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Motivation

Turbulent accretion disks require the presence of an efficient
mechanism for angular momentum transport
Many mechanisms have been investigated and found wanting

I Shear instabilities
I Barotropic instabilities (Dubrulle et al)
I Baroclinic instabilities (Knobloch, Spruit)
I Sound waves (Glatzel, Kaisig)
I Shock waves (Spruit)
I Finite amplitude instabilities (Dubrulle, Longaretti, Zahn)
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Motivation

Magnetic field-induced instabilities appear most promising

Magnetorotational instability has several appealing properties (Balbus
and Hawley 1991, 1998)

I It is a linear instability
I It is triggered by weak poloidal magnetic field
I It is axisymmetric
I It occurs in Rayleigh-stable regime when the angular velocity decreases

radially
I It grows on a dynamical timescale
I It is fundamentally a local instability

Efficiency of angular momentum transport depends on the saturation
of the MRI

Central question: how does the MRI saturate?
This is a nonlinear problem!

Is the saturated state perhaps a dynamo? Lesur and Ogilvie (2008)
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Ideal MRI

The basic equations are

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p − 1

2µ0
∇B2 +

1

µ0
(B · ∇)B,

∂B

∂t
+ (u · ∇)B = (B · ∇)u,

∇ · u = ∇ · B = 0.

These equations have a basic axisymmetric solution of the form

u0 = [0,V (r), 0], B0 = [0,Bφ(r),Bz(r)]

in (r , φ, z) coordinates.
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Ideal MRI: eigenvalue relation

We look at axisymmetric perturbations of the form
f (r , φ, z , t) = f (r) exp i(nz + ωt). For given basic state and n the
(complex) frequency ω is an eigenvalue of the problem (Acheson 1973)

d

dr

[
(ω2 − n2V 2

z )

(
du

dr
+

u

r

)]
− n2

[
ω2 − n2V 2

z + r
d

dr

(
V 2
φ

r2
− V 2

r2

)]
u

= −4n2

r2

(nVφVz + ωV )2

(ω2 − n2V 2
z )

u,

where

V 2
φ =

B2
φ

µ0ρ
, V 2

z =
B2
z

µ0ρ
.

The azimuthal magnetic field plays an important role

the gradient d(V 2
φ/r

2)/dr competes with d(V 2/r2)/dr

prevents the problem from being an eigenvalue problem for ω2 alone
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Ideal MRI: the boundary conditions u(a) = u(b) = 0

Case (i) Vz = const 6= 0, Vφ = 0. Multiplying by u∗ and integrating over
a ≤ r ≤ b yields a quadratic equation for ω2:

(ω2 − n2V 2
z )2 =

n2

D

∫ b

a

[
ω2

r2

d

dr
r2V 2 − r2n2V 2

z

d

dr

(
V 2

r2

)]
|u|2 dr ,

where

D ≡
∫ b

a

(
r |du
dr
|2 +

|u|2

r
+ n2r |u|2

)
dr > 0.

Thus if the disk is hydrodynamically stable (d(r2V 2)/dr > 0)

sufficient condition for stability is that d(V 2/r2)/dr > 0 in a < r < b

necessary condition for instability is that d(V 2/r2)/dr < 0
somewhere in a < r < b

This is the classical MRI of Velikhov (1959) and Chandrasekhar (1960);
see also Acheson (1973), Acheson and Hide (1973), Balbus and Hawley
(1991), Knobloch (1992).
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Ideal MRI: general properties of the eigenvalue relation
Case (ii) Vz = const 6= 0, Vφ 6= 0. In this case

d

dr
r
du

dr
− u

r
− n2ru =

n2

(ω2 − n2V 2
z )2

[
r2 d

dr

(
V 2
φ − V 2

r2

)
(ω2 − n2V 2

z )− 4

r
(nVφVz + ωV )2

]
u.

For unstable, exponentially growing modes (ω = −iλ, λ > 0) we obtain

(λ2+n2V 2
z )2 =

n2

D

∫ b

a

[
r2 d

dr

(
V 2
φ − V 2

r2

)
(λ2+n2V 2

z )+
4

r
(nVφVz−iλV )2

]
|u|2 dr .

