Semiclassical resonances associated with an unstable equilibrium

Setsuro FUJIIE
Ritsumeikan University
Joint work with Jean-François Bony (Bordeaux I), Thierry RAMOND (Paris Sud), Maher ZERZERI (Paris 13)

BIRS, 5-9/11/2012

1. Introduction

We consider the semi-classical Schrödinger operator

$$
P=-h^{2} \Delta+V(x),
$$

where

$$
\Delta=\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}}, \quad V(x) \in C_{0}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right), \quad 0<h \ll 1
$$

Resonances

As operator on $L^{2}\left(\mathbb{R}^{n}\right), P$ is self-adjoint and $\sigma_{\text {ess }}(P)=\mathbb{R}_{+}$. However, as operator $L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right) \rightarrow L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$, the resolvent $(z-P)^{-1}$ has meromorphic extension from \mathbb{C}_{+}to \mathbb{C}_{-}across \mathbb{R}_{+}. The poles are called "resonances".

Roughly speaking, resonances are characterized as complex numbers z s.t. there exists a non-trivial "outgoing" solution $u(x, h)$ (called "resonant state") to the equation
$P u=z u$.
The imaginary part of resonances means the reciprocal of the exponential decay rate of the corresponding states for the evolution as time tends to $+\infty$.

Resonances

As operator on $L^{2}\left(\mathbb{R}^{n}\right), P$ is self-adjoint and $\sigma_{\text {ess }}(P)=\mathbb{R}_{+}$. However, as operator $L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right) \rightarrow L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$, the resolvent $(z-P)^{-1}$ has meromorphic extension from \mathbb{C}_{+}to \mathbb{C}_{-}across \mathbb{R}_{+}. The poles are called "resonances".

Roughly speaking, resonances are characterized as complex numbers z s.t. there exists a non-trivial "outgoing" solution $u(x, h)$ (called "resonant state") to the equation

$$
P u=z u .
$$

The imaginary part of resonances means the reciprocal of the exponential decay rate of the corresponding states for the evolution as time tends to $+\infty$.

Resonances

As operator on $L^{2}\left(\mathbb{R}^{n}\right), P$ is self-adjoint and $\sigma_{\text {ess }}(P)=\mathbb{R}_{+}$. However, as operator $L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right) \rightarrow L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$, the resolvent $(z-P)^{-1}$ has meromorphic extension from \mathbb{C}_{+}to \mathbb{C}_{-}across \mathbb{R}_{+}. The poles are called "resonances".

Roughly speaking, resonances are characterized as complex numbers z s.t. there exists a non-trivial "outgoing" solution $u(x, h)$ (called "resonant state") to the equation

$$
P u=z u .
$$

The imaginary part of resonances means the reciprocal of the exponential decay rate of the corresponding states for the evolution as time tends to $+\infty$.

Classical mechanics

Let

$$
p(x, \xi)=\xi^{2}+V(x)
$$

be the classical Hamiltonian, and

$$
H_{p}=\nabla_{\xi} p \cdot \nabla_{x}-\nabla_{x} p \cdot \nabla_{\xi}
$$

the Hamilton vector field on the phase space $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}$. The value $p(x, \xi)$ is invariant along the integral curve $\exp t H_{p}(x, \xi)$ starting from a point (x, ξ). The "trapped trajectories" are defined as the set $K\left(z_{0}\right):=\left\{(x, \xi) \in p^{-1}\left(z_{0}\right) ; t \mapsto \exp t H_{p}(x, \xi)\right.$ is bounded $\}$

Classical mechanics

Let

$$
p(x, \xi)=\xi^{2}+V(x)
$$

be the classical Hamiltonian, and

$$
H_{p}=\nabla_{\xi} p \cdot \nabla_{x}-\nabla_{x} p \cdot \nabla_{\xi}
$$

the Hamilton vector field on the phase space $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}$. The value $p(x, \xi)$ is invariant along the integral curve $\exp t H_{p}(x, \xi)$ starting from a point (x, ξ).
The "trapped trajectories" are defined as the set

$$
K\left(z_{0}\right):=\left\{(x, \xi) \in p^{-1}\left(z_{0}\right) ; t \mapsto \exp t H_{p}(x, \xi) \text { is bounded }\right\}
$$

Resonance free zone

Let z_{0} be a positive energy and

$$
\Omega(\epsilon, \delta)=\left\{z \in \mathbb{C} ;\left|\operatorname{Re} z-z_{0}\right|<\epsilon,-\delta<\Im z<0\right\}
$$

> Theorem :
> (Martinez '03, cf : Sjöstrand '86)
> Assume $K\left(z_{0}\right)=\emptyset$. Then $\exists \epsilon>0$ s.t. $\forall C>0$, there is no resonance in $\Omega(\epsilon, C h|\log h|)$ for sufficiently small h.

