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PROGRAM
Monday, October 8

8:50 - 9:00 Opening remarks
9:00 - 10:00 Anthony Bonato, Ryerson University

Cops and Robbers: Directions and Generalizations
10:00 - 10:30 COFFEE BREAK
10:30 - 11:00 Jan Kratochvil, Charles University

Cops and robbers in special graph classes
11:00 - 11:30 Lawrence Erickson, University of Illinois at Urbana-Champaign

Locating a robber on a graph via distance queries
11:30 - 12:00 Josep Diaz, Universitat Politecnica de Catalunya

Metric dimension
LUNCH BREAK

from 2:00 Open problem session

Tuesday, October 9
9:00 - 10:00 Douglas B. West, University of Illinois

Revolutionaries and spies: Spy-good and spy-bad graphs
10:00 - 10:30 COFFEE BREAK
10:30 - 11:00 Przemyslaw Gordinowicz, Technical University of Lodz

Let us play the cleaning game
11:00 - 11:30 Nicolas Nisse, MASCOTTE team-project

On the surveillance game
11:30 - 11:45 Dimitrios M. Thilikos, National and Kapodistrian University of Athens

Report on GRASTA and Special Issue of TCS
11:45 - 12:00 Nicolas Nisse, MASCOTTE team-project

Presentation of the next GASTA
LUNCH BREAK
Free afternoon – hiking
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Wednesday, October 10
9:00 - 10:00 Peter Widmayer, ETH Zurich

Polygon Reconstruction with Little Information
10:00 - 10:30 COFFEE BREAK
10:30 - 11:00 Ladislav Stacho, Simon Fraser University

Graph traversal with constant number of pebbles
11:00 - 11:30 Dariusz Dereniowski, Gdansk University of Technology

Minimum length path decompositions
11:30 - 12:00 Pawel Pralat, Ryerson University

Revolutionaries and spies on random graph
12:00 Workshop photo
1:15 - 2:00 Campus tour

LUNCH BREAK
from 2:00 Open problem session

Thursday, October 11
9:00 - 10:00 Nicolas Nisse, MASCOTTE team-project

Routing reconfiguration and processing games
10:00 - 10:30 COFFEE BREAK
10:30 - 11:30 Tobias Muller, Mathematical institute of Utrecht University

Cops and robbers on random geometric graphs
11:30 - 12:00 Douglas B. West, University of Illinois

Revolutionaries and spies: Spy-good and spy-bad graphs—part 2
LUNCH BREAK

from 2:00 Open problem session

Friday, October 12
from 9:00 Open problem session
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OPEN PROBLEMS
Pawel Pralat, Ryerson University
Meyniel’s conjecture

The biggest open conjecture in the area of cops and robbers is the one of Meyniel,
which asserts that for some absolute constant C, the cop number of every con-
nected graph G is at most C

√
n, where n = |V (G)|. Today we only know that

the cop number is at most n2−(1+o(1))
√

log2 n (which is still n1−o(1)) for any
connected graph on n vertices.

Pawel Pralat, Ryerson University
Revolutionaries and spies on random graphs

The behaviour of the spy number is analyzed for dense graphs (that is, graphs
with average degree at least n1/2+ε for some ε > 0). For sparser graphs, only
some bounds are provided and the picture is far from clear.

Pawel Pralat, Ryerson University
The firefighter problem

Consider the following k-many firefighter problem on a finite graph G = (V,E).
Suppose that a fire breaks out at a given vertex v ∈ V . In each subsequent time
unit, a firefighter protects k vertices which are not yet on fire, and then the fire
spreads to all unprotected neighbours of the vertices on fire. The objective of
the firefighter is to save as many vertices as possible.

The surviving rate ρk(G) of G is defined as the expected percentage of vertices
that can be saved when a fire breaks out at a random vertex of G. Let

τk =

{
30
11 if k = 1

k + 2− 1
k+2 if k ≥ 2.

It is known that there exists a constant c > 0 such that for any ε > 0 and k ≥ 1,
each graph G on n vertices with at most (τk − ε)n edges is not flammable; that
is, ρk(G) > c · ε > 0. Moreover, a construction of a family of flammable random
graphs is proposed to show that the constants τk cannot be improved.

It would be nice to find the threshold for other families of graphs, including
planar graphs.

Problem 1: Determine the largest real number M such that every planar graph
G with n ≥ 2 vertices and 2m

n ≤M − ε edges has ρ1(G) ≥ c · ε for some c > 0.
It is known that 30

11 ≤M ≤ 4.

