Stability of Regularized Shock Solutions in Coating Flows

Marina Chugunova

School of Mathematical Science Claremont Graduate University

November 8, 2012

Chugunova (Glaremont)

Banff International Research Station

Thin-films in everyday life for breakfast.

2 3/15

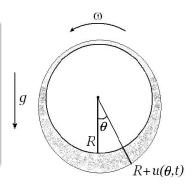
Consider a horizontal cylinder, rotating about its axis. If there is a fluid on the outside of the cylinder, this is called a coating flow. If the fluid is on the inside of the cylinder, this is called a rimming flow.

"It is a matter of common experience that if a knife is dipped in honey and then held horizontally, the honey will drain off; but that the honey may be retained on the knife by simply rotating it about its length. The question arises: what is the maximum load of honey that can be supported per unit length of knife for a given rotation rate?" — H.K. Moffatt, [Journal de Méchanique, 1977]. Consider a horizontal cylinder, rotating about its axis. If there is a fluid on the outside of the cylinder, this is called a coating flow. If the fluid is on the inside of the cylinder, this is called a rimming flow.

"It is a matter of common experience that if a knife is dipped in honey and then held horizontally, the honey will drain off; but that the honey may be retained on the knife by simply rotating it about its length. The question arises: what is the maximum load of honey that can be supported per unit length of knife for a given rotation rate?" — H.K. Moffatt, [Journal de Méchanique, 1977].

Consider a thin liquid film on the outer surface of a cylinder:

- *R* is the radius of the cylinder.
- ω is the rate of rotation.
- g is the acceleration due to gravity.
- ν is the kinematic viscosity.
- ρ is the density.
- σ is the surface tension.



Three dimensionless quantities: $\operatorname{Re} = \frac{R^2 \omega}{\nu}$, $\gamma = \frac{g}{R\omega^2}$, and $\operatorname{We} = \frac{\rho R^3 \omega^2}{\sigma}$.

Modelling assumptions:

- The fluid flow is modelled by the Navier Stokes equations
- There is no slip at the liquid/solid interface
- There is surface tension at the liquid/air interface
- If \bar{u} is the average thickness of the fluid then $\varepsilon = \bar{u}/R$ is small
- $\chi = \frac{\text{Re}}{We} \varepsilon^3$ and $\mu = \gamma \text{ Re } \varepsilon^2$ have finite, nonzero limits as $\varepsilon \to 0$.

Assume the flow is constant along the length of the cylinder

Moffatt, [*J. de Mécanique*, 1973] found an evolution equation neglecting surface tension ($\chi = \sigma = 0$):

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial \theta} \left(u - \frac{\mu}{3} u^3 \sin(\theta) \right) = 0.$$

Pukhnachov, [*Journal of Applied Mechanics and Technical Physics*, 1977] included surface tension into the model:

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial \theta} \left(u - \frac{\mu}{3} u^3 \sin(\theta) \right) + \frac{\chi}{3} \frac{\partial}{\partial \theta} \left(u^3 \left[\frac{\partial u}{\partial \theta} + \frac{\partial^3 u}{\partial \theta^3} \right] \right) = 0$$

where $\mu = \gamma \operatorname{Re} \varepsilon^2 = \frac{gR}{\omega \nu} \varepsilon^2$ and $\chi = \frac{\operatorname{Re}}{\operatorname{We}} \varepsilon^3 = \frac{\sigma}{\nu \rho R \omega} \varepsilon^3$.

Both models used periodic boundary conditions.

Chugunova (Glaremont)

Banff International Research Station

Assume the flow is constant along the length of the cylinder

Moffatt, [*J. de Mécanique*, 1973] found an evolution equation neglecting surface tension ($\chi = \sigma = 0$):

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial \theta} \left(u - \frac{\mu}{3} u^3 \sin(\theta) \right) = 0.$$

Pukhnachov, [Journal of Applied Mechanics and Technical Physics, 1977] included surface tension into the model:

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial \theta} \left(u - \frac{\mu}{3} u^3 \sin(\theta) \right) + \frac{\chi}{3} \frac{\partial}{\partial \theta} \left(u^3 \left[\frac{\partial u}{\partial \theta} + \frac{\partial^3 u}{\partial \theta^3} \right] \right) = 0$$

here $\mu = \gamma \operatorname{Re} \varepsilon^2 = \frac{gR}{\omega \nu} \varepsilon^2$ and $\chi = \frac{\operatorname{Re}}{\operatorname{We}} \varepsilon^3 = \frac{\sigma}{\nu \rho R \omega} \varepsilon^3$.

Both models used periodic boundary conditions.