- Given a geometry of non-empty $K\left(z_{0}\right)$, study the asymptotic (semi-classical) distribution of resonances in a complex neighborhood of z_{0}.

Resonance free zone

Let z_{0} be a positive energy and

$$
\Omega(\epsilon, \delta)=\left\{z \in \mathbb{C} ;\left|\operatorname{Re} z-z_{0}\right|<\epsilon,-\delta<\Im z<0\right\}
$$

Theorem :

(Martinez '03, cf : Sjöstrand '86)
Assume $K\left(z_{0}\right)=\emptyset$. Then $\exists \epsilon>0$ s.t. $\forall C>0$, there is no resonance in $\Omega(\epsilon, C h|\log h|)$ for sufficiently small h.

- Given a geometry of non-empty $K\left(z_{0}\right)$, study the asymptotic (semi-classical) distribution of resonances in a complex neighborhood of z_{0}.

Some known results and our problem

- In the case where $K\left(z_{0}\right)$ consists of a hyperbolic fixed point: $|\operatorname{Im} z| \sim \delta_{1} h$ (Briet-Combes-Duclos '87, Sjöstrand '87)
- In the case where $K\left(z_{0}\right)$ consists of a hyperbolic periodic curve ($n \geq 2$) : $|\operatorname{Im} z| \sim \delta_{2} h$ (Gérard-Sjöstrand '84)
- In the well in an island case : $|\operatorname{Im} z| \sim \exp (-S / h)$ where S is the Agmon distance from the well to the sea (Helffer-Sjöstrand '86).
- Our problem : the case where $K\left(z_{0}\right)$ consists of a hyperbolic fixed point and associated homoclinic trajectories

2. Results

We assume that $x=0$ is a non-degenerate local maximum of $V(x)$ i.e.

$$
V(x)=z_{0}-\sum_{j=1}^{n} \frac{\lambda_{j}^{2}}{4} x_{j}^{2}+\mathcal{O}\left(x^{3}\right) \quad \text { with } 0<\lambda_{1} \leq \ldots \leq \lambda_{n} .
$$

The point $(x, \xi)=(0,0)$ is a hyperbolic fixed point of H_{p}, and the "outgoing and incoming stable manifolds" $\Lambda_{ \pm}$are defined by

It turns out that for $\rho \in \Lambda_{ \pm}, \exists \gamma(\rho)$ an eigenvector corresponding to the smallest eigenvalue λ_{1} of the linearization of H_{p} s.t.

We denote by $g(\rho)$ the x-space projection of $\gamma(\rho)$.

2. Results

We assume that $x=0$ is a non-degenerate local maximum of $V(x)$ i.e.

$$
V(x)=z_{0}-\sum_{j=1}^{n} \frac{\lambda_{j}^{2}}{4} x_{j}^{2}+\mathcal{O}\left(x^{3}\right) \quad \text { with } 0<\lambda_{1} \leq \ldots \leq \lambda_{n} .
$$

The point $(x, \xi)=(0,0)$ is a hyperbolic fixed point of H_{p}, and the "outgoing and incoming stable manifolds" $\Lambda_{ \pm}$are defined by

$$
\Lambda_{ \pm}:=\left\{\rho:=(x, \xi) ; \exp t H_{p}(\rho) \rightarrow(0,0) \text { as } t \rightarrow \mp \infty\right\}
$$

It turns out that for $\rho \in \Lambda_{ \pm}, \exists \gamma(\rho)$ an eigenvector corresponding to the smallest eigenvalue λ_{1} of the linearization of H_{p} s.t.

2. Results

We assume that $x=0$ is a non-degenerate local maximum of $V(x)$ i.e.

$$
V(x)=z_{0}-\sum_{j=1}^{n} \frac{\lambda_{j}^{2}}{4} x_{j}^{2}+\mathcal{O}\left(x^{3}\right) \quad \text { with } 0<\lambda_{1} \leq \ldots \leq \lambda_{n} .
$$

The point $(x, \xi)=(0,0)$ is a hyperbolic fixed point of H_{p}, and the "outgoing and incoming stable manifolds" $\Lambda_{ \pm}$are defined by

$$
\Lambda_{ \pm}:=\left\{\rho:=(x, \xi) ; \exp t H_{p}(\rho) \rightarrow(0,0) \text { as } \mathrm{t} \rightarrow \mp \infty\right\}
$$

It turns out that for $\rho \in \Lambda_{ \pm}, \exists \gamma(\rho)$ an eigenvector corresponding to the smallest eigenvalue λ_{1} of the linearization of H_{p} s.t.

$$
\exp t H_{p}(\rho) \sim e^{ \pm \lambda_{1} t} \gamma(\rho) \quad \text { as } t \rightarrow \mp \infty .
$$

We denote by $g(\rho)$ the x-space projection of $\gamma(\rho)$.

