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O. Doaré BIRS, Nov. 5-9, 2012



Intro Simple pipe El. Foundation Energy harvesting

Flutter instability

Pipe, flag, wing, soft palate ...

Doaré&de Langre Lee Auégan&Dépollier
Eloy et al

◮ But also vocal folds, paper in high speed printers, reeds in some musical
instruments (eg. harmonica).

◮ Recent interest in energy harvesting applications

O. Doaré BIRS, Nov. 5-9, 2012
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Fluid-conveying pipe: a model problem

The fluid-conveying pipe can be considered as a model problem for many physical
systems where the dynamics of a slender structure is coupled to an axial flow.

O. Doaré BIRS, Nov. 5-9, 2012
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Fluid-conveying pipe: a model problem

The fluid-conveying pipe can be considered as a model problem for many physical
systems where the dynamics of a slender structure is coupled to an axial flow.

◮ Simplest model describing the linear dynamics of a fluid-conveying pipe ≡
Euler-Bernoulli beam with an internal plug flow.

EI
∂4Y

∂X4
+m

∂2Y

∂T2
︸ ︷︷ ︸

Euler-Bernoulli beam

+ M
∂2Y

∂T2
︸ ︷︷ ︸

Added mass

+ MU2 ∂2Y

∂X2
︸ ︷︷ ︸

Centrifugal force

+ 2MU
∂2Y

∂X∂T
︸ ︷︷ ︸

Coriolis force

= 0

(Bourrières 1939, Gregoy & Paı̈doussis 1966, Paı̈doussis 1998)

Flags, compliant walls : Similar physical effects, although differences in the
expressions

O. Doaré BIRS, Nov. 5-9, 2012
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Additionnal elastic and viscous forces

◮ Fluid-conveying pipe with elastic foundation, tension, viscous, and viscoelastic
dissipations :

EI
∂4Y

∂X4
+m

∂2Y

∂T2
︸ ︷︷ ︸

Euler-Bernoulli beam

+ M
∂2Y

∂T2
︸ ︷︷ ︸

Added mass

+ MU2 ∂2Y

∂X2
︸ ︷︷ ︸

Centrifugal force

+ 2MU
∂2Y

∂X∂T
︸ ︷︷ ︸

Coriolis force

−N
∂2Y

∂X2
︸ ︷︷ ︸

tension

+SY
︸ ︷︷ ︸

Spring foundation

+E⋆ I
∂5Y

∂X4∂T
︸ ︷︷ ︸

Structural dissipation

+c
∂Y

∂T
︸ ︷︷ ︸

Viscous dissipation

= 0

O. Doaré BIRS, Nov. 5-9, 2012
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Boundary conditions : Clamped-free beam

Y(X = 0) =
∂Y

∂X

∣
∣
∣
∣
X=0

=
∂2Y

∂X2

∣
∣
∣
∣
X=L

=
∂3Y

∂X3

∣
∣
∣
∣
X=L

= 0 (1)

O. Doaré BIRS, Nov. 5-9, 2012
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Local/Global approaches

Local: wave equations in an infinite domain

∂2

∂t2
[M(y)] +

∂

∂t
[C(y)] +K(y) = 0 on Ω = [−∞,+∞] (2)

◮ Solutions in the form of harmonic plane wave : y = y0ei(kx−ωt)

◮ Dispersion relation D(k,ω) = 0

◮ Instability if ∃k ∈ R \ Im[ω(k)] > 0

Global: wave equations, finite length, boundary conditions

∂2

∂t2
[M(y)] +

∂

∂t
[C(y)] +K(y) = 0 on Ω (3)

Bi(y) = 0 , i = 1..N on ∂Ω (4)

◮ Solutions of the form : y = φ(x)e−iωt
 Strum-Liouville eigenvalue problem

◮ Instability if Im(ω) > 0

O. Doaré BIRS, Nov. 5-9, 2012
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Objectives

Litterature

◮ Large amount of litterature, on both local and global instabilities
◮ In many works, a destabilizing effect of damping has been evidenced