Chugunova (Glaremont)

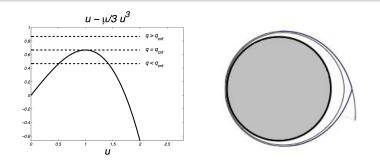
۱۸/

Banff International Research Station

Steady states in Moffatt's model

$$\frac{\partial}{\partial \theta} \left(u - \frac{\mu}{3} u^3 \sin(\theta) \right) = 0 \implies u - \frac{\mu}{3} u^3 \sin(\theta) = q$$

At $\theta = \pi/2$: $u(\pi/2)$ is a root of $u - \frac{\mu}{3}u^3 = q$ there might be no positive root if q is too big.



If $q < q_{crit}$ there is a smooth positive steady state, at $q = q_{crit}$ the steady state develops a cusp, if $q > q_{crit}$ a positive steady state does not exist.

Chugunova (Glaremont)

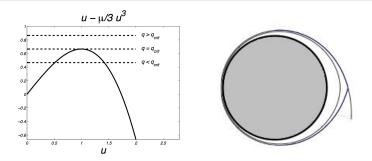
Banff International Research Station

November 8, 2012 8 / 15

Steady states in Moffatt's model

$$\frac{\partial}{\partial \theta} \left(u - \frac{\mu}{3} u^3 \sin(\theta) \right) = 0 \implies u - \frac{\mu}{3} u^3 \sin(\theta) = q$$

At $\theta = \pi/2$: $u(\pi/2)$ is a root of $u - \frac{\mu}{3}u^3 = q$ there might be no positive root if q is too big.



If $q < q_{crit}$ there is a smooth positive steady state, at $q = q_{crit}$ the steady state develops a cusp, if $q > q_{crit}$ a positive steady state does not exist.

Chugunova (Glaremont)

Banff International Research Station

If there is no surface tension then $q_{crit} = \frac{2}{3\sqrt{\mu}} = \frac{2}{3\varepsilon}\sqrt{\frac{\omega\nu}{gR}}$ The critical flux increases as the ω increases.

Pukhnachov, [Mathematics and Continuum Mechanics, 2004] proved that $q_{crit} \leq 2\sqrt{3/\mu} \approx 3.464/\sqrt{\mu}$.

We improve on this:

Nonexistence of steady states

[*Chugunova, Pugh, Taranets, SIAM J. Math. Anal.,* 2010] For positive surface tension, there is no strictly positive 2π periodic steady state with flux $q > \frac{2}{3}\sqrt{\frac{2}{\mu}} \approx 0.943/\sqrt{\mu}$. Hence $q_{crit} \leq \frac{2}{3}\sqrt{\frac{2}{\mu}}$.

(日) (同) (三) (三)

If there is no surface tension then $q_{crit} = \frac{2}{3\sqrt{\mu}} = \frac{2}{3\varepsilon}\sqrt{\frac{\omega\nu}{gR}}$ The critical flux increases as the ω increases.

Pukhnachov, [Mathematics and Continuum Mechanics, 2004] proved that $q_{crit} \leq 2\sqrt{3/\mu} \approx 3.464/\sqrt{\mu}$.

We improve on this:

Nonexistence of steady states

[*Chugunova, Pugh, Taranets, SIAM J. Math. Anal.*, 2010] For positive surface tension, there is no strictly positive 2π periodic steady state with flux $q > \frac{2}{3}\sqrt{\frac{2}{\mu}} \approx 0.943/\sqrt{\mu}$. Hence $q_{crit} \le \frac{2}{3}\sqrt{\frac{2}{\mu}}$.

(日) (同) (三) (三)

If there is no surface tension then $q_{crit} = \frac{2}{3\sqrt{\mu}} = \frac{2}{3\varepsilon}\sqrt{\frac{\omega\nu}{gR}}$ The critical flux increases as the ω increases.

Pukhnachov, [Mathematics and Continuum Mechanics, 2004] proved that $q_{crit} \leq 2\sqrt{3/\mu} \approx 3.464/\sqrt{\mu}$.

We improve on this:

Nonexistence of steady states

[*Chugunova, Pugh, Taranets, SIAM J. Math. Anal.*, 2010] For positive surface tension, there is no strictly positive 2π periodic steady state with flux $q > \frac{2}{3}\sqrt{\frac{2}{\mu}} \approx 0.943/\sqrt{\mu}$. Hence $q_{crit} \le \frac{2}{3}\sqrt{\frac{2}{\mu}}$.

(人間) トイヨト イヨト

$$u-\frac{\mu}{3}u^{3}\sin(\theta)+\frac{\chi}{3}u^{3}\left(u_{\theta\theta\theta}+u_{\theta}\right)=q.$$

For zero surface tension, given a mass, if there's a solution then it's unique.