We assume

(H1) $K\left(z_{0}\right)$ consists of $(0,0) \cup \mathcal{H}$, where $\mathcal{H}=\Lambda_{+} \cap \Lambda_{-} \backslash(0,0)$ is the set of homoclinic trajectories

Theorem (BFRZ)

(a) The maximum at $x=0$ is anisotropic, i.e. $\lambda_{1}<\lambda_{n}$
(b) The intersection $\wedge \cap \wedge$ is of finite order along 11

- When $n=1$, neither (a) nor (b) holds. In this case, the precise location of resonances is known (F-Ramond '97)

We assume

(H1) $K\left(z_{0}\right)$ consists of $(0,0) \cup \mathcal{H}$, where $\mathcal{H}=\Lambda_{+} \cap \Lambda_{-} \backslash(0,0)$ is the set of homoclinic trajectories
(H2) $g(\rho) \cdot g\left(\rho^{\prime}\right) \neq 0$ for $\forall \rho, \rho^{\prime} \in \mathcal{H}$.

Theorem (BFRZ)

(a) The maximum at $x=0$ is anisotropic, i.e. $\lambda_{1}<\lambda_{n}$
(b) The intersection $\wedge \cap \wedge$ is of finite order along 11

- When $n=1$, neither (a) nor (b) holds. In this case, the precise location of resonances is known (F-Ramond '97)

We assume
(H1) $K\left(z_{0}\right)$ consists of $(0,0) \cup \mathcal{H}$, where $\mathcal{H}=\Lambda_{+} \cap \Lambda_{-} \backslash(0,0)$ is the set of homoclinic trajectories
(H2) $g(\rho) \cdot g\left(\rho^{\prime}\right) \neq 0$ for $\forall \rho, \rho^{\prime} \in \mathcal{H}$.

Theorem (BFRZ)

Assume $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$. Then $\exists \delta>0$ s.t. $\forall C>0$, there is no resonance in $\Omega(C h, \delta h)$ for sufficiently small h, if either (a) or (b) holds :
(a) The maximum at $x=0$ is anisotropic, i.e. λ
(b) The intersection $\Lambda_{+} \cap \Lambda_{-}$is of finite order along

- When $n=1$, neither (a) nor (b) holds. In this case, the precise location of resonances is known (F-Ramond '97)

We assume
(H1) $K\left(z_{0}\right)$ consists of $(0,0) \cup \mathcal{H}$, where $\mathcal{H}=\Lambda_{+} \cap \Lambda_{-} \backslash(0,0)$ is the set of homoclinic trajectories
(H2) $g(\rho) \cdot g\left(\rho^{\prime}\right) \neq 0$ for $\forall \rho, \rho^{\prime} \in \mathcal{H}$.

Theorem (BFRZ)

Assume $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$. Then $\exists \delta>0$ s.t. $\forall C>0$, there is no resonance in $\Omega(C h, \delta h)$ for sufficiently small h, if either (a) or (b) holds :
(a) The maximum at $x=0$ is anisotropic, i.e. $\lambda_{1}<\lambda_{n}$
(b) The intersection $\Lambda_{+} \cap \Lambda_{-}$is of finite order along \mathcal{H}.

- When $n=1$, neither (a) nor (b) holds. In this case, the precise location of resonances is known (F-Ramond '97)

We assume
$(\mathrm{H} 1) K\left(z_{0}\right)$ consists of $(0,0) \cup \mathcal{H}$, where $\mathcal{H}=\Lambda_{+} \cap \Lambda_{-} \backslash(0,0)$ is the set of homoclinic trajectories
(H2) $g(\rho) \cdot g\left(\rho^{\prime}\right) \neq 0$ for $\forall \rho, \rho^{\prime} \in \mathcal{H}$.