◮ Pipes: Bourrières (1939), Bolotin (1963), Gregory & Paı̈doussis (1964), Roth (1964), Paı̈doussis

(1970,1998), Lottati & Kornecki (1986), Kulikovskii (1988), de Langre & Ouvrard (1999)

◮ Compliant walls: Landahl (1962), Benjamin (1963), Kornecki et al (1976), Brazier-Smith & Scott

(1984), Carpenter & Garrad (1985), Crighton & Oswell (1991), Lucey & Carpenter (1992), Peake

(1997,2001,2004), Wiplier & Ehrenstein (2000,2001)

◮ Flags: Datta & Gottenberg (1975), Shayo (1980), Aurégan & Dépollier (1995), Huang (1995), Shelley et al

(2005), Lemaı̂tre et at (2005), Eloy et al (2007,2008), Michelin & Llewellyn Smith (2009), Tang & Paı̈doussis

(2009)

Objectives

◮ Perform local and gobal stability analyses on a given system
◮ Focus on the effect of dissipation

Outline

1. “Simple” pipe 2. Pipe on elastic foundation 3. Energy harvesting
O. Doaré BIRS, Nov. 5-9, 2012
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Local/global analysis of the simple fluid-conveying pipe

O. Doaré BIRS, Nov. 5-9, 2012
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Infinite fluid-conveying pipe

◮ Non-dimensional equations of the problem:

∂2y

∂t2
+

∂4y

∂x4
+

∂2y

∂x2
+ 2

√

β
∂2y

∂x∂t
+D(y) = 0, (5)

Only one or two parameters: β = m+M
M + a damping parameter.

O. Doaré BIRS, Nov. 5-9, 2012
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Local stability analysis (no damping)

◮ Solution in the form of a propagating wave, y = y0ei(kx−ωt)

◮ Dispersion relation:
k4 − ω2 + k2 + 2

√

βkω = 0. (6)

◮ Frequency associated to a real wavenumber k:

ω± =
√

βk± k
√

β + k2 − 1. (7)
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k
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e(

ω
)

β=0.5
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−0.5

0

0.5

k

Im
(ω

)

◮ For β ∈ [0, 1[ and k ∈ [0,
√

1− β], frequencies
ω± are complex conjugate

◮ ⇒ Locally unstable ∀β ∈ [0, 1[

◮ For k >
√

1− β, ω(k) ∈ R and waves are
neutral

O. Doaré BIRS, Nov. 5-9, 2012
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Local stability analysis (no damping)

◮ Solution in the form of a propagating wave, y = y0ei(kx−ωt)

◮ Dispersion relation:
k4 − ω2 + k2 + 2

√

βkω = 0. (6)

◮ Frequency associated to a real wavenumber k:

ω± =
√

βk± k
√

β + k2 − 1. (7)
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◮ For β ∈ [0, 1[ and k ∈ [0,
√

1− β], frequencies
ω± are complex conjugate

◮ ⇒ Locally unstable ∀β ∈ [0, 1[

◮ For k >
√

1− β, ω(k) ∈ R and waves are
neutral

◮ What happens when damping is added?

O. Doaré BIRS, Nov. 5-9, 2012
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Effect of damping on neutral waves

◮ Dispersion relation without damping:

D(k,ω) = 0. (8)

◮ Dispersion relation with a small amount of viscous damping:

D1(k,ω + δω) = D(k,ω + δω)− ic(ω + δω) = 0 (9)

◮ At first order, the perturbation of the frequency due to damping satisfies:

δω
∂D

∂ω

∣
∣
∣
∣
(k,ω)

− icω = 0 (10)

◮ Perturbation of the growth rate:

δσ =
cω

∂D/∂ω
. (11)

◮ In the context of the dynamics of the interface between two fluids, Cairns (1979)
calculate the wave energy as the work to do on the system to generate a neutral
wave from t = −∞ to t = 0:

