Lagrangian approach to weakly and strongly nonlinear stability analyses of fluid models

M. Hirota¹

in collaboration with

Y. Fukumoto², P. J. Morrison³, S. Tokuda¹, Y. Ishii¹, M. Yagi¹, N. Aiba¹

¹Japan Atomic Energy Agency, ²Kyushu University, ³University of Texas at Austin

BIRS Workshop "Spectral Analysis, Stability and Bifurcation in Modern Nonlinear Physical Systems" 4-9 November 2012 @ Banff, Canada

1. Introduction

Lagrangian approach is advantageous to analyze complicated fluid models.

Many (conserved) variables, 3D & non-Euclidean space, free boundary etc.

Example 1. Continuity equation $\partial_t \rho + \nabla \cdot (\rho v) = 0 \implies \varphi_t^*(\rho d^3 x) = \rho_0 d^3 x_0 \text{ solved! (in terms of } \varphi_t)$ Example 2. Vortex tube dynamics (w: vorticity)

$$\partial_t \boldsymbol{w} = \nabla \times (\boldsymbol{v} \times \boldsymbol{w})$$

Isovortical perturbation $\tilde{\boldsymbol{w}} = \nabla \times (\boldsymbol{\xi} \times \boldsymbol{w}_0)$ [Arnold (1966)]

Only the deformation of the tube can be discussed. [Next talk by Fukumoto]

Example 3. Ideal magnetohydrodynamic stability [Bernstein et al. (1958), Newcomb (1962)]

s: specific entropy, $p(\rho, s)$: pressure)

Gyroscopic system ($\rho_0 v_0 \cdot \nabla$: anti-Hermitian, \mathcal{F} : Hermitian) \Rightarrow Hamiltonian Hopf bifurcation occurs only in the presense of basic flow v_0 .

Outline of this talk

- 1. Introduction
- 2. Action-angle representation of linear perturbation (··· Linear regime)

Krein signature for eigenmode and continuum mode

3. Formulation of weakly nonlinear mode coupling

 $(\cdots Weakly nonlinear regime)$

Reduction to normal forms using Lagrangian

4. Lagrangian approach to explosive instability

 $(\cdots Strongly nonlinear regime)$

Boudary layer problem

2. Action-angle representation of linear perturbation

Action-angle variables for eigenmodes

In linearized Hamiltonian system, each periodic eigenmode ($\propto e^{-i\omega t}$) satisfies

 $(Modal energy (E)) = (Frequency (\omega)) \times (action (\mu))$

 $\operatorname{sgn}(\mu)$: Krein signature

• (noncanonical) Hamiltonian formulation

Linearized system: $\partial_t u = \mathcal{JH}u$ for $u = (\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{B}}, \tilde{\rho}, \tilde{s})$

(\mathcal{J} : anti-Hermitian, \mathcal{H} : Hermitian)

Dynamically accesible perturbation: $u = \mathcal{J}u^{\dagger}$, $u^{\dagger} = (\boldsymbol{\xi}, \boldsymbol{\eta}, \alpha, \beta)$ For $u = \hat{u}e^{-i\omega t}$, $E = (u, \mathcal{H}u) = i\omega(\hat{u}^{\dagger}, \hat{u}) \Rightarrow \text{Action } \mu = (\hat{u}^{\dagger}, i\mathcal{J}\hat{u}^{\dagger})$ (*)

• (canonical) Lagrangian formulation F-R eq. \Rightarrow Canonical variables $(q, p) = (\xi, \rho_0 \partial_t \xi + \rho_0 v_0 \cdot \nabla \xi)$ For $\xi = \hat{\xi} e^{-i\omega t}$, Action $\mu = \oint p \cdot dq = \int \overline{\hat{\xi}} \cdot \rho_0 (\omega + iv_0 \cdot \nabla) \hat{\xi} d^3 x$ (**)

Both expressions are equivalent. But, (**) is more reduced and informative than (*).

Action-angle "variables" for continuous spectrum

[Morrison (2000), Balmforth & Morrison (2002)]

Eample. Parallel shear flow $\boldsymbol{v}(x)$

 \Rightarrow Rayleigh equation: $P(\omega, x) = (\omega - \mathbf{k} \cdot \mathbf{v})^2$, $Q(\omega, x) = k^2(\omega - \mathbf{k} \cdot \mathbf{v})^2$

 \Rightarrow Balmforth & Morrison (2002) succeeded in transforming the continuum mode into action-angle variables via a generalized Hilbert transform.

