ with $\operatorname{Im} \lambda \geq 0$ are the char. values of $i J L$;
- the symmetry of $i J L u=\lambda u$ implies $D(\lambda) \in \mathbb{R}$ for $\lambda \in \mathbb{R}$.

Properties of the Evans function

Evans function

- Zeros of $D(\lambda)$ with $\operatorname{Im} \lambda \geq 0$ are the char. values of $i J L$;
- the symmetry of $i J L u=\lambda u$ implies $D(\lambda) \in \mathbb{R}$ for $\lambda \in \mathbb{R}$.
- Can one calculate Krein signature from the Evans function?

Properties of the Evans function

Evans function

- Zeros of $D(\lambda)$ with $\operatorname{Im} \lambda \geq 0$ are the char. values of $i J L$;
- the symmetry of $i J L u=\lambda u$ implies $D(\lambda) \in \mathbb{R}$ for $\lambda \in \mathbb{R}$.
- Can one calculate Krein signature from the Evans function?

Evans-Krein Function

$E(\lambda, \mu)$ is any spectrum detecting function of $(\mathcal{L} \lambda-\mu \mathbb{I}) u=0$.

Properties of the Evans function

Evans function

- Zeros of $D(\lambda)$ with $\operatorname{Im} \lambda \geq 0$ are the char. values of $i J L$;
- the symmetry of $i J L u=\lambda u$ implies $D(\lambda) \in \mathbb{R}$ for $\lambda \in \mathbb{R}$.
- Can one calculate Krein signature from the Evans function?

Evans-Krein Function

$E(\lambda, \mu)$ is any spectrum detecting function of $(\mathcal{L} \lambda-\mu \mathbb{I}) u=0$.

Mutual Relation (Same Construction)

$$
D(\lambda)=E(\lambda, 0)
$$

Krein Signature from Evans Function

Formula for Krein Signature

By differentiating $E(\lambda, \mu(\lambda))$ by λ at a simple characteristic value $\lambda=\lambda_{0}$ and the eigenvalue $\mu(\lambda)=0$ along a particular branch $\mu(\lambda)$ we obtain

$$
E_{\lambda}\left(\lambda_{0}, 0\right)+E_{\mu}\left(\lambda_{0}, 0\right) \mu^{\prime}\left(\lambda_{0}\right)=0 .
$$

For a simple characteristic value λ_{0} also $E_{\mu}\left(\lambda_{0}, 0\right) \neq 0$:

$$
\kappa\left(\lambda_{0}\right)=-\operatorname{sign} \mu^{\prime}\left(\lambda_{0}\right)=\operatorname{sign} \frac{E_{\lambda}\left(\lambda_{0}, 0\right)}{E_{\mu}\left(\lambda_{0}, 0\right)} .
$$

Krein Signature from Evans Function

Formula for Krein Signature

By differentiating $E(\lambda, \mu(\lambda))$ by λ at a simple characteristic value $\lambda=\lambda_{0}$ and the eigenvalue $\mu(\lambda)=0$ along a particular branch $\mu(\lambda)$ we obtain

$$
E_{\lambda}\left(\lambda_{0}, 0\right)+E_{\mu}\left(\lambda_{0}, 0\right) \mu^{\prime}\left(\lambda_{0}\right)=0 .
$$

For a simple characteristic value λ_{0} also $E_{\mu}\left(\lambda_{0}, 0\right) \neq 0$:

$$
\kappa\left(\lambda_{0}\right)=-\operatorname{sign} \mu^{\prime}\left(\lambda_{0}\right)=\operatorname{sign} \frac{E_{\lambda}\left(\lambda_{0}, 0\right)}{E_{\mu}\left(\lambda_{0}, 0\right)} .
$$

Krein Signature Forumula

$$
\kappa\left(\lambda_{0}\right)=\operatorname{sign} \frac{D^{\prime}(\lambda)}{E_{\mu}\left(\lambda_{0}, 0\right)} .
$$

Krein Signature from Evans Function

Advantages

- Preserved dichotomy;
- The same construction as the traditional Evans function;
- Minimal changes to existing codes;
- Easy to calculate;
- Only continutity of spectrum necessary (for simple eigenvalues).