E = −ω

4

∂D

∂ω
y20. (12)

◮  δσ has the opposite sign of the wave energy

O. Doaré BIRS, Nov. 5-9, 2012
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Damping effect in the fluid conveying pipe

◮ Wave energy:

E± =
k2
√

k2 + β − 1
(√

k2 + β − 1±
√

β
)

2
(13)

◮ E− < 0 for k ∈]
√
1− β, 1[

◮ ⇒ when damping is added, the range of unstable wavenumbers is extended from
[0,

√
1− β] to [0, 1].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

β

k

Unstable range
without damping

Unstable range
with damping

◮ The Coriolis term β∂2y/∂x∂t
stabilizes waves in the range
[
√

1− β, 1]

◮ Damping cancels this effect

O. Doaré BIRS, Nov. 5-9, 2012
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Global stability

Equations

∂2y

∂t2
+

∂4y

∂x4
+

∂2y

∂x2
+ 2

√

β
∂2y

∂x∂t
+D(y) = 0, (14)

(+ Boundary conditions)
Parameters: β (and l) + a damping parameter.

Method: Galerkin decomposition

◮ y decomposed on beam modes that satisfy boundary conditions
◮ Projection over beam modes, truncature discrete mechanical system
◮ Discrete eigenvalue problem eigenfrequencies ωn

O. Doaré BIRS, Nov. 5-9, 2012
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Global stability

β

l
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Marginal stability
without damping

Global
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(flutter)

O. Doaré BIRS, Nov. 5-9, 2012
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Global stability

β

l

0 1 2 3
0
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30
Global
stability

Marginal stability
without damping

Global
instability
(flutter)

Local
instability

Local
stability

◮ Long system limit given by a
local criterion: local stability
criterion

O. Doaré BIRS, Nov. 5-9, 2012
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Global stability
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◮ When damping is increased,
the marginal stability curve
tends to a different limit

O. Doaré BIRS, Nov. 5-9, 2012
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Global stability

β

l
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◮ When damping is increased,
the marginal stability curve
tends to a different limit

◮ As the damped medium is
always locally unstable, no
local criterion can predict the
phenomenon

O. Doaré BIRS, Nov. 5-9, 2012
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Global stability

β

l
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◮ When damping is increased,
the marginal stability curve
tends to a different limit

◮ As the damped medium is
always locally unstable, no
local criterion can predict the
phenomenon

◮ Statement: when the medium
is locally unstable, global
stability is due to confinement

O. Doaré BIRS, Nov. 5-9, 2012
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Global stability

β

l

σ=10

σ=100

σ=1000
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0
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◮ When damping is increased,
the marginal stability curve
tends to a different limit

◮ As the damped medium is
always locally unstable, no
local criterion can predict the
phenomenon

◮ Statement: when the medium
is locally unstable, global
stability is due to confinement

◮ Smallest unstable
wavelength:

λ1 =
2π

√
1− β

(no damping)

λ2 = 2π (damping)

O. Doaré BIRS, Nov. 5-9, 2012
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Global stability

β

l

0 1 2 3
0

5

10

15

20

25

30

◮ When damping is increased,
the marginal stability curve
tends to a different limit

◮ As the damped medium is
always locally unstable, no
local criterion can predict the
phenomenon

◮ Statement: when the medium
is locally unstable, global
stability is due to confinement

◮ Smallest unstable
wavelength:

λ1 =
2π

√
1− β

(no damping)

λ2 = 2π (damping)

O. Doaré BIRS, Nov. 5-9, 2012
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Conclusions (1/3)

◮ Coriolis term stabilizes the range
k ∈ [

√
1− β, 1]

◮ This range is destabilized by damping
◮ Destabilization is due to negative

energy waves

◮ Finite length stability boundaries
affected by confinement effects

◮ Destabilization by damping due to
negative energy waves

◮ Except for β = 0...