What is more general strategy for various fluid systems?

Action-angle representation using the Laplace transform

[Hirota & Fukumoto, J. Math. Phys. 49, 083101 (2008)] Let $\xi_x(x,t) \mapsto \Xi(x,\Omega), \Omega \in \mathbb{C}$ be the Laplace transform. Define

$$D(\Omega) = \int_{x_1}^{x_2} \overline{\Xi(\overline{\Omega})} \left\{ \frac{\partial}{\partial x} \left[P(\Omega, x) \frac{\partial \Xi}{\partial x}(\Omega) \right] - Q(\Omega, x) \Xi(\Omega) \right\} dx$$

Action variables for eigenmode and continuum mode are given by

• Eigenvalues
$$\{\omega_n | n = 1, 2, ...\}, \quad \mu_n = \frac{1}{2\pi i} \oint_{\Gamma(\omega_n)} D(\Omega) d\Omega,$$
 (residue)

• Continuous spectrum $\omega \in \sigma_c \subset \mathbb{R}$, $\mu(\omega) = \frac{i}{2\pi} \left[D(\omega + i0) - D(\omega - i0) \right]$. (jump)

Example. Alfvén continuous spectrum in Ideal MHD

$$\Rightarrow P(\omega, x) = (\omega - \boldsymbol{k} \cdot \boldsymbol{v})^2 - \boldsymbol{k} \cdot \boldsymbol{B}^2$$

<u>Alfvén continuous spectrum</u>: $\sigma_A^{\pm} = \{ \mathbf{k} \cdot \mathbf{v}(x) \pm \omega_A(x) | x \in [x_1, x_2] \}$

 $\omega_A(x) = | \boldsymbol{k} \cdot \boldsymbol{B}(x) |$: Alfvén frequency

Singular eigenfunction: (Frobenius series solution)

$$\hat{\boldsymbol{\xi}}(x,\omega) = \frac{\boldsymbol{B}}{|\boldsymbol{B}|} \times \boldsymbol{e}_{x} \left[\frac{\hat{C}_{A}(\omega)}{\pi} \text{p.v.} \frac{1}{\omega - \boldsymbol{k} \cdot \boldsymbol{v} \mp \omega_{A}} + \hat{C}_{A}^{\dagger}(\omega)\delta(\omega - \boldsymbol{k} \cdot \boldsymbol{v} \mp \omega_{A}) \right] + \dots,$$

Action variable: [Hirota & Fukumoto, PoP 15, 122101 (2008)]

$$\mu(\omega) = \left[|\hat{C}_A(\omega)|^2 + |\hat{C}_A^{\dagger}(\omega)|^2 \right] \int_{x_1}^{x_2} \omega_A \left[\delta(\omega - \boldsymbol{k} \cdot \boldsymbol{v} - \omega_A) - \delta(\omega - \boldsymbol{k} \cdot \boldsymbol{v} + \omega_A) \right] dx.$$

Krein signature, $sgn(\mu(\omega))$, is evident from this expression!

Alfvén continuum mode has negative energy $\omega \mu(\omega) < 0$ if and only if $|\mathbf{k} \cdot \mathbf{v}| > |\mathbf{k} \cdot \mathbf{B}|$ somewhere on $[x_1, x_2]$.

Resonance between eigenmode and continuum mode

By using the averaged Lagrangian method (assuming $\text{Re }\omega \gg 0$), adiabatic invariance of the total wave action $\mu_0 + \int \mu(\omega) d\omega$ holds. [Hirota & Tokuda, PoP 17, 082109 (2010)]

3. Formulation of weakly nonlinear mode coupling

Difficulty of analysis under nonuniformity (or nonlocality)

Weakly nonlinear phenomena

- Three-wave resonance ⇒ Parametric decay
 (Sagdeev & Galeev 1969)
- Landau equation (1944) (four-wave resonance)
- Modulational instability (secondary instability)
- . . .

These require higer-order perturbation analysis and renormalization technique. \Rightarrow Naive expasion of fluid models often falls into tedious algebra.

 \Rightarrow Most analyses are limited to resonaces among plane waves or wave packets.

Whitham (1967) proposed the following approach to water waves.

- 1. Small-amplitude expansion of Lagrangian
- 2. Averaging
- 3. Variational principle \Rightarrow Normal forms

It would be beneficial to apply Whitham's method to various <u>fluid models</u>.