It follows that

a necessary condition for an exponential instability is∫ b

a

1

r
VφV |u|2 dr = 0,

i.e., Vφ or V (or both) must change sign somewhere in a < r < b.
Thus this kind of instability is not to be expected.
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Ideal MRI: Case (ii) ctd
Instead we find

exponentially growing oscillations (overstability, or Hopf bifurcation)
this is because the magnetic helicity in the basic state breaks the
reflection symmetry z → −z (Knobloch 1992, 1996)
generic bifurcation with the resulting SO(2) symmetry is a Hopf
bifurcation to traveling waves (eg. Ecke et al 1992)
these TW have recently been observed in the PROMISE experiment
(Stefani et al 2006, 2007)
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Ideal MRI: convective vs absolute instability

Dynamo waves traveling towards the equator (Tobias et al 1997, 1998)
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Numerical simulations: shearing box geometry

Balbus-Hawley 1991a,b: Thin sheets of matter moving radially
inwards and outwards
X-points suggest reconnection process important to saturation
Goodman & Xu 1994, Pessah & Goodman 2009: shear instabilities of
the interpenetrating sheets
Sano et al 1998: whether saturation occurs depends on the Elsasser
number Λ ≡ v2

A/ηΩ
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Numerical simulations

Sano et al: compressible flow in shearing box geometry

Global geometry: Kersalé et al 2004, 2006; Cattaneo et al (still
eagerly awaited!)
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Numerical simulations
Fromang and Papaloizou (2007):

Investigated numerical diffusion of both velocity and magnetic fields
in a shearing box with zero net flux using ideal MHD and ZEUS:
Pm ≡ νnum/ηnum > 1
Found that rate of angular momentum transport α declined as
resolution was increased
Concluded that it is important (!) to explicitly include resolved
physical dissipation

Fromang et al (2007):

Constant Re: angular momentum transport increases with Pm
Constant Pm > 1: turbulent transport α subsides as Re decreases
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Formulation of a Model Problem: Knobloch & Julien 2005

Shearing box approximation at r∗ with local angular velocity Ω∗(r∗)ẑ:

Straight channel: −L∗/2 ≤ x∗ ≤ L∗/2, −∞ < y∗ <∞,
−∞ < z∗ <∞
Linear shear: U0

∗ = (0, σ∗x∗, 0)

Constant B-Field: B0
∗ = (0,B∗tor ,B

∗
pol)

Perturb: u ≡ (u, v ,w) = (−ψz , v , ψx), b ≡ (a, b, c) = (−φz , b, φx)

Axisymmetric Equations

∇2ψt + 2Ωvz + J(ψ,∇2ψ) = v2
A∇2φz + v2

AJ(φ,∇2φ) + ν∇4ψ, (1)

vt − (2Ω + σ)ψz + J(ψ, v) = v2
Abz + v2

AJ(φ, b) + ν∇2v , (2)

φt + J(ψ, φ) = ψz + η∇2φ, (3)

bt + J(ψ, b) = vz − σφz + J(φ, v) + η∇2b, (4)

where J(f , g) ≡ fxgz − fzgx .

vA ≡ B∗pol/
√
µ0ρ∗U

∗, Ω, ν, η are the dimensionless Alfvén speed,
rotation rate, kinematic viscosity and ohmic diffusivity

Edgar Knobloch (UC Berkeley) MRI November 2012 14 / 42



Remarks on the Model Problem

Local shearing box approx’n ⇒ special properties of model eqs:

Toroidal field B∗tor drops out

I suppression of hoop stresses
I toroidal field remains in the radial pressure balance

2Ω∗V ∗0 +
V ∗20

r∗
=

1

ρ∗
dP∗0
dr∗

+
d

dr∗

(
B∗2tor

2µ0ρ∗

)
+

B∗2tor

µ0ρ∗r∗
(5)

no distinction between inward and outward directions

I symmetry x → −x , (ψ, v , φ, b)→ −(ψ, v , φ, b)

MRI is an exponentially growing instability

I this is not the case in polar coordinates with nonzero B∗tor
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Linear Theory

Linearization about the trivial state ψ = v = φ = b = 0:

Perturbation exp[λt + ikx + inz ], p = k2 + n2 ⇒ dispersion relation

p[(λ+νp)(λ+ηp)+v2
An

2]2+2Ωn2[(λ+ηp)2(2Ω+σ)+σv2
An

2] = 0. (6)