(Lottati & Kornecki 1986)

O. Doaré BIRS, Nov. 5-9, 2012
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Pipe on elastic foundation

O. Doaré BIRS, Nov. 5-9, 2012
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Pipe on elastic foundation without dissipation

◮ Non-dimensional equation :

∂2y

∂t2
+

∂4y

∂x4
+ v2

∂2y

∂x2
+ 2

√

βv
∂2y

∂x∂t
+ y+D(y) = 0 with D(y) = 0 (15)

Absolute/convective instabilities: See Briggs (1964): Plasma physics, Brazier-Smith & Scott (1984): Compliant

panels with flows, Huerre & Monkewitz (1990): Shear layer problems.

O. Doaré BIRS, Nov. 5-9, 2012
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Pipe on elastic foundation without dissipation

◮ Non-dimensional equation :

∂2y

∂t2
+

∂4y

∂x4
+ v2

∂2y

∂x2
+ 2

√

βv
∂2y

∂x∂t
+ y+D(y) = 0 with D(y) = 0 (15)
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0
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Convective
Instability

Absolute instability

Stability with evanescent waves

SN+DN

DN

SN

β

v
◮ Criterion for instability : v >

(
2

1−β

)1/2

◮ Criterion for absolute instability :

v >

(
12β

8/9−β

)1/4

◮ Criterion for existence of neutral
waves :
◮ Static range : Stability and v >

√
2

◮ Dynamic range : Stability and

v >

(
12β

8/9−β

)1/4

Absolute/convective instabilities: See Briggs (1964): Plasma physics, Brazier-Smith & Scott (1984): Compliant

panels with flows, Huerre & Monkewitz (1990): Shear layer problems.

O. Doaré BIRS, Nov. 5-9, 2012
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Pipe on elastic foundation with dissipation
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Stability with evanescent waves

Absolute instability

β

v

◮ Stability properties depend neither on the type of dissipation nor its value
◮ Criterion for instability : v >

√
2

◮ Instability is always absolute
◮ When stable, no neutral range

O. Doaré BIRS, Nov. 5-9, 2012
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Pipe on elastic foundation - Effect of dissipation
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◮ Dynamic range : Positive energy waves
◮ Static range : Negative energy waves
◮ Destabilization by damping is due to negative energy waves in the static range.

O. Doaré BIRS, Nov. 5-9, 2012
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Pipe on elastic foundation - Local/global comparison

◮ Projection of the equation over ∼ 150 beam modes

Without dissipation With dissipation
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l=32
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β

v

◮ Long system limit : Criterion for existence of the dynamic range of neutral waves
without damping, criterion of instability with damping

◮ Without damping, one can observe a system which is locally stable but globally
unstable

O. Doaré BIRS, Nov. 5-9, 2012
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Lengthscale criterion

The three lengthscales of the system

Length of the system L Elastic rigidity lengthscale η Dissipation lengthscale ηD

L η =
(
EI
S

)1/4
ηD =

(
EI(µ f+µ)

c2

)1/4

l = L/η 1 ρ = ηD/η

◮ If L < η and L < ηD ⇒ Confined system, no local criterion
◮ If L > η but L < ηD ⇒ Local criterion without dissipation
◮ If L > ηD ⇒ Local criterion with dissipation

◮ If l < 1 and l < ρ ⇒ Confined system, no local criterion
◮ If l > 1 but L < ρ ⇒ Local criterion without dissipation
◮ If l > ρ ⇒ Local criterion with dissipation

O. Doaré BIRS, Nov. 5-9, 2012
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———————

O. Doaré BIRS, Nov. 5-9, 2012
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Global stability curves
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Global stability curves
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Global stability curves
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Conclusions (2/3)

Main results

◮ Destabilization by damping observed in infinite media as well as finite systems
◮ Destabilization by dissipation in the finite system is also related to negative energy

waves
◮ Pipe wthout damping: boundary conditions may destabilize the system. Condition:

neutral (propagative) waves, positive or negative energy
◮ Lengthscale criteria to determine the long system limit

◮ O. Doaré & E. de Langre. Local and global stability of fluid-conveying pipes on elastic foundations. Journal of
Fluids and Structures, 16(1):1–14, 2002.