One can generalize this question to any number of firefighters. We know that all
planar graphs are not k-flammable for k ≥ 4. However, it is conjectured that,
in fact, planar graphs are not 2-flammable but the techniques are too local to
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show it. Therefore, it seems that the question does not make sense for k ≥ 2
(unless the conjecture is false).

Problem 2: Determine the least integer g∗ such that there is a constant 0 < c < 1
such that every planar graph G with girth at least g∗ has ρ(G) ≥ c. It is known
that 5 ≤ g∗ ≤ 7.

Pawel Pralat, Ryerson University
Chipping away at the edges: how long does it take?

We introduce the single-node traffic flow process, which is related to both the
chip-firing game and the edge searching process. Initially, real-valued weights
(instead of chips) are placed on some vertices of a graph G, and all the edges
have zero weight. When a vertex is “fired”, the whole content accumulated in
this vertex is sent uniformly to all its neighbours, and each edge increases its
weight by the amount that is sent through this edge. We would like to discover
the shortest firing sequence such that the total amount of traffic that has passed
through each edge is at least some fixed value.

Suppose that initially each vertex has weight of ω. Let f(G) be the number of
rounds of the shortest firing sequence such that the total amount of traffic that
has passed through each edge is at least one. It is known that

f(Kn)

|E(Kn)|
· ω =

1

2
+ o(1),

f(Kn,n)

|E(Kn,n)|
· ω ≤ 1 + o(1),

f(K1,n)

|E(K1,n)|
· ω ≤ 1

4
+ o(1),

for ω small enough. In particular, complete bipartite graphs and stars are not
fully investigated.

Let G(n) be a family of connected graphs on n vertices. It it natural to ask
whether the following limits exist, and if so to find their values.

M = lim
n→∞

max
G∈G(n)

f(G)

|E(G)|
· ω,

m = lim
n→∞

min
G∈G(n)

f(G)

|E(G)|
· ω.

In particular, is it true that 0 < m < M = O(1)?

Gena Hahn, University of Montreal

Let G be a finite graph, c(G) its cop-number and g(G) its genus. Schroeder
proved that c(G) ≤ d 32g(G)e+ 3 and conjectured that c(G) ≤ g(G) + 3.
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Find a toroidal graph that needs 4 cops to catch a robber. Note that Andreae
thinks that c(G) ≤ 3 for toroidal G, so another way to approach the question is
to prove that he is right.

Prove (or disprove) Schroeder’s conjecture.

Let T be a tournament obtained from a Steiner triple system by orienting the
edges of each of the triples in a triangle decomposition of the appropriate com-
plete graph in a cycle. Nowakowski asked if c(T ) ≤ 2 and Thériault found -
by computer search - that this is not the case. Is there a constant c such that
c(T ) ≤ c for each tournament obtained in the way described?

Lawrence Erickson, University of Illinois at Urbana-Champaign
Cops and robbers with distance queries

A cop and robber game is played on a graph with the following rules:

• A robber is hiding at a vertex.

• At the beginning of a round, the robber moves distance 0 or 1.

• The cop scans a vertex and receives the distance to the robber.

• The cop wins if it determines the robber’s location. Otherwise a new
round begins.

• The robber wins if it can hide indefinitely.

Let G1/m be the graph formed by replacing each edge of G with a path of length
m. Let n = |V (G)|. Let µ(G) be the metric dimension of G.

It is known that:

• The cop wins in G1/m if m > min(max(µ(G) + 2µ(G),∆(G)), n− 1).

• The cop wins in G1/m if G is a grid and m ≥ 2.

• The cop wins in K
1/m
a,b if m ≥ a ≥ b and m > b.

• The robber wins in G if G has girth 5 or less.

Open questions:

• Does the robber win in K
1/m
n if m ≤ n− 1?

• If the cop wins in G, does the cop win in every subdivision of G?

• Does the robber win in G if G has girth 6?

This game is studied in Carraher et al. (2012, Theoretical Computer Science).
A very similar game, with a slightly stronger cop, is studied in Seager (2012,
Discrete Mathematics).

Richard Nowakowski, Dalhousie University
Complementary Cops and Robber (Hill-Nowakowski)
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Give a graph G the cops move along the edges of G and the robber along the
non-edges or edges of Ḡ. Given this move set, let CCR(G) be the number of cops
required to capture the robber on G. In general, γ(G)− 1 ≤ CCR(G) ≤ γ(G).
(See Hill PhD thesis (2008) and also Neufeld-Nowakowski, A vertex-to-vertex
pursuit game played with disjoint sets of edges, Finite and infinite combinatorics
in sets and logic, Kluwer Acad. Publ., Dordrecht, 1993)

Characterize G such that CCR(G) = 1. On the last move, the cop and robber
are on adjacent vertices that also dominate the graph.