Conventional view of MRI: positive growth rate λ achieved for
sufficiently large vertical wavenumbers n whenever σ < 0, vA 6= 0,
provided only that ν and η are sufficiently small

I For ν = η = 0

λ2 = − v2
An

2σ

2Ω + σ
+ O(v4

An
4). (7)

I For λ = 0 threshold for instability exists. For small ν, η critical Elsasser
number

Λc ≡ v2
A/Ωη = −η

(
2Ω + σ

Ωσ

)
p2

n2
+ O(ν, η)3. (8)

I Reconnection effects described by finite η are more important for
stabilizing the system against the MRI than viscosity.
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Scaling Assumptions

Traditional approach to nonlinear saturation: weakly nonlinear theory
with (Λ− Λc)/Λc � 1 (eg. Umurhan & Regev 2007)

Our approach: strongly nonlinear theory
I shear is the dominant source of energy for the MRI
I MRI itself requires the presence of a (weaker) vertical magnetic field
I dissipative effects are weaker still but cannot be ignored since they are

ultimately responsible for the saturation of the instability

Hence scaling:
I rapid rotation, strong shear: (Ω, σ) = ε−1(Ω̂, σ̂)
I magnetic field: vA = 1 i.e. , U∗ = v∗A ≡ B∗pol/

√
µ0ρ∗

I weak dissipative processes: (ν, η) = ε(ν̂, η̂)
I thin fingers, strong growth: ∂x → ∂x , ∂z → ε−1∂z , ∂t → ε−1∂t

In the following we take ε� 1, or equivalently
Rm� S � max(1,Pm), while Λ = O(1). Here
Rm = |σ∗|L∗2/η∗ = O(ε−2), Pm = ν∗/η∗ = O(1),
S ≡ v∗AL

∗/η∗ = O(ε−1) are the magnetic Reynolds, magnetic Prandtl
and Lundquist numbers.
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Scaled Equations
In parallel with the above assumptions we need to make further
assumptions about the relative magnitude of the various fields:
we find (ψ, φ)→ ε(ψ, φ), (v , b)→ ε−1(v , b) leads to a self-consistent
set of reduced pdes
scaled pdes:

ε
D

Dt

(
∂2
x + ε−2∂2

z

)
ψ + 2ε−3Ω̂vz = v2

A

(
∂2
x + ε−2∂2

z

)
φz + (9)

εv2
AJ
(
φ,
(
∂2
x + ε−2∂2

z

)
φ
)

+ ε2ν̂
(
∂2
x + ε−2∂2

z

)2
ψ

ε−1 D

Dt
v − ε−1(2Ω̂ + σ̂)ψz = ε−2v2

Abz + ε−1v2
AJ(φ, b) + ν̂(∂2

x + ε−2∂2
z )v

(10)

ε
D

Dt
φ = ψz + ε2η̂(∂2

x + ε−2∂2
z )φ (11)

ε−1 D

Dt
b = ε−2vz − ε−1σ̂φz + ε−1J(φ, v) + η̂(∂2

x + ε−2∂2
z )b, (12)

where D/Dt = ∂t + J[ψ, •].
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Derivation of Reduced PDEs

To solve the scaled equations we suppose
ψ(x , z , t) = ψ0(x , z , t) + εψ1(x , z , t) + . . . , etc.

Deduction: Leading order azimuthal fields v0, b0 represent large-scale
adjustment to background shear and toroidal field due to MRI

I From Eqs for azimuthal fields v , b at O(ε−2) and poloidal fields ψ at
O(ε−3)

v2
Ab0z + ν̂v0zz = 0, v0z + η̂b0zz = 0, 2Ω̂v0z = 0 (13)

I Hence
v0 = V (x , t), b0 = B(x , t) (14)

I Averaging in t at O(ε−1)⇒ slow time evolution. Hence

v0 = V (x), b0 = B(x) (15)
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Derivation of Reduced PDEs, cont’d
From Eqs for azimuthal fields v , b at O(ε−1) and poloidal fields ψ, φ at
O(ε−2), O(1)

ψ0zzt + 2Ω̂v1z = v2
Aφ0zzz + ν̂ψ0zzzz (16)

v1t − (2Ω̂ + σ̂ + V ′(x))ψ0z = v2
Ab1z − v2

AB
′(x)φ0z + ν̂v1zz (17)

φ0t = ψ0z + η̂φ0zz (18)

b1t − B ′(x)ψ0z = v1z − (σ̂ + V ′(x))φ0z + η̂b1zz (19)

Closure requires determination of V ′(x),B ′(x).