Comparison of Evans functions

Graphical Proof of Index Theorems

Graphical Count

Let $\mathcal{L}(\lambda)$ be a selfadjoint polynomial matrix pencil of odd degree $p=2 \ell+1$ acting on $X=\mathbb{C}^{N}$. Then

$$
N-2 N_{-}\left(L_{0}\right)-Z_{+}^{\downarrow}(\mathcal{L})-Z_{-}^{\downarrow}(\mathcal{L})-\sum_{\lambda>0} \kappa(\lambda)+\sum_{\lambda<0} \kappa(\lambda)=0 .
$$

Graphical Proof of Index Theorems

Graphical Count

Also, the following inequalities hold true:

$$
N_{ \pm}(\mathcal{L}) \geq\left|N_{-}\left(L_{0}\right)+Z_{ \pm}^{\downarrow}(\mathcal{L})-N_{\mp}\left(L_{p}\right)\right|
$$

Corollaries of Graphical Index Theorem

Corollaries

The generalization for unbounded operators is sometimes straightfoward but sometimes requires technical tricks.

- Vakhitov-Kolokolov ['73], Grillakis-Shatah-Strauss ['87], Binding-Browne ['88], Kapitula-Kevrekidis-Sandstede ['04], Pelinovsky ['04]:

$$
N_{r}+2 N_{c}+2 N_{i}^{-}=n(L)-n(D),
$$

- Grillakis ['88], Jones ['88]:

$$
\frac{1}{2} N_{\mathbb{R}}(J L) \geq\left|N_{-}\left(M_{+}\right)-N_{-}\left(M_{-}\right)\right|, \quad M_{ \pm}:=P L_{ \pm} P .
$$

- Various counts for quadratic eigenvalue pencils (Chugunova \& Pelinovsky ['10]).

Hamiltonian-Hopf Bifurcations

Hamiltonian-Hopf Bifurcations

Main Question
Can the extra information on Krein signature help to predict Hamiltonian-Hopf bifurcations?

Hamiltonian-Hopf Bifurcations

Main Question

Can the extra information on Krein signature help to predict Hamiltonian-Hopf bifurcations?

Necessary Condition

Mixed signature of eigenvalues is a necessary condition for a Hamiltonian-Hopf bifurcation (a Krein collision). [Gelfand \& Lidskii (1955), Arnold \& Avez (1968), Yakubovitch \& Starzhinskii (1975)]

Hamiltonian-Hopf Bifurcations

Main Question

Can the extra information on Krein signature help to predict Hamiltonian-Hopf bifurcations?

Necessary Condition

Mixed signature of eigenvalues is a necessary condition for a Hamiltonian-Hopf bifurcation (a Krein collision). [Gelfand \& Lidskii (1955), Arnold \& Avez (1968), Yakubovitch \& Starzhinskii (1975)]

Sufficient Condition

What is the sufficient condition?

Preservation of Branch Crossings

Perturbed system

Is there a Hamiltonian-Hopf bifurcation if one perturbes the problem

$$
\left(L+t L_{1}-\lambda K\right) u=0=\mu(\lambda) ?
$$

Richard Kollár
Appliations of Graphical Krein Signature

Arbitrary Perturbations

Generic Case

Two close eigenvalues of opposite Krein signature generically undergo an Hamiltonian-Hopf bifurcation. [MacKay \& Saffman (1986)]

Richard Kollár

Positive Perturbations

Periodic Systems

If L_{1} is positive (or negative) definite then an Hamiltonian-Hopf bifurcation is avoided, i.e,. an eigenvalue of any higher multiplicity unfolds according to Krein signatures of colliding eigenvalues [Krein \& Ljubarskii (1970)].

Positive Perturbations

Periodic Systems

If L_{1} is positive (or negative) definite then an Hamiltonian-Hopf bifurcation is avoided, i.e,. an eigenvalue of any higher multiplicity unfolds according to Krein signatures of colliding eigenvalues [Krein \& Ljubarskii (1970)].