Theorem (BFRZ)

Assume $(\mathrm{H} 1)$ and $(\mathrm{H} 2)$. Then $\exists \delta>0$ s.t. $\forall C>0$, there is no resonance in $\Omega(C h, \delta h)$ for sufficiently small h, if either (a) or (b) holds :
(a) The maximum at $x=0$ is anisotropic, i.e. $\lambda_{1}<\lambda_{n}$
(b) The intersection $\Lambda_{+} \cap \Lambda_{-}$is of finite order along \mathcal{H}.

- When $n=1$, neither (a) nor (b) holds. In this case, the precise location of resonances is known (F-Ramond '97)

We assume
$(\mathrm{H} 1) K\left(z_{0}\right)$ consists of $(0,0) \cup \mathcal{H}$, where $\mathcal{H}=\Lambda_{+} \cap \Lambda_{-} \backslash(0,0)$ is the set of homoclinic trajectories
(H2) $g(\rho) \cdot g\left(\rho^{\prime}\right) \neq 0$ for $\forall \rho, \rho^{\prime} \in \mathcal{H}$.

Theorem (BFRZ)

Assume (H 1$)$ and $(\mathrm{H} 2)$. Then $\exists \delta>0$ s.t. $\forall C>0$, there is no resonance in $\Omega(C h, \delta h)$ for sufficiently small h, if either (a) or (b) holds :
(a) The maximum at $x=0$ is anisotropic, i.e. $\lambda_{1}<\lambda_{n}$
(b) The intersection $\Lambda_{+} \cap \Lambda_{-}$is of finite order along \mathcal{H}.

- When $n=1$, neither (a) nor (b) holds. In this case, the precise location of resonances is known (F-Ramond '97) :

$$
|\operatorname{Im} z| \sim \frac{\log 2}{2} \lambda_{1} \frac{h}{|\log h|}
$$

3. Method

Let z be a resonance and $u(x, h)$ a corresponding resonant state.

- Step 1 : Using the fact that u is outgoing (Bony-Michel '03), we show that u is microlocally 0 outside Λ_{+}: i.e. the global FBI transform of u

3. Method

Let z be a resonance and $u(x, h)$ a corresponding resonant state.

- Step 1 : Using the fact that u is outgoing (Bony-Michel '03), we show that u is microlocally 0 outside Λ_{+}: i.e. the global FBI transform of u

$$
(T u)(x, \xi, h):=\int_{\mathbb{R}^{n}} e^{i(x-y) \cdot \xi / h-(x-y)^{2} /(2 h)} u(y) d y
$$

is of $\mathcal{O}\left(h^{\infty}\right)$ for $(x, \xi) \notin \Lambda_{+}$.

- Step 2 : Continue u microlocally along \mathcal{H} and show that, if $z \in \Omega(C h, \delta h)$, its amplitude becomes smaller after a tour :

$$
\left|u_{\text {final }}\right| \lesssim h^{\alpha}\left|u_{\text {initial }}\right| \quad \text { with } \alpha=\alpha(\delta)>0,
$$

for small h microlocally at a point on \mathcal{H}, which is a contradiction to the single-valuedness of u.

Microlocal continuation of the solution

- along \mathcal{H} : Maslov theory on WKB solutions
\rightarrow no decay in power of h.
- through $(0,0)$: Following theorem by BFRZ.
- Step 2 : Continue u microlocally along \mathcal{H} and show that, if $z \in \Omega(C h, \delta h)$, its amplitude becomes smaller after a tour :

$$
\left|u_{\text {final }}\right| \lesssim h^{\alpha}\left|u_{\text {initial }}\right| \quad \text { with } \alpha=\alpha(\delta)>0,
$$

for small h microlocally at a point on \mathcal{H}, which is a contradiction to the single-valuedness of u.

Microlocal continuation of the solution

- along \mathcal{H} : Maslov theory on WKB solutions \rightarrow no decay in power of h.
- through $(0,0)$: Following theorem by BFRZ.