I Averaging Eqs for azimuthal fields v , b at O(1) in z , t and integrating
gives

ν̂V ′(x) = ψ0v1z − v2
Aφ0b1z + C1 (20)

η̂B ′(x) = ψ0b1z − φ0v1z + C2 (21)

C1 is determined by BC’s; 0 < C2 < Cmax range of total to zero support of
disk by radial pressure gradient.
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Strongly Nonlinear Single-Mode Solutions
These equations have stationary solutions of the form

ψ0 =
1

2
(Ψ(x) e inz + c.c.), v1 =

1

2
(V(x) e inz + c.c.), (22)

φ0 =
1

2
(F(x) e inz + c.c.), b1 =

1

2
(B(x) e inz + c.c.),

where
F =

iΨ

η̂n
, (23)

V =
(v2

A + η̂2n2)V ′ + η̂2n2(2Ω̂ + σ̂) + v2
Aσ̂

nη̂(v2
A + ν̂η̂n2)

iΨ, (24)

B =
i(v2

A + ν̂η̂n2)B ′ + n(ν̂(σ̂ + V ′)− η̂(2Ω̂ + σ̂ + V ′))

nη̂(v2
A + ν̂η̂n2)

Ψ, (25)

and we obtain the nonlinear dispersion relation

2Ω̂[(v2
A + η̂2n2)V ′ + (2Ω̂ + σ̂)η̂2n2 + σ̂v2

A] + n2(v2
A + ν̂η̂n2)2 = 0. (26)

Except for the presence of the additional shear rate V ′ this is nothing
but the linear dispersion relation for the MRI in our scaling regime
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Nonlinear Dispersion Relation

For each wavenumber n the dispersion relation determines V ′

2Ω̂[(v2
A + η̂2n2)V ′ + (2Ω̂ + σ̂)η̂2n2 + σ̂v2

A] + n2(v2
A + ν̂η̂n2)2 = 0

Parameters: Ω̂ = 1, vA = 1, ν̂ = η̂ = 1, and σ̂ = −1.5,−1,−0.5 (solid, dashed, dashed-dot).

The decrease in n with increasing V ′ indicates coarsening as the MRI saturates.
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Single-Mode Solutions: Closure
Closure requires the determination of V ′,B ′ as a function of Ψ. Since

ψ0 =
1

2
(Ψ(x) e inz + c.c.), v1 =

1

2
(V(x) e inz + c.c.), (27)

φ0 =
1

2
(F(x) e inz + c.c.), b1 =

1

2
(B(x) e inz + c.c.),

we find
V ′(x) =

C1 − 1
2β|Ψ|

2

ν̂ + 1
2α|Ψ|2

, B ′(x) =
η̂C2

η̂2 + 1
2 |Ψ|2

. (28)

α =
ν̂v2

A + η̂3n2

η̂2(v2
A + ν̂η̂n2)

, β =
(2Ω̂ + σ̂)η̂3n2 + v2

A(σ̂ν̂ − 2Ω̂η̂)

η̂2(v2
A + ν̂η̂n2)

. (29)

MRI requires C1 = 0 for nonzero V ′ and Ψ

Nonlinear dispersion relation then gives the saturated value of |Ψ|:

|Ψ|2 = −
2ν̂η̂2

[
n2(v2

A + ν̂η̂n2)2 + 2Ω̂σ̂v2
A + 2Ω̂(2Ω̂ + σ̂)η̂2n2

]
[
4Ω̂2v2

Aη̂ + n2
(
v2
A + ν̂η̂n2

) (
ν̂v2

A + η̂3n2
)] (30)

This bifurcation equation determines the saturation amplitude
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Single Mode Results I

Parameters: Ω̂ = −2σ̂/3, ν̂ = η̂ = 1, and σ̂ = −100,−10,−1 (dashed-dot, dashed, solid)

Maximum growth rate λ and V ′ increases with vA, whereas associated wavenumber n and
saturation level |Ψ| peaks

Increasing n initially gets around stabilizing Lorentz force but once MRI flow is capable of
slipping through the field further increase in n is of no benefit
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Single Mode Results II

