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1. Introduction

We consider the semi-classical Schrödinger operator

P = −h2∆+ V (x),

where

∆ =
n

∑

j=1

∂2

∂x2j
, V (x) ∈ C∞

0 (Rn;R), 0 < h << 1



Resonances

As operator on L2(Rn), P is self-adjoint and σess(P) = R+. However, as operator
L2comp(R

n) → L2loc(R
n), the resolvent (z − P)−1 has meromorphic extension from

C+ to C− across R+. The poles are called “resonances”.

Roughly speaking, resonances are characterized as complex numbers z s.t. there
exists a non-trivial “outgoing” solution u(x , h) (called “resonant state”) to the
equation

Pu = zu.

The imaginary part of resonances means the reciprocal of the exponential decay
rate of the corresponding states for the evolution as time tends to +∞.
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Classical mechanics

Let
p(x , ξ) = ξ2 + V (x)

be the classical Hamiltonian, and

Hp = ∇ξp · ∇x −∇xp · ∇ξ

the Hamilton vector field on the phase space Rn
x × Rn

ξ. The value p(x , ξ) is

invariant along the integral curve exp tHp(x , ξ) starting from a point (x , ξ).

The “trapped trajectories” are defined as the set

K (z0) := {(x , ξ) ∈ p−1(z0); t 7→ exp tHp(x , ξ) is bounded}
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Resonance free zone

Let z0 be a positive energy and

Ω(ǫ, δ) = {z ∈ C; |Re z − z0| < ǫ, −δ < ℑz < 0}

Theorem :

(Martinez ’03, cf : Sjöstrand ’86)
Assume K (z0) = ∅. Then ∃ǫ > 0 s.t. ∀C > 0, there is no resonance in
Ω(ǫ,Ch| log h|) for sufficiently small h.

◮ Given a geometry of non-empty K (z0), study the asymptotic (semi-classical)
distribution of resonances in a complex neighborhood of z0.
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Some known results and our problem

◮ In the case where K (z0) consists of a hyperbolic fixed point : |Im z | ∼ δ1h
(Briet-Combes-Duclos ’87, Sjöstrand ’87)

◮ In the case where K (z0) consists of a hyperbolic periodic curve (n ≥ 2) :
|Im z | ∼ δ2h (Gérard-Sjöstrand ’84)

◮ In the well in an island case : |Im z | ∼ exp(−S/h) where S is the Agmon
distance from the well to the sea (Helffer-Sjöstrand ’86).

◮ Our problem : the case where K (z0) consists of a hyperbolic fixed point and
associated homoclinic trajectories



2. Results

We assume that x = 0 is a non-degenerate local maximum of V (x) i.e.

V (x) = z0 −
n

∑

j=1

λ2
j

4
x2j +O(x3) with 0 < λ1 ≤ . . . ≤ λn.

The point (x , ξ) = (0, 0) is a hyperbolic fixed point of Hp, and the “outgoing and
incoming stable manifolds” Λ± are defined by

Λ± := {ρ := (x , ξ); exp tHp(ρ) → (0, 0) as t → ∓∞}

It turns out that for ρ ∈ Λ±, ∃γ(ρ) an eigenvector corresponding to the smallest
eigenvalue λ1 of the linearization of Hp s.t.

exp tHp(ρ) ∼ e±λ1tγ(ρ) as t → ∓∞.

We denote by g(ρ) the x-space projection of γ(ρ).
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We assume

(H1) K (z0) consists of (0, 0) ∪H, where H = Λ+ ∩ Λ−\(0, 0) is the set
of homoclinic trajectories

(H2) g(ρ) · g(ρ′) 6= 0 for ∀ρ, ρ′ ∈ H.

Theorem (BFRZ)

Assume (H1) and (H2). Then ∃δ > 0 s.t. ∀C > 0, there is no resonance in
Ω(Ch, δh) for sufficiently small h, if either (a) or (b) holds :

(a) The maximum at x = 0 is anisotropic, i.e. λ1 < λn

(b) The intersection Λ+ ∩ Λ− is of finite order along H.