◮ O. Doaré & E de Langre. The role of boundary conditions in the instability of one-dimensional systems.
European Journal Of Mechanics B-Fluids, 25:948–959, 2006.

◮ O. Doaré. Dissipation effect on local and global stability of fluid-conveying pipes. Journal of Sound and
Vibration, 329(1):72–83, 2010.

O. Doaré BIRS, Nov. 5-9, 2012
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Application to energy harvesting

O. Doaré BIRS, Nov. 5-9, 2012
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Energy harvesting from piezoelectric fluttering flags

O. Doaré BIRS, Nov. 5-9, 2012
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Energy harvesting from piezoelectric fluttering flags

O. Doaré BIRS, Nov. 5-9, 2012
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Energy harvesting from piezoelectric fluttering flags

◮ Deformation charge transfert between electrodes

Q = CV + χ
∫ x+

x−
Fp(x)w

′′(x)dx

◮ Voltage momentum exerted on the plate

Mpiezo(x) = −χVFp(x)

O. Doaré BIRS, Nov. 5-9, 2012
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Energy harvesting from piezoelectric fluttering flags

◮ Deformation charge transfert between electrodes

Q = CV + χ
∫ x+

x−
Fp(x)w

′′(x)dx = CV + χ[w′]x
+

x−

◮ Voltage momentum exerted on the plate

Mpiezo(x) = −χVFp(x) = −CV[H(x− x−)−H(x− x+)]

◮ Shape function of the piezo:

Fp(x) = H(x− x−)− H(x− x+)

O. Doaré BIRS, Nov. 5-9, 2012
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Choice of a configuration

xxi x+ix−i xi+1xi−1

V
(1)
i

V
(2)
i

V̄i

U∞

U∞

◮ Plate with a series of piezoelectric elements

◮ Harvesting circuit modelled by a shunted resistance
 Harvested energy ≡ energy dissipated in the resistance

O. Doaré BIRS, Nov. 5-9, 2012
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Coupled mechanical-electrical wave equation

◮ Large wavelengths (small piezos) limit:

[

w′
]x+i

x−i
≃ w′′(xi)l, (16)

∑
i

V̄i[H(x− x−i )− H(x− x+i )] ≃ v(x). (17)

◮ Coupled wave equations:

(

B+
χ2

c

)

w′′′′ + µẅ− χ

c
q′′ = −[P] (18)

1

g
q̇+

1

c
q− χ

c
w′′ = 0 (19)

+ Potential flow theory pressure linear function of the displacement w.

O. Doaré BIRS, Nov. 5-9, 2012
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Definition of an efficiency

◮ Windmill-type efficiency:

E =
Power harvested in the electrial circuits

Fluid’s kinetic energy flux through the surface occupied by oscillations
∝

A2

A

 Scales as the amplitude of the mode ⇒ diverges in the linear case

O. Doaré BIRS, Nov. 5-9, 2012
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Definition of an efficiency

◮ Windmill-type efficiency:

E =
Power harvested in the electrial circuits

Fluid’s kinetic energy flux through the surface occupied by oscillations
∝

A2

A

 Scales as the amplitude of the mode ⇒ diverges in the linear case

◮ Linear efficiency:

r =
Energy harvested in the electrial circuits during one period

Mean of the energy in the system during one period
∝

A2

A2

 Bounded in the linear case, independent of the flow
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 Scales as the amplitude of the mode ⇒ diverges in the linear case