Parameters: Ω̂ = −2σ̂/3, vA = η̂ = 1, and ν̂ = 10−6, 1, 10 (solid, dashed, dashed-dot)

V ′ increases rapidly with shear rate |σ̂| while n, λ, |Ψ| saturate. This is a consequence of
the reduced role of the Coriolis force

Saturation values increase with ν̂ indicating subtle role of viscosity in nonlinear regime:
larger viscosity transports more ang. mtm., competing with magnetic stresses
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Single Mode Results III

Parameters: Ω̂ = −2σ̂/3, vA = ν̂ = 1, and σ̂ = −100,−10,−1 (dashed-dot, dashed, solid)

For small η̂, ν̂ MRI grows on the dynamical timescale. As η̂ increases growth rate and
wavenumber decrease but saturation level of |Ψ| increases

Behavior consistent with the idea that reconnection reduces the effect of Lorentz force
and thus enhances the amplitude of MRI. This does not translate into increased V ′ (i.e.
modification of background shear)
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Approach to Saturated State

Time-dependent evolution of an x-invariant single-mode perturbation
indicates approach to predicted stationary solution

Above results display extreme cases: disks supported entirely by
mechanical (B ′ = 0) or magnetic (B ′ 6= 0) pressure

νt = 2πε|Ψ| ∼ O(ε): turbulent viscosity associated with developed
MRI
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A different scaling
If we now suppose that

(ν, η) = ε(ν̂, η̂), (Ω, σ) = δ−1(Ω̂, σ̂), (n, λ) = δ−1(n̂, λ̂), (31)

where ε� 1, δ � 1 we can repeat the above procedure. When ε = o(δ)
we obtain

∇̃2ψ′0t + 2Ω̂v ′1z = v2
A∇̃2φ′0z (32)

v1t − (2Ω̂ + σ̂ + V ′(x))ψ0z = v2
Ab1z − v2

AB
′(x)φ0z (33)

φ0t = ψ0z (34)

b1t − B ′(x)ψ0z = v1z − (σ̂ + V ′(x))φ0z (35)

ν̂V ′(x) = ψ0v1z − v2
Aφ0b1z (36)

η̂B ′(x) = ψ0b1z − φ0v1z (37)

In these equations ∇̃ ≡ (∂x , 0, ∂z), where x̃ ≡ x/δ is a fast scale. Hence
full spatial dependence is retained.
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Single channel mode
With ∂X v00 = ∂Xb00 ≡ 0 the reduced equations admit exponentially
growing solutions of the form (Goodman and Xu, 1994)

ψ00 = Ψ0 (t) cos n̂z , v11 = V0 (t) sin n̂z , (38)

φ00 = Φ0 (t) sin n̂z , b11 = B0 (t) cos n̂z ,

However, within the theory an initial state with n̂ = n̂max and
∂X v00 = ∂Xb00 = 0 develops nonzero ∂X v00, ∂Xb00, resulting in a
transition from exponential growth to algebraic growth in time.
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Single channel mode
Despite unbounded algebraic growth and decay in the single channel mode
〈∂X v00〉V → ∂X v00 as t →∞. Thus 〈∂X v00〉V reaches a stable saturated
state, as does the transport of angular momentum.
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Multiple channel modes
We select a uniform distribution of wavelengths in z spanning a range of
modes from n̂ ≤ 4/(NzL) to twice the cutoff wavelength
Lcutoff ≡ 2π/

√
χ̂ =
√

5L/4. The mode amplitudes are sampled from a
uniform distribution with upper bound 10−4 and exhibit coarsening.
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Multiple channel modes
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also shown.
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Multiple channel modes
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Multiple channel modes
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Multiple channel modes: coarsening
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Subdominant Dissipation
When explicit (ohmic) dissipation εη∇2 is retained (with εη = 0.01) the
algebraic growth of the fluctuations also saturates
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Theory

When the nonlinear terms ∂X v00, ∂Xb00 = 0 are ignored the solution of
the reduced equations is

(Ψ0 (t) ,V0 (t) ,Φ0 (t) ,B0 (t)) ≡
(

1,−2
n̂max

σ̂
,−n̂max, 2

n̂2
max

σ̂

)
eλmaxt .

