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The physical model

ut + ∂x
(
u3(uxxx + ux− sin x)

)
+ωux = 0 .

• u ≥ 0, periodic;

• ∂x(u3(uxxx + ux)) surface tension term;

• −∂x(u3 sin x) gravitational drainage;

• rotation speed ω.

[Moffatt 1976, Pukhnachev 1977, Benilov & al. 2000-date]
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Summary of results (Pukhnachev’s model with ω = 0)

• For every mass there is a unique energy minimizer u∗;

• u∗ is globally attractive;

• (no better than) power-law decay ||u(·, t), u∗||H1 ≥ Ct−
2
3.
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Energy minimizers

For every value of α, n, M > 0, functional

E(u) =
1

2

∫ π

−π
u2

x − α2u2 dx−
∫ π

−π
u cos x dx .

has a unique global minimizer of mass M .
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(Note that E is not convex when α > 1.)
4



Other critical points of the energy

Droplet-shaped critical points have zero contact angle.
For α ≤ 1, the global minimizer is the unique critical point.
For α > 1, there may be others (depending on the mass):

Are these critical points all the steady states?

Does Lyapunov’s principle apply?

“The ω-limit set of an orbit under a gradient flow consists
of critical points of the Lyapunov function.”
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Bifurcation diagram
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Convergence to the energy minimizer

Let u(·, t) be a solution of finite entropy, and let u∗ be the
global energy minimizer of the same mass. (If α > 1, assume
also that no other critical points have energy below E(u).)
Then:

• The solutio:n u(t) converges to u∗ as t →∞.

(Proof: An energy-entropy compactness argument.)

• For n > 3
2, the distance from a droplet

cannot decay faster than a power law.

(Proof: Entropy grows at most linearly in t.)

• If u∗ is positive, then u(·, t) converges exponentially.

(Proof: Compare the dissipation with the energy.)
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Open questions

• What is the rate of convergence really? (Perhaps t−
1
3 ?)

How can we linearize around a droplet? [Slepčev 2008]
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• Do all solutions converge to equilibrium
(even when there are many steady states?)

• How to take advantage of the gradient flow structure?
[Otto 1998, . . . , Ambrosio-Gigli-Savaré (book), . . . ,
. . . , Kamalinejad 2012,. . . ]
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