Richard Nowakowski, Dalhousie University
Boolean Cops and Robber (Hill-Nowakowski)

Given a boolean lattice Bn, i.e., the partial order of all subsets of an n-element
set. The robber starts at the top and moves downwards, the cops start on the
bottom and move upwards. No-one is allowed pass and all cops must move.
( Hill PhD Thesis (2008) see also Nowakowski. Search and sweep numbers of
finite directed acyclic graphs. Discrete Appl. Math., 41(1):111, 1993)

How many cops are required to capture the robber?

Known: for n = 1, 2, 3, 4, 5, 6, 7, 9 the number of cops required is 2, 2, 4, 3, 9, 6,
9 respectively.

Richard Nowakowski, Dalhousie University
Stephen Finbow, St. Francis Xavier University
Mafia

Given a graph G, all the vertices are originally ‘dark’. The cops choose vertices
and the robbers choose vertices. If a cop passes the vertex he is on becomes light.
If a robber is on a light vertex and he passes then the vertex turns dark. The
cops only have information about the robber’s whereabouts from light vertices.
Hence, a cop and robber can be on the same dark vertex and the robber is not
caught. (For example, the robber is on the light vertex x and the robber is on
an adjacent vertex y and the robber passes, x goes dark and even if the cop
moves to y the robber is now ‘hidden’ on x even though the cop knows where
the robber is.)

a) Characterize those graphs in which one cop can capture 1 robber.
b) Characterize those graphs in which one cop can capture any number of rob-
bers.

Richard Nowakowski, Dalhousie University
Shannon Fitzpatrick, University of Prince Edward Island
Cops and Robber with signal delay

a) Play Cops and Robber but the Immediately before the cops move they are
informed of the robber’s position on the previous turn. They do know immedi-
ately if they are on the same vertex as the robber.

i) Characterize the copwin graphs
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b) The robber sends out a signal that propagates out to the k-th neighbourhood
each time the robber moves. The cop that intercepts the signal knows the
distance of the robber but not necessarily the position. For example on a path,
if the robber at distance 4 from the cop moves toward the cop and the cop
remains static, he will get two signals at once.

i) Characterize the copwin graphs.
ii) Is the number of cops smaller than a smallest resolving set?

Nicolas Nisse, INRIA Sophia Antipolis
Cops and Fast Robber

Consider the cops and robber game with speed. Rules are the same as usual
but at each step, the robber can move along at most s ≥ 1 edges and each cop
can move along at most s′ ≥ 1 edges. If s = s′ = 1, this is the classical game of
Quilliot/Nowakowski and Winkler. Let cs,s′(G) be the smallest number of cops
with speed s′ needed to capture a robber with speed s.

a) Let Gn be the n-square grid (n ≥ 2), i.e., with n2 nodes. What is the value
of c2,1(Gn)? (It is known that, for any s > s′, Ω(

√
log n) = cs,s′(Gn) = O(n))

b) cs,1(G) can be computed in polynomial-time in interval graphs. What about
other graph classes?

Nicolas Nisse, INRIA Sophia Antipolis
Another variant of graph searching

Consider the following variant of graph searching. An edge is cleared either if
an agent slides along it or if both its ends are occupied (as in mixed-search). A
clear edge is re-contaminated if it is incident to a contaminated edge and their
common node is not occupied (classical recontamination). Let G be a graph
and k ≥ 1. A strategy for k agents starts by placing the k agents on k distinct
nodes of G. Then, sequentially, an agent can slide from node u to node v only
if v is not occupied. In other words, a strategy for k agents is defined by a
set of k initial nodes and by a sequence of sliding (one agent slides at each step)
that ensures that no two agents can simultaneously occupy a same node.

Let xs(G) be the smallest k such that there is a strategy that clears all edges
of G using k agents. It is known that, for any graph G, s(G) − 1 ≤ xs(G) ≤
(∆−1)s(G) where ∆ is the maximum degree of G and s(G) is the mixed-search
number of G. There is a Parson-like characterization of trees T with xs(T ) = k
and thus xs(T ) can be computed in polynomial-time in trees.

a) What is the complexity of computing xs?

b) If it is NP-hard can you give a polynomial-time approximation?

c) What about other graph classes?