This solution is in fact an exact solution of the nonlinear fluctuating
equations as obtained by Goodman and Xu (1994). But when these terms
are included the exponential growth becomes algebraic

ψ00 = (Ψ1t
−α + Ψ2 cosωt) cos(n̂z) (39)

v11 = (V1t
α + V2 sinωt) sin(n̂z)

φ00 = (Φ1t
β + Φ2 sinωt) sin(n̂z)

b11 = (B1t
−β + B2 cosωt) cos(n̂z),

where α > 0, β > 0.
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Theory
One finds that α = β = 1/2 with

(Ψ1,V1,Φ1,B1) ≡

(
1,

n̂3v2
A

Ω̂
,−2n̂,−2Ω̂

v2
A

)
Ψ1 (40)

(Ψ2,V2,Φ2,B2) ≡

(
1,−2n̂Ω̂

|ω|
,− n̂

|ω|
,
n̂2

2Ω̂

)
Ψ2, (41)

together with the necessary conditions

∂X v00 = −σ̂ −
v2
An̂

2

2Ω̂
, ∂Xb00 = 0, (42)

and

ω =

√
4Ω̂2 + n̂2v2

A. (43)

Substituting the general form of the solutions (39) into the turbulent
stress balance (Eq. (21) with volume averaging) and using the form of the
eigensolutions (40), (41) yields
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Theory

ν̂ 〈∂X v00〉V =
n̂2ω2

2Ω̂
Ψ2

1 −
n̂2ω

8Ω̂
sin 2ωtΨ2

2. (44)

It is remarkable that this expression does not contain secular terms
proportional to t1/2 cosωt, t−1/2 sinωt or indeed t, and hence saturates
despite the algebraic growth of the contributing fields (cf. Landau
damping). The mean component arises from products of the terms

Φ1t
1
2 ,V1t

1
2 and Ψ1t

− 1
2 ,B1t

− 1
2 , while the oscillatory component is a

consequence of the terms (Ψ2,V2,Φ2,B2). On time-averaging this result
and comparing with Eq. (42) we obtain finally

Ψ2
1 =

2ν̂Ω̂

n̂2ω2
∂X v00 =

ν̂v2
A

n̂2ω2

(
−2Ω̂σ̂

v2
A

− n̂2

)
. (45)
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Theory
We can numerically verify the relation (43) by measuring ω for a range of
values of Ω̂, with the remaining parameters fixed.

0 100 200 300
time

0.0

0.5

1.0

1.5

2.0

<
∂ X

v 0
0>

V

(a) Back-reaction saturates the growth of 〈∂X v00〉V , (b) ω(Ω̂)
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Summary

Simple scaling suffices to characterize one-parameter family of
self-consistent equilibrated states

I Strong modification of the background shear that feeds the MRI
I Equilibration ultimately determined by ohmic + viscous dissipation

Comparison with shearing-box simulations (BH 1991, HGB 1995,
Sano et al 1998)

I With resistive effects included but viscosity excluded no saturation
occurs for Λ > 1. Our theory indicates viscosity plays an important role
in this regime (Fromang & Papaloizou 2007)

I Saturated MRI speed is O(1), but the effective viscosity is O(ε)
I Simulations (Hawley & Balbus 1991) show tendency towards solid

body rotation and increased wavelength of MRI. This is also consistent
with the theory
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Relation to astrophysics

We have a theory that is valid in an asymptotic regime relevant to
astrophysical accretion disks

This regime is not accessible to fully resolved simulations

It is expected that accretion disks are in fact turbulent. In this case it
may be possible to take η and ν in the theory to be the turbulent
diffusion coefficients

It would be useful to extend the theory to

Cylindrical geometries to overcome degeneracy in direction of angular
momentum transport

Include compressibility
Details in:

E. Knobloch and K. Julien, Phys. Fluids 17, 094106 (2005);

K. Julien and E. Knobloch, in Stellar Fluid Dynamics and Numerical Simulations: From
the Sun to Neutron Stars, M. Rieutord and B. Dubrulle (eds), EAS Publication Series 21
(2006);

K. Julien and E. Knobloch, J. Math. Phys. 48, 065405 (2007);

B. Jamroz, K. Julien and E. Knobloch, Phys. Scr. T132, 014027 (2008a);

B. Jamroz, K. Julien and E. Knobloch, AN 329, 675 (2008b).
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