Preservation of Intersections

Surprise

Crossings of eigenvalue branches under a positive perturbation do not need to be preserved!

Avoided Hamiltonian-Hopf Bifurcations

Preservation of Intersections

Preservation of an intersection of eigenvalue branches $\mu(\lambda)$

- a very singular case of implicit function theory;
- it requires an infinite set of conditions to be met;
- but it is common in simple examples.

Sufficient Condition

Sparse Matrices

The intersection of two eigenvalue branches $\mu(\lambda)$ of

$$
\mathcal{L}(\lambda, t)=L+t L_{1}-\lambda K \quad \text { at } t=0, \mu=\mu_{0}, \lambda=\lambda_{0}
$$

is preserved for small $t \neq 0$ if

$$
L-\mu_{0} \mathbb{I}=U D U^{\dagger}, \quad D \text { is a diagonal matrix }
$$

and

$$
U^{\dagger} K U=\left(\begin{array}{llllll}
* & 0 & 0 & * & 0 & 0 \\
0 & * & 0 & 0 & 0 & * \\
0 & 0 & * & 0 & * & 0 \\
* & 0 & 0 & * & 0 & 0 \\
0 & 0 & * & 0 & * & 0 \\
0 & * & 0 & 0 & 0 & *
\end{array}\right), U^{\dagger} L_{1} U=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & * & 0 & * & 0 \\
0 & * & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & * & 0 & 0 & 0 & * \\
0 & 0 & * & 0 & * & 0
\end{array}\right)
$$

Preservation of Intersections

Necessary Condition

The intersection of two eigenvalue branches $\mu(\lambda)$ of $\mathcal{L}(\lambda, t)$ at $t=0$ is preserved for small $t \neq 0$ only if

$$
k_{12}\left(\ell_{11}-\ell_{22}\right)=\ell_{12}\left(k_{11}-k_{22}\right),
$$

where

$$
k_{i j}=u_{i}^{\dagger} K u_{j}, \quad \ell_{i j}=u_{i}^{\dagger} L_{1} u_{j}
$$

where Ker $\left(L_{0}-\lambda_{0} K\right)=\operatorname{span}\left\{u_{1}, u_{2}\right\}$.
The condition is equivalent to vanishing of the Hessian:

$$
\operatorname{det}\left(D_{t}^{2} \operatorname{det}\left(L_{0}-\lambda K+t L_{1}-\mu \mathbb{I}\right)\right)=0, \quad t=0, \lambda=\lambda_{0}, \mu=\mu_{0}
$$

Conclusions

- A geometric interpretation of Krein signature - graphical Krein signature (generalizes beyond the scope of polynomial pencils).
- Introduction of the Evans-Krein function: allows to calculate Krein signature directly.
- Unified geometric interpretation of index theorems.
- A new mechanism for avoidance of Hamiltonian-Hopf bifurcations (necessary, necessary and sufficient, and various typical classes of sufficient conditions).

Quadratic Characteristic Value Problem

Quadratic Characteristic Value Problem

Find $\lambda \in \mathbb{C}$ such that

$$
x=\lambda B x+\frac{1}{\lambda} C x
$$

admits a nonzero solution on a Hilbert space X.

Assumptions

- B and C are compact self-adjoint operators on X;
- B is positive;
- C is non-negative with both infinitely dimensional kernel and range.

(i) $\operatorname{Re} \lambda>0$.
(ii) $\operatorname{Im} \lambda \neq 0$, then $\frac{1}{2\|B\|}<|\lambda|<2\|C\|$.
(iii) Zero is the only possible accumulation point.
(iv) Infinite sequence of real $\lambda \rightarrow 0$, and an infinite sequence of real $\lambda \rightarrow \infty$.