Ben Seamone, Universite de Montreal
Cops and Robbers on Geometric Spanners
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We construct graphs and digraphs on a set S of n points (vertices) in the plane.
Adjacency is defined for p ∈ S by dividing the plane into k regular cones having
apex p, and an arc is added from p to q if q is the “nearest point” in C to

p. The directed Yao graph,
−→
Yk, defines the “nearest point” to be the one

with minimal distance in the L2 metric (i.e. shortest Euclidean distance). In

the directed Theta-graph
−→
Θk, the “nearest point” to p is the one whose

projection onto the bisecting ray of C is minimal in the L2 metric.

The underlying undirected graphs of
−→
Yk and

−→
Θk are denoted Yk (Yao graph)

and Θk (Theta-graph), respectively. These undirected graphs are of particular
interest since the shortest paths in Yk and Θk between two points have length
no more than a constant times the Euclidean distance between them for large
enough k (i.e. Yk and Θk are geometric spanners).

Note that every vertex of
−→
Yk has out-degree at most k but may have unbounded

in-degree. The directed Yao-Yao graph,
−−→
Y Yk, is the subdigraph of

−→
Yk having

bounded in-degree that is constructed as follows: for each p ∈ S and each cone
C with apex p, all but the shortest incoming arcs are removed. The underlying

undirected graph of
−−→
Y Yk is denoted Y Yk. It is not known whether or not Y Yk

is a geometric spanner.

Problem 1. For a given k ∈ Z+, determine the cop number of G if G ∈
{Θk, Yk, Y Yk,

−→
Θk,
−→
Yk,
−−→
Y Yk}.

Each of these graphs generalize naturally to higher dimension d > 2 and to
arbitrary metric spaces.

Problem 2. Solve Problem 1 for higher dimensions and/or other metrics.

Lawrence Erickson, University of Illinois at Urbana-Champaign
Counting moving bodies with sparse sensor beams

Consider a directed graph G with no sinks. A set of m bodies is distributed
among the vertices of G. The locations of these m bodies are initially unknown.
When a body moves between vertices, the edge traversed is returned as a sensor
reading. Given G, an initial distribution d of m bodies, and a movement model
for the bodies, what is the expected number of sensor readings required to
determine the number of bodies in each vertex? Let this number be denoted by
the random variable X(G, d).

It is known that the accumulated sensor readings provide enough data to de-
termine a count of the bodies in each vertex if and only if each vertex has been
empty at least once.

If the movement model causes each body to have an equal chance of being the
next one to move, regardless of earlier movements, then

mHm ≤ E[X(G, d)] ≤ m
3
2 em

√
2πe

1
12m+1
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with Hm =
∑m
i=1

1
m . The lower bound is sharp, as m disjoint directed 2-

cycles with one body in each produces an expectation of mHm. If, however,
the initial distribution puts all bodies in a single 2-cycle, then the expectation
is exponential in m, indicating the existence of a “phase transition” between
polynomial and exponential for different distributions of bodies in the same
graph.

Open problems include determining the properties (expectation, variance, etc.)
of X(G, d) for different movement models, specific graphs, and specific starting
distributions. Also, for the movement model in which each body has an equal
probability of being the next to move, what conditions on d cause E[X(G, d)]
to become exponential (in m) as opposed to polynomial?

This problem was studied in Erickson and LaValle (2012, WAFR).

Dimitrios M. Thilikos, National and Kapodistrian University of Athens

Consider two version of searching on a graph:

• Inert invisible fugitive game.

• Agile Visible fugitive game.

Both problems are known to be monotone and the minimum number of searchers
of a winning strategy is equal to the tree width of the graph. However, when
the same games are defined in directed graphs the two parameters are different
and both non-monotone. That ways three questions appear:

• What is the difference between the parameter corresponding to the Inert
invisible fugitive game on directed graphs and its monotone counterpart?

• What is the difference between the parameter corresponding to the Agile
Visible fugitive game on directed graphs and its monotone counterpart?

• What is the difference between between the parameter corresponding to
the monotone Inert invisible fugitive game on directed graphs and its
monotone Agile Visible counterpart?
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PROGRESS
• Capture time for cubes. (Bonato, Gordinowicz, Kinnersley, Pralat)

• Cleaning process in which more than one brush can traverse an edge.
(Gordinowicz, Pralat)

• Cops and robbers playing on edges. (Dudek, Gordinowicz, Pralat)

• Searching for a round trip in a simple grid (Diaz, Stacho, Widmayer)

• Boolean Cops and Robber (Kinnersley, West)

• A firefighter variation (Finbow, Messinger, Seamone)

• Fractional chip firing (Finbow, Messinger, Seamone)
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