Newcomb's Lagrangian theory

 \boldsymbol{B}, ρ, s are frozen into the flow map $\varphi_t : \boldsymbol{x}(0) \to \boldsymbol{x}(t)$

Lagrangian [Newcomb (1962)]

$$L[\boldsymbol{\varphi}_t] = \int \left[\frac{\rho}{2}|\boldsymbol{v}|^2 - \frac{1}{2}|\boldsymbol{B}|^2 - \rho U(\rho,s)\right] d^3x, \qquad U(\rho,s): \text{internal energy}$$

Nonlinear displacement: $\boldsymbol{x}(t) \mapsto \boldsymbol{x}(t) + \boldsymbol{\Xi}(\boldsymbol{x}(t), t)$ Small-amplitude expansion: $L = L^{(0)} + L^{(1)}(\boldsymbol{\Xi}) + L^{(2)}(\boldsymbol{\Xi}, \boldsymbol{\Xi}) + L^{(3)}(\boldsymbol{\Xi}, \boldsymbol{\Xi}, \boldsymbol{\Xi}) + \dots$

- Formulation of $L^{(2)}$ is established. [Frieman-Rotenberg (1960), Dewar (1970)]
- L⁽³⁾ is derived by Pfirsch & Sudan (1993). But, no basic flow and an important symmetry is missing.

Variational principle for nonlinear displacement field

[Hirota, J. Plasma Phys. 77, 589 (2011)]

Difficulty: Nonlinear displacement Ξ is not a vector field, but a mapping!

$$u = \begin{pmatrix} \boldsymbol{v} \\ \boldsymbol{B} \\ \boldsymbol{\rho} \\ \boldsymbol{\kappa} \end{pmatrix} \stackrel{\leftarrow}{\leftarrow} 2\text{-form} \\ \leftarrow 3\text{-form} \\ \boldsymbol{\kappa} & \boldsymbol{\kappa} \\ \boldsymbol{\kappa} & \boldsymbol{\kappa} \\ \\ \boldsymbol{\kappa} \\ \\ \boldsymbol{\kappa} \\ \boldsymbol{\kappa} \\ \boldsymbol{\kappa} \\ \boldsymbol{\kappa} \\ \boldsymbol{\kappa} \\ \boldsymbol{\kappa}$$

Rearrangement of Lie series

<u>Theorem</u>: In terms of $\Xi = \boldsymbol{\xi} + \frac{1}{2}\boldsymbol{\xi} \cdot \nabla \boldsymbol{\xi} + \frac{1}{6}\boldsymbol{\xi} \cdot \nabla (\boldsymbol{\xi} \cdot \nabla \boldsymbol{\xi}) + \dots,$ $e^{\mathscr{L}_{\boldsymbol{\xi}}} = 1 + \mathscr{L}_{\boldsymbol{\xi}} + \frac{1}{2}\mathscr{L}_{\boldsymbol{\xi}}\mathscr{L}_{\boldsymbol{\xi}} + \frac{1}{6}\mathscr{L}_{\boldsymbol{\xi}}\mathscr{L}_{\boldsymbol{\xi}}\mathscr{L}_{\boldsymbol{\xi}} + \dots$ $= 1 + \mathscr{L}_{\Xi} + \frac{1}{2}\mathscr{L}_{\Xi,\Xi}^{2} + \frac{1}{6}\mathscr{L}_{\Xi,\Xi,\Xi}^{3} + \dots$

where

$$\mathcal{L}_{\eta,\xi}^{2} \stackrel{\text{def}}{=} \mathcal{L}_{\eta} \mathcal{L}_{\xi} - \mathcal{L}_{\eta \cdot \nabla \xi},$$
$$\mathcal{L}_{\zeta,\eta,\xi}^{3} \stackrel{\text{def}}{=} \mathcal{L}_{\zeta} \mathcal{L}_{\eta,\xi}^{2} - \mathcal{L}_{\zeta \cdot \nabla \eta,\xi}^{2} - \mathcal{L}_{\eta,\zeta \cdot \nabla \xi}^{2},$$
$$\mathcal{L}_{\xi_{1},\xi_{2},...,\xi_{n}}^{n} \stackrel{\text{def}}{=} \mathcal{L}_{\xi_{1}} \mathcal{L}_{\xi_{2},...,\xi_{n}}^{n-1} - \sum_{j=2}^{n} \mathcal{L}_{\xi_{2},...,\xi_{1} \cdot \nabla \xi_{j}...,\xi_{n}}^{n-1},$$

are symmetric with respect to any permutation of subscript vector fields. (Proof) Use the Jacobi identity; $\mathscr{L}_{\xi}\mathscr{L}_{\eta} - \mathscr{L}_{\eta}\mathscr{L}_{\xi} = \mathscr{L}_{\xi \cdot \nabla \eta - \eta \cdot \nabla \xi}$ for all ξ and η .