Intuition

$$
x=\lambda B x+(1 / \lambda) C x
$$

If $0<\lambda \ll 1$ then $\lambda B x$ is very small

$$
x \approx(1 / \lambda) C x, \quad \text { or } \quad \lambda x \approx C x
$$

Similarly for $\lambda \gg 1$ the term $(1 / \lambda) C x$ is small

$$
(1 / \lambda) x \approx B x .
$$

Hence one expects

- a sequence $\lambda \rightarrow 0$ due to the spectrum of the operator C (stratification);
- a sequence $\lambda \rightarrow \infty$ due to the spectrum of the operator B (dissipation).

Previous Results

Previous approach: Greenlee [1974], Krein \& Langer [1978] Gurski \& K \& Pego [2004].

Previous Results

Previous approach: Greenlee [1974], Krein \& Langer [1978] Gurski \& K \& Pego [2004].

- Extend the problem to a space $X \times X$, substitute $\mu=\lambda-\frac{1}{\lambda}$ and reformulate the problem as

$$
A z=\mu z
$$

- The operator A is not self-adjoint, only if it is considered in an appropriate indefinite metric space (similar to linearized Hamiltonian systems $J L u=\nu u$).
- One needs a theory on spectra of self-adjoint operators in indefinite metric spaces.
- To relate the spectrum of A to spectrum of non-linear characteristic problem, mini-max estimates were used.

Continuation of Characteristic Values

Perturbation Argument

Consider $\lambda \ll 1$:

$$
\lambda u=C u+\lambda^{2} B u=\left(C+\lambda^{2} B\right) u .
$$

The operator

$$
C+\lambda^{2} B \approx C .
$$

Continuation of Characteristic Values

Perturbation Argument

Consider $\lambda \ll 1$:

$$
\lambda u=C u+\lambda^{2} B u=\left(C+\lambda^{2} B\right) u .
$$

The operator

$$
C+\lambda^{2} B \approx C
$$

Problem: The perturbation is not arbitrary small but only small and finite.

Continuation of Characteristic Values

Perturbation Argument

Consider $\lambda \ll 1$:

$$
\lambda u=C u+\lambda^{2} B u=\left(C+\lambda^{2} B\right) u .
$$

The operator

$$
C+\lambda^{2} B \approx C
$$

Problem: The perturbation is not arbitrary small but only small and finite.
Solution: Introduce a new small parameter ε into a problem.

Modified Characteristic Value Problem

$$
\lambda u=\left(C+\varepsilon^{2} B\right) u .
$$

Modified Characteristic Value Problem

$$
\lambda u=\left(C+\varepsilon^{2} B\right) u .
$$

Operator $C+\varepsilon^{2} B$

- compact self-adjoint (for $\varepsilon \in \mathbb{R}$);
- non-negative for $\varepsilon=0$;
- positive for $\varepsilon>0$.

Modified Characteristic Value Problem

$$
\lambda u=\left(C+\varepsilon^{2} B\right) u .
$$

Operator $C+\varepsilon^{2} B$

- compact self-adjoint (for $\varepsilon \in \mathbb{R}$);
- non-negative for $\varepsilon=0$;
- positive for $\varepsilon>0$.

Spectrum of $C+\varepsilon^{2} B$

- Spectrum $\sigma(C)=\left\{0, \lambda_{1}^{0}, \lambda_{2}^{0}, \ldots ; \quad \lambda_{1}^{0} \geq \lambda_{2}^{0}>\cdots>0\right\} ;$
- Spectrum $\sigma\left(C+\varepsilon^{2} B\right)=\left\{\lambda_{1}^{\varepsilon}, \lambda_{2}^{\varepsilon}, \ldots ; \lambda_{1}^{\varepsilon}>\lambda_{2}^{\varepsilon}>\cdots>0\right\}$;
- Individual eigenvalues of $C+\varepsilon^{2} B$ (a compact self-adjoint family) are continuous in ε [Kato 1976].
- Real eigenvalues $\lambda=\varepsilon$ correspond to real characteristic values of non-linear problem.

Spectrum of $C+\varepsilon^{2} B$

Spectrum of $C+\varepsilon^{2} B$