Propagation of singularities through a hyperbolic fixed point

Let $\rho_{-}:=\left(x_{-}, \xi_{-}\right) \in \Lambda_{-}$with $\left|x_{-}\right|=\epsilon$ small, and $S_{\epsilon}=\left\{(x, \xi) \in \Lambda_{-} ;|x|=\epsilon\right\}$. Consider a microlocal Cauchy problem

$$
(\mathrm{MCP})\left\{\begin{aligned}
P u & =z u & & \text { microlocally near }(0,0) \\
u & =u_{-} & & \text {microlocally near } S_{\epsilon}
\end{aligned}\right.
$$

where the data u_{-}with $\left\|u_{-}\right\| \leq 1$ satisfies

$$
\left\{\begin{aligned}
P u_{-} & =z u_{-} & & \text {microlocally near } S_{\epsilon} \\
u_{-} & =0 & & \text { microlocally near } S_{\epsilon} \backslash\left\{\rho_{-}\right\}
\end{aligned}\right.
$$

Theorem (BFRZ '07)

There exists $\delta^{\prime}>0$ such that, for $z \in \Omega\left(C h, \delta^{\prime} h\right)$, (MCP) has a unique solution u with $\|u\|=\mathcal{O}\left(h^{-C}\right)$. Moreover, microlocally near a point $\rho_{+} \in \Lambda_{+}$satisfying $g\left(\rho_{-}\right) \cdot g\left(\rho_{+}\right) \neq 0, u(x ; h)$ is given by

$$
h^{\sum \frac{\lambda_{j}-\lambda_{1}}{2 \lambda_{1}}-i \frac{z-z_{0}}{h \lambda_{1}}} \int e^{i\left(\phi_{+}(x)-\phi_{-}(y)\right) / h} d(x, y ; h) u_{-}(y) d y .
$$

Here $\phi_{ \pm}(x)$ are generating functions of $\Lambda_{ \pm}$, and $d(x, y ; h)$ is an elliptic symbol of order 0 (explicitly computed at the principal level).

Sketch the step 2

- $u_{\text {initial }}$ is of WKB form $u_{\text {initial }}(y, h)=e^{i \phi_{+}(y) / h} b(y ; h)$ on $\mathcal{H} \cap \Lambda_{+}$, and so is its continuation to $\mathcal{H} \cap \Lambda_{-}$along $\mathcal{H}: u_{-}(y, h)=e^{i \tilde{\phi}_{+}(y) / h} \tilde{b}(y ; h)$, where $\tilde{\phi}_{+}(y)$ is a generating function of the evolution of Λ_{+}.
- Applying the pervious theorem, we obtain, for $-\delta h<\operatorname{Im} z<0$,

By the stationary phase method, the integral in the RHS is of $\mathcal{O}\left(h^{\beta}\right)$ for some 0 if Λ_{+}and Λ_{-}intersects in finite order along \mathcal{H}.

Sketch the step 2

- $u_{\text {initial }}$ is of WKB form $u_{\text {initial }}(y, h)=e^{i \phi_{+}(y) / h} b(y ; h)$ on $\mathcal{H} \cap \Lambda_{+}$, and so is its continuation to $\mathcal{H} \cap \Lambda_{-}$along $\mathcal{H}: u_{-}(y, h)=e^{i \tilde{\phi}_{+}(y) / h} \tilde{b}(y ; h)$, where $\tilde{\phi}_{+}(y)$ is a generating function of the evolution of Λ_{+}.
- Applying the pervious theorem, we obtain, for $-\delta h<\operatorname{Im} z<0$,

$$
\begin{aligned}
& \left|u_{\text {final }}\right|=\left|h^{\sum \frac{\lambda_{j}-\lambda_{1}}{2 \lambda_{1}}-i \frac{z-z_{0}}{h \lambda_{1}}}\right|\left|\int e^{i\left(\phi_{+}(x)-\phi_{-}(y)\right) / h} d(x, y ; h) u_{-}(y) d y\right| \\
& \leq h^{\left(\frac{1}{2} \sum\left(\lambda_{j}-\lambda_{1}\right)-\delta\right) / \lambda_{1}}\left|\int e^{i\left(\tilde{\phi}_{+}(y)-\phi_{-}(y)\right) / h} d(x, y ; h) b(y, h) d y\right| .
\end{aligned}
$$

By the stationary phase method, the integral in the RHS is of $\mathcal{O}\left(h^{\beta}\right)$ for some $\beta>0$ if Λ_{+}and Λ_{-}intersects in finite order along \mathcal{H}.

Hence

$$
\left\|u_{\text {final }}\right\| \lesssim h^{\alpha}\left\|u_{\text {initial }}\right\|
$$

with

$$
\alpha=\frac{\frac{1}{2} \sum\left(\lambda_{j}-\lambda_{1}\right)+\lambda_{1} \beta-\delta}{\lambda_{1}},
$$

and obvoiusly $\alpha>0$ if either（a）or（b）holds and $\delta<\frac{1}{2} \sum\left(\lambda_{j}-\lambda_{1}\right)+\lambda_{1} \beta$ ．
$\square>4$ 司 \downarrow 引 三 >4 三