Example. If $\mathscr{L}_{\boldsymbol{\xi}} = \boldsymbol{\xi} \cdot \nabla$ in Cartesian coordinates,

$$e^{\mathscr{L}_{\xi}}s = s + \Xi_i \frac{\partial s}{\partial x_i} + \frac{1}{2}\Xi_i \Xi_j \frac{\partial^2 s}{\partial x_i \partial x_j} + \frac{1}{6}\Xi_i \Xi_j \Xi_k \frac{\partial^3 s}{\partial x_i \partial x_j \partial x_k} + \dots$$

Perturbation expansion of the Lagrangian around an equilibrium state *u* results in

$$\begin{array}{l} \mbox{Lagrangian for nonlinear displacement} \\ L[\Xi] = \int \frac{\rho}{2} \left| \frac{D\Xi}{Dt} \right|^2 d^3x - \frac{W^{(2)}(\Xi, \Xi)}{2} - \frac{W^{(3)}(\Xi, \Xi, \Xi)}{3!} - \frac{W^{(4)}(\Xi, \Xi, \Xi, \Xi)}{4!} - \cdots \\ \mbox{where } D/Dt = \partial_t + \boldsymbol{v} \cdot \nabla. \end{array}$$

*n*th-order potential energy: $W^{(n)}(\Xi, ..., \Xi) = -\int \Xi \cdot \mathcal{F}^{(n-1)}(\Xi, ..., \Xi) d^3x$

$$\Rightarrow \boxed{ \frac{\text{Equation of motion}}{\rho \frac{D^2 \Xi}{Dt^2} = \mathcal{F} \Xi + \frac{1}{2} \mathcal{F}^{(2)}(\Xi, \Xi) + \frac{1}{3!} \mathcal{F}^{(3)}(\Xi, \Xi, \Xi) + O(\epsilon^4), }$$

Nonlinear extension of the Frieman-Rotenberg equation!

Case 1. Nonlinear three-mode coupling

Resonant three eigenmodes:
$$\Xi = \sum_{j=a,b,c} A_j(\epsilon t) \hat{\xi}_j e^{-i\omega_j t} + \text{c.c.}, \quad (\omega_a = \omega_b + \omega_c)$$

Amplitude equations

$$\mu_a \frac{dA_a}{dt} = -iW_{a,b,c}^{(3)}A_bA_c, \quad \mu_b \frac{dA_b^*}{dt} = iW_{a,b,c}^{(3)}A_a^*A_c, \quad \mu_c \frac{dA_c^*}{dt} = iW_{a,b,c}^{(3)}A_a^*A_b$$

- Wave action: $N_j = \mu_j |A_j|^2$ where $\mu_j = 2 \int \left[\hat{\xi}_j^* \cdot \rho(\omega_j + i\boldsymbol{v} \cdot \nabla) \hat{\xi}_j \right] d^3x$
- Coupling coefficient: $W^{(3)}_{a,b,c} = W^{(3)}(\hat{\xi}^*_a, \hat{\xi}_b, \hat{\xi}_c) \cdots$ strength of coupling

Remark:

The energy conservation, $\omega_a N_a + \omega_b N_b + \omega_c N_c = \text{const.}$, holds due to the cubic symmetry of $W^{(3)}$.

Case 2. Nonlinear hydrodynamic stability

Landau's idea (1944)

"Nonlinear self-interaction of the dominant mode generates second harmonics and distorts the mean fields."