◮ When n = 1, neither (a) nor (b) holds. In this case, the precise location of
resonances is known (F-Ramond ’97) :

|Imz | ∼
log 2

2
λ1

h

| log h|
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3. Method

Let z be a resonance and u(x , h) a corresponding resonant state.

◮ Step 1 : Using the fact that u is outgoing (Bony-Michel ’03), we show that u is
microlocally 0 outside Λ+ : i.e. the global FBI transform of u

(Tu)(x , ξ, h) :=

∫

Rn

e i(x−y)·ξ/h−(x−y)2/(2h)u(y)dy

is of O(h∞) for (x , ξ) /∈ Λ+.
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◮ Step 2 : Continue u microlocally along H and show that, if z ∈ Ω(Ch, δh), its
amplitude becomes smaller after a tour :

|ufinal| . hα|u initial| with α = α(δ) > 0,

for small h microlocally at a point on H, which is a contradiction to the
single-valuedness of u.

Microlocal continuation of the solution

◮ along H : Maslov theory on WKB solutions
→ no decay in power of h.

◮ through (0, 0) : Following theorem by BFRZ.
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Propagation of singularities through a hyperbolic fixed

point

Let ρ− := (x−, ξ−) ∈ Λ− with |x−| = ǫ small, and Sǫ = {(x , ξ) ∈ Λ−; |x | = ǫ}.
Consider a microlocal Cauchy problem

(MCP)

{

Pu = zu microlocally near (0, 0),

u = u− microlocally near Sǫ

where the data u− with ||u−|| ≤ 1 satisfies

{

Pu− = zu− microlocally near Sǫ,

u− = 0 microlocally near Sǫ\{ρ−}



Theorem (BFRZ ’07)

There exists δ′ > 0 such that, for z ∈ Ω(Ch, δ′h), (MCP) has a unique solution u

with ||u|| = O(h−C ). Moreover, microlocally near a point ρ+ ∈ Λ+ satisfying
g(ρ−) · g(ρ+) 6= 0, u(x ; h) is given by

h
∑ λj−λ1

2λ1
−i

z−z0
hλ1

∫

e i(φ+(x)−φ
−
(y))/hd(x , y ; h)u−(y)dy .

Here φ±(x) are generating functions of Λ±, and d(x , y ; h) is an elliptic symbol of
order 0 (explicitly computed at the principal level).



Sketch the step 2

◮ uinitial is of WKB form uinitial(y , h) = e iφ+(y)/hb(y ; h) on H ∩ Λ+, and so is its

continuation to H ∩ Λ− along H : u−(y , h) = e i φ̃+(y)/hb̃(y ; h), where φ̃+(y) is a
generating function of the evolution of Λ+.

◮ Applying the pervious theorem, we obtain, for −δh < Im z < 0,

|ufinal| =

∣

∣

∣

∣

h
∑ λj−λ1

2λ1
−i

z−z0
hλ1

∣

∣

∣

∣

∣

∣

∣

∣

∫

e i(φ+(x)−φ
−
(y))/hd(x , y ; h)u−(y)dy

∣

∣

∣

∣

≤ h(
1
2

∑
(λj−λ1)−δ)/λ1

∣

∣

∣

∣

∫

e i(φ̃+(y)−φ
−
(y))/hd(x , y ; h)b(y , h)dy

∣

∣

∣

∣

.

By the stationary phase method, the integral in the RHS is of O(hβ) for some
β > 0 if Λ+ and Λ− intersects in finite order along H.
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Hence
||ufinal|| . hα||uinitial||

with

α =
1
2

∑

(λj − λ1) + λ1β − δ

λ1
,

and obvoiusly α > 0 if either (a) or (b) holds and δ < 1
2

∑

(λj − λ1) + λ1β.