◮ Linear efficiency:

r =
Energy harvested in the electrial circuits during one period

Mean of the energy in the system during one period
∝

A2

A2

 Bounded in the linear case, independent of the flow

◮ More precisely:

r =

∫ T

0
〈Pel〉dt

1

T

∫ T

0
〈E 〉dt

(20)

with

Pel = −vq̇, E =
1

2
ρsẇ

2 +
1

2
Bw

′′2 +
1

2
cv2 (21)

〈.〉 ≡ Spatial average (on a wave or an eigenmode) (22)
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Non-dimensional equation

1

V∗2 (1+ α2)w̃′′′′ + ¨̃w− α

V∗ q̃
′′ = −[ p̃], (23)

γ ˙̃q+ q̃− α

V∗ w̃
′′ = 0, (24)

with

V∗ =

√

µ3U2
∞

Bρ2f
(Non dimensional velocity) (25)

α =
χ√
cB

(Coupling coefficient) (26)

γ =
ρ fU∞c

µg
(Timescales ratio) (27)

O. Doaré BIRS, Nov. 5-9, 2012



Intro Simple pipe El. Foundation Energy harvesting

Stability analysis for V∗ = 0.05, γ = 15
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Stability analysis for V∗ = 0.05, γ = 15
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Stability analysis for V∗ = 0.05, γ = 15
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Destabilized waves are again negative energy waves (NEW)

δσ ≃ ωα2γk4
/(

V∗2(1+ ω2γ2)
∂D0

∂ω

)

(28)
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Conversion efficiency of waves

◮ Wavenumber Kγ that maximizes
efficiency as function of velocity.

◮ Gray region = Negative energy waves
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Finite length problem

◮ Non-dimensional equation:

1

U∗2 (1+ α2)ŵ′′′′ + ¨̂w− α

U∗ q̂
′′ = −M∗ p̂, (29)

β ˙̂q+ q̂− α

U∗ ŵ
′′ = 0, (30)

◮ Non-dimensional parameters:

M∗ =
ρ f L

µ
, U∗ = UL

√
µ

B
= V∗M∗, β =

cU∞

gL
=

γ

M∗ , α =
χ√
cB

. (31)

◮ Clamped-free boundary conditions:

for x̂ = 0

{
ŵ = 0

ŵ′ = 0
(32)

for x̂ = 1

{
(1+ α2)ŵ′′ − αU∗ q̂ = 0

(1+ α2)ŵ′′′ − αU∗q̂′ = 0
. (33)
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Conversion efficiency of the dominant unstable mode

Efficiency (α = 0.5, β = 0.25)

Velocity

Mass ratio or length

Long systems ≡ M∗ ≫ 1 Behavior of the finite length system similar to that of the
infinite one
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Conclusions (3/3)

◮ Energy harvesting destabilizes negative energy waves
◮ Destabilized negative energy waves maximizes the efficiency
◮ Finite length system properties are again influenced by wave properties

◮ O. Doaré & S. Michelin. Piezoelectric coupling in energy-harvesting fluttering flexible plates : linear stability
analysis and conversion efficiency. Journal of Fluids and Structures, 27(8):1357–1375, 2011.

◮ S. Michelin & O. Doaré, Energy harvesting efficiency of piezoelectric flags in axial flows. Journal of Fluid

Mechanics, in press, 2012.
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Absolute & convective instabilities

◮ Maximum growth rate : σmax = maxk∈R Imω(k)

◮ Absolute frequency ω0 : ∂ω
∂k

∣
∣
∣
ω=ω0

= 0

See Briggs (1964): Plasma physics, Brazier-Smith & Scott (1984): Compliant panels with flows,
Huerre & Monkewitz (1990): Shear layer problems.
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The signaling problem

◮ A branch analysis in the complex k− and ω− planes is necessary to to know the
side x > 0 or x < 0 the waves propagate

◮ Different typical responses :
◮ Evanescent waves at all frequencies
◮ Only neutral (propagative) waves at some frequencies
◮ In case of convective instability : Amplified waves at some frequencies
◮ Absolute instability : Response dominated by the absolute frequency
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