Convergence to equilibrium for a thin film equation

Almut Burchard University of Toronto

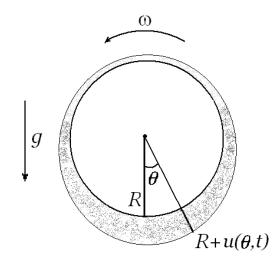
joint work with

Marina Chugunova Benjamin Stephens

Workshop on Spectral Analysis, Stability, and Bifurcation in Modern Nonlinear Physical Systems BIRS, 8. November 2012

The physical model

$$u_t + \partial_x \left(u^3 (u_{xxx} + u_x - \sin x) \right) + \omega u_x = 0.$$

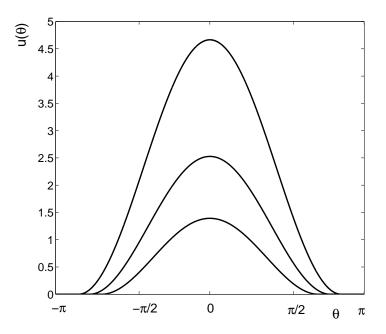


- $u \ge 0$, periodic;
- $\partial_x(u^3(u_{xxx}+u_x))$ surface tension term;
- $-\partial_x(u^3 \sin x)$ gravitational drainage;
- rotation speed ω .

[Moffatt 1976, Pukhnachev 1977, Benilov & al. 2000-date]

Summary of results (Pukhnachev's model with $\omega = 0$)

- For every mass there is a unique energy minimizer u^* ;
- u^* is globally attractive;
- (no better than) power-law decay $||u(\cdot,t), u^*||_{H^1} \ge Ct^{-\frac{2}{3}}$.

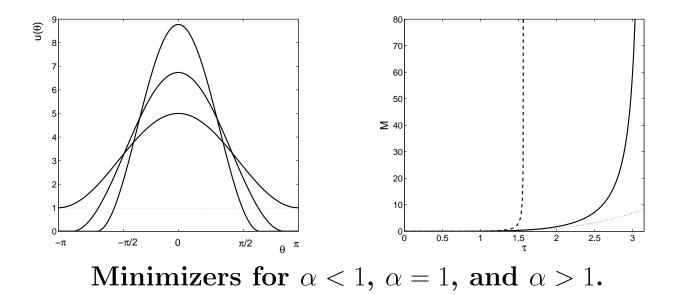


Energy minimizers for three values of the mass.

For every value of $\alpha, n, M > 0$, functional

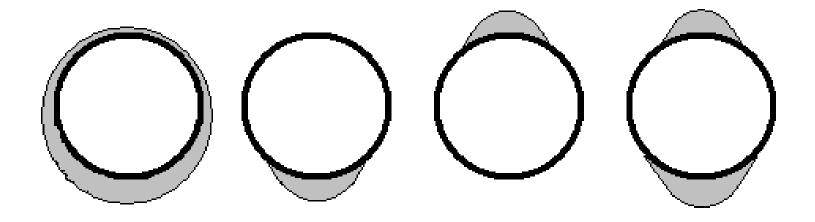
$$E(u) = \frac{1}{2} \int_{-\pi}^{\pi} u_x^2 - \alpha^2 u^2 \, dx - \int_{-\pi}^{\pi} u \cos x \, dx \, .$$

has a unique global minimizer of mass M.



(Note that E is not convex when $\alpha > 1$.)

Droplet-shaped critical points have zero contact angle. For $\alpha \leq 1$, the global minimizer is the unique critical point. For $\alpha > 1$, there may be others (depending on the mass):

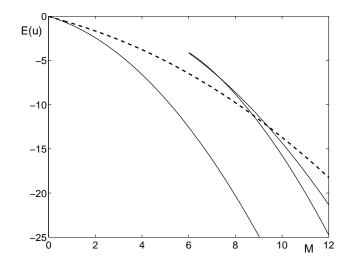


Are these critical points all the steady states?

Does Lyapunov's principle apply?

"The ω -limit set of an orbit under a gradient flow consists of critical points of the Lyapunov function."

Bifurcation diagram



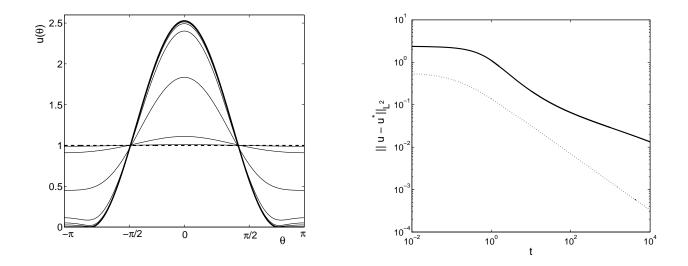
Energy levels of critical points, depending on the mass. $\alpha = 1$ (dashed line), $\alpha = \sqrt{2}$ (solid line).

Let $u(\cdot, t)$ be a solution of finite entropy, and let u^* be the global energy minimizer of the same mass. (If $\alpha > 1$, assume also that no other critical points have energy below E(u).) Then:

- The solutio: u(t) converges to u^* as $t \to \infty$. (Proof: An energy-entropy compactness argument.)
- For $n > \frac{3}{2}$, the distance from a droplet cannot decay faster than a power law. (Proof: Entropy grows at most linearly in t.)
- If u^* is positive, then $u(\cdot, t)$ converges exponentially. (Proof: Compare the dissipation with the energy.)

Open questions

• What is the rate of convergence really? (Perhaps $t^{-\frac{1}{3}}$?) How can we linearize around a droplet? [Slepčev 2008]



- Do all solutions converge to equilibrium (even when there are many steady states?)
- How to take advantage of the gradient flow structure? [Otto 1998, ..., Ambrosio-Gigli-Savaré (book), ..., ..., Kamalinejad 2012,...]