• Seek the solution in the form of

$$\Xi = \Xi^{(1)} + \frac{1}{2}\Xi^{(2)} \quad \text{with} \quad \Xi^{(1)} = A(\epsilon t)(\hat{\xi}_1 e^{-i\omega t} + \text{c.c.})$$
$$(\rho \frac{D^2}{Dt^2} - \mathcal{F})\Xi^{(2)} = \mathcal{F}^{(2)}(\Xi^{(1)}, \Xi^{(1)}) \quad \Rightarrow \quad \Xi^{(2)} = 2|A|^2 \hat{\xi}_0^{(2)} + A^2(\hat{\xi}_2^{(2)} e^{-2i\omega t} + \text{c.c.})$$

• By substituting this Ξ into the Lagrangian,

$$L[\Xi] = I \left| \frac{dA}{dt} \right|^2 - W_2 |A|^2 - W_4 \frac{|A|^4}{4} \quad \Rightarrow \quad I \frac{d^2 A}{dt^2} = -W_2 A - \frac{W_4}{2} A |A|^2$$

where $I = \int \rho |\hat{\xi}_1|^2 d^3 x$ and $W_2 = W^{(2)}(\hat{\xi}_1, \hat{\xi}_1^*)$, $W_4 = W^{(3)}(\hat{\xi}_1, \hat{\xi}_1^*, \hat{\xi}_0^{(2)}) + \operatorname{Re} W^{(3)}(\hat{\xi}_1, \hat{\xi}_1, \hat{\xi}_2^{(2)*}) + W^{(4)}(\hat{\xi}_1, \hat{\xi}_1, \hat{\xi}_1^*, \hat{\xi}_1^*)$ 4. Lagrangian approach to explosive instability

Strong nonlinearity of explosive instability

Fates of linear instabilities

- Saturation at small amplitude
 - \Rightarrow (Weakly nonlinear problem); perturbation analysis is applicable.
- Explosive growth (abrupt collapse)
 - \Rightarrow (Strongly nonlinear problem); perturbation expansion fails to converge.

which is often the case with boundary layer problem (singular perturbation)

Example. Collisionless magnetic reconnection

- Boundary layer width (d) \ll System size (L)
- Linearly unstable eigenfunction has a steep gradient within the thin layer; $\partial/\partial x \sim 1/d$
- Perturbation expantion will not converge when amplitude (ϵ) \rightarrow layer width (d)

A model of collisionless magnetic reconnection

For
$$\boldsymbol{v} = \nabla \phi(x, y, t) \times \boldsymbol{e}_z$$
 and $\boldsymbol{B} = \nabla \psi(x, y, t) \times \boldsymbol{e}_z + B_0 \boldsymbol{e}_z$,
Vorticity equation: $\frac{\partial \nabla^2 \phi}{\partial t} - [\phi, \nabla^2 \phi] - [\nabla^2 \psi, \psi] = 0,$ (1)

(Collisionless) Ohm's law: $\frac{\partial(\psi - d_e^2 \nabla^2 \psi)}{\partial t} - [\phi, \psi - d_e^2 \nabla^2 \psi] = 0,$

(2)

where $[f,g] = \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial g}{\partial x} \frac{\partial f}{\partial y}$, $d_e(\ll L)$: electron skin depth

The frozen-in flux is not ψ , but $\psi_e = \psi - \frac{d_e^2}{\nabla^2} \psi$.

By introducing the flow map $(x, y)(t) = \varphi_t(x_0, y_0)$,

Lagrangian:
$$L[\varphi_t] = \frac{1}{2} \int \left(|\nabla \phi|^2 - |\nabla \psi|^2 - d_e^2 |\nabla^2 \psi|^2 \right) d^2 x = K - W$$

This play the role of potential energy

where $\frac{\partial \varphi_t}{\partial t}(x_0, y_0) = \nabla \phi(\varphi_t(x_0, y_0), t) \times \boldsymbol{e}_z$ and $\psi_e(\varphi_t(x_0, y_0), t) = \psi_e(x_0, y_0, 0)$

RF

If the potential energy decreases ($\delta W < 0$) for some displacement map, then such a displacement tends to grow with the release of free energy.

$\begin{array}{l} \begin{array}{l} \begin{array}{l} 1 \text{D slab equilibrium} \\ \hline \text{On a doubly-periodic box } D = \left[-\frac{L_x}{2}, \frac{L_x}{2} \right] \times \left[-\frac{L_y}{2}, \frac{L_y}{2} \right] \\ \\ \phi \equiv 0 \text{ (no flow)}, \quad \psi(x) = \psi_0 \cos \frac{2\pi x}{L_x} \end{array} \end{array}$

• Assume sufficiently small wavenumber $k = 2\pi/L_y$ in the *y*-direction such that

$$L_x^3/8L_y^2 \ll d_e \ll L_x.$$

• Define ϵ as maximum displacement in x direction (\approx half width of magnetic island).