Benilov [*J. Fluid Mech.*, 2008] did extensive numerics and asymptotics and found that for some surface tension values, there are certain masses which yield two solutions and others that yield three solutions.

$$u-\frac{\mu}{3}u^{3}\sin(\theta)+\frac{\chi}{3}u^{3}(u_{\theta\theta\theta}+u_{\theta})=q.$$

For zero surface tension, given a mass, if there's a solution then it's unique.

Benilov [*J. Fluid Mech.*, 2008] did extensive numerics and asymptotics and found that for some surface tension values, there are certain masses which yield two solutions and others that yield three solutions.

$$u-\frac{\mu}{3}u^{3}\sin(\theta)+\frac{\chi}{3}u^{3}(u_{\theta\theta\theta}+u_{\theta})=q.$$

For zero surface tension, given a mass, if there's a solution then it's unique.

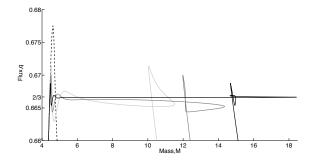
Benilov [*J. Fluid Mech.*, 2008] did extensive numerics and asymptotics and found that for some surface tension values, there are certain masses which yield two solutions and others that yield three solutions.

$$u-\frac{\mu}{3}u^{3}\sin(\theta)+\frac{\chi}{3}u^{3}\left(u_{\theta\theta\theta}+u_{\theta}\right)=q.$$

For zero surface tension, given a mass, if there's a solution then it's unique.

Benilov [*J. Fluid Mech.*, 2008] did extensive numerics and asymptotics and found that for some surface tension values, there are certain masses which yield two solutions and others that yield three solutions.

Steady states: positive surface tension, with rotation



 $u - \frac{1}{3}u^3\sin(\theta) + \frac{\chi}{3}u^3(u_{\theta\theta\theta} + u_{\theta}) = q.$ $\chi = 0.005$ (dashed), 0.001 (light gray), 0.0005 (dark gray), 0.0001 (black). Curves were generated using a custom-written turning-point algorithm and implemented in Matlab.

Chugunova (Glaremont)

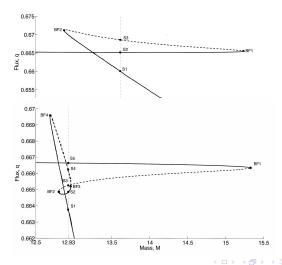
Banff International Research Station

November 8, 2012

11 / 15

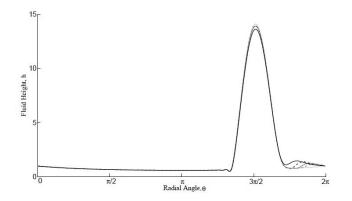
Steady states: positive surface tension, with rotation

 $\chi = 0.001$ and $\chi = 0.0001$ loops. Saddle-point bifurcations.



November 8, 2012

Multiple steady states



Five steady state solutions with m = 12.93 and $\chi = 0.00039$: solid light gray line q = 0.6638, solid dark gray line, q = 0.6648, dashed line q = 0.6653, dashed gray line, q = 0.6661, solid black line, q = 0.6666.

Chugunova (Glaremont)

Banff International Research Station

November 8, 2012 13 / 15

The linearized equation:

[Benilov, O'Brien 2005]:

$$h_t = L[h], \quad L[h] = \varepsilon \,\partial_x(\sin x \,h_x) + h_x, \quad h(-\pi) = h(\pi).$$

- The spectrum of *L* consists of pure imaginary eigenvalues with infinity as the only accumulation point [*Chugunova, Volkmer, Studies in Applied Math., 2009*]
- If |ε| < 2 and ε ≠ 0 then the set of eigenfunctions of L is complete in L²(-π, π) but does not form a basis.
 [Chugunova, Karabash, Pyatkov, Integral Equations and Operator Theory, 2009]

A (10) A (10)

The linearized equation:

[Benilov, O'Brien 2005]:

$$h_t = L[h], \quad L[h] = \varepsilon \, \partial_x(\sin x \, h_x) + h_x, \quad h(-\pi) = h(\pi).$$

- The spectrum of *L* consists of pure imaginary eigenvalues with infinity as the only accumulation point [*Chugunova, Volkmer, Studies in Applied Math., 2009*]
- If |ε| < 2 and ε ≠ 0 then the set of eigenfunctions of L is complete in L²(-π, π) but does not form a basis.
 [Chugunova, Karabash, Pyatkov, Integral Equations and Operator Theory, 2009]

THANK YOU FOR YOUR ATTENTION !

< 🗗 🕨 🔸