Energy principle for linear stability ($\epsilon \ll d_e$)

$$\begin{array}{|c|c|c|c|c|} \hline \text{Eigenvalue probelm} \\ (\text{4th order ODE}) \\ \text{where} \end{array} & & \hline & -\gamma^2 \delta I = \delta W \\ \delta I = \int dx \frac{1}{k^2} \left(|\hat{\xi}'|^2 + k^2 |\hat{\xi}|^2 \right) > 0 \\ \delta W = \int dx \left[- (\psi'_e \hat{\xi}^*) \frac{\nabla^2}{1 - d_e^2 \nabla^2} (\psi'_e \hat{\xi}) + \psi'_e \psi''' |\hat{\xi}|^2 \right] \\ \end{array}$$

 $\hat{\epsilon}$

$$\frac{\text{Energy principle (or Rayleigh-Ritz method)}}{\text{The most unstable eigenvalue } \gamma > 0 \text{ is found by minimizing } \frac{\delta W}{\delta I} \text{ with respect to } \hat{\xi}.$$

By substituting the following test function $\hat{\xi}$,

$$\hat{\xi}_{\substack{0.5\\-0.5\\-1\\-L_{x}/2}}^{1}d_{e} d_{e} d_{e}$$

Nonlinear stability analysis ($\epsilon > d_e$)

We devise a displacement map $\varphi_{\epsilon} : (x_0, y_0) \mapsto (x, y)$ that tends to decrease the potential energy W as much as possible.

$$x = \begin{cases} g_{\epsilon}(x_{0}), & 0 < y_{0} < \frac{Ly}{4} - \frac{l}{2}, & \text{(i)} \\ x_{0} + \frac{2}{l} \left(y_{0} - \frac{Ly}{4} \right) [x_{0} - g_{\epsilon}(x_{0})], & \frac{Ly}{4} - \frac{l}{2} < y_{0} < \frac{Ly}{4} + \frac{l}{2}, & \text{(ii)} \\ 2x_{0} - g_{\epsilon}(x_{0}), & \frac{Ly}{4} + \frac{l}{2} < y_{0} < \frac{Ly}{2}, & \text{(iii)} \end{cases}$$
$$g_{\epsilon}(x_{0}) = \begin{cases} e^{-\hat{\epsilon}}x_{0}, & 0 < x_{0} < d_{e}, \\ d_{e}e^{\frac{x_{0}-\epsilon}{d_{e}} - 1}, & d_{e} < x_{0} < d_{e} + \epsilon, \\ x_{0} - \epsilon, & d_{e} + \epsilon < x_{0}. \end{cases}$$

and

Acceleration of collisionless reconnection

$$\mathbf{L}[\varphi_{\epsilon(t)}] \simeq L_y B_{y0}^{\prime 2} d_e^3 \hat{I} \left[\left(\frac{d\hat{\epsilon}}{d\hat{t}} \right)^2 - U(\hat{\epsilon}) \right] \quad \begin{pmatrix} \hat{\epsilon} = \epsilon/d_e, \\ \hat{t} = t/\tau_0 \end{pmatrix}$$

• In linear phase ($\hat{\epsilon} \ll 1$),

 $U(\hat{\epsilon}) \simeq -0.776\hat{\epsilon}^2 \quad \Rightarrow \quad \text{Exponential growth} \\ \hat{\epsilon} \propto \exp(\sqrt{0.776}\hat{t})$

• In nonlinear phase ($\hat{\epsilon} \gg 1$),

 $\begin{array}{ll} U(\hat{\epsilon}) \simeq -0.439 \hat{\epsilon}^3 & \Rightarrow & \mbox{Explosive growth} \\ \hat{\epsilon} \to \infty \mbox{ in } \Delta \hat{t} = 2 \sim 3 \end{array}$

- Nonlinear force $F(\hat{\epsilon}) = -U'(\hat{\epsilon}) \sim \hat{\epsilon}^2$ obtained here is different from $F(\hat{\epsilon}) \sim \hat{\epsilon}^4$ in Ottaviani & Porcelli [PRL 71, 3802 (1993)].
- Direct numerical simulation shows an agreement with our scaling (right figure).

[Hirota, Morrison, Ishii, Yagi and Aiba, arXiv:1210.0630]