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Motivation: Dynamics of water monolayers
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Figure: Water molecules in confined geometry: From P. Kumar, 2010

Motion of molecules is a complex combination of rotation and
rolling due to interactions of molecules between themselves
and with the substrate.
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Introduction

This work

@ Model the molecule/substrate interaction as perfect rolling.

@ Perfect rolling is achieved when the interaction between
molecule and substrate is infinitely strong at contact point
decaying rapidly away from the contact point.

© Molecules interact between themselves through long
distance interactions (e.g., electrostatic and
Lennard-Jones).

© Thus, we consider the system of interacting asymmetric
rolling balls (tippe tops).

©@ See N. M. Bou-Rabee, J. E. Marsden, and L. A. Romero,
SIAM Review 50, 325 (2008) for the theory of tippe top
motion.



Theorem It is not embarrassing to play with tippe tops
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Figure: W. Pauli and N. Bohr are playing with a tippe top.
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Rolling motion of molecules has been demonstrated in
nano-car (nano-truck) design
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Figure: Big/Nanotruck (Shirai et al, 2006)

Applications: precise delivery of medicine and chemicals, and
other fields
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Background: rigid ball rolling on a horizontal plane

CM: the center of mass, GC: geometric center of the ball,
I = diag(h, I, l3): moment of inertia,

Q: angular velocity,

x: displacement of CM from GC

All variables are in the body frame

Theorem (Chaplygin 1903)

The rolling motion of a ball on horizontal plane can be
analytically solvable if Iy = I, and x = Eg, i.e, the mass
distribution being cylindrically symmetric.
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Rolling as constrained non-holonomic motion

@ Constrained dynamics:
x = f(x,x,t), h(x;,x;,t) =0.

h = 0 is constraint condition imposed on the system.

@ Holonomic constraint: h = h(x;) . The constraint is
imposed on the configurational variables not involving the
time-derivatives.

@ Nonholonomic constraint: h = h(x;, x;) . The constraint
involving velocities cannot be integrated into a holonomic
constraint. Rolling motion is nonholonomic 2

@ Rolling motions are in general represented by
nonholonomically constrained dynamics.

2See A. Bloch, Nonholonomic mechanics and control (2003)
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Equation of motion for a rolling ball: Newton’s law

@ Force and Torque balance is spatial frame
@ Rolling constraint
@ Problem: Tensor of inertia changes with time

In body frame equations of motion are 3

<i+Qx>(lQ+msx(st)):m'yﬁrxx+m.'s><(st),

dr
g QxT.
where s = ¢x + rI — vector from CP to CM; T is a unit vector
pointing up in spatial frame

Rolling condition in body frame: V := vy, = Q x s
Lagrange-D’Alembert principle : The constraint force does
no work.

3D. D. Holm, Geometric Mechanics |
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Conservation laws in rolling symmetric ball

@ Conservation laws: For rolling unbalanced symmetric ball
under gravity, 1 = b and x = Ej there are following
conservation laws

© Energy:
E=<12,Q>+mQxs?+mlr<s,T>
Q Jellett integral:
J=< 19,5 >= 2151 + 1228, + Q353

© Chaplygin, or Routh integral:

@ The conservation laws, J and R, allow the equations of
motion to be completely integrable, but

@ The physical interpretation of J and R by (non-trivial)
symmetry arguments

4B. Kim, Reg. Chaotic Dyn. 16 (2011)
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An ensemble of interacting rolling balls with central

(CM) interactions

@ Interactions are acting only on the center of mass (e.g,
nucleii in atoms).

@ Conservation laws: total energy and Jellett integrals J' for
each ball (only for cylindrically symmetric ball under
central interactions).

e J =< ['Q' s’ > is conserved under any central force
acting on the CM, but is not conserved for e.g., dipole
interactions.

@ Chaplygin (Routh) integral is not conserved when
interaction forces between particles are present.
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An ensemble of interacting rolling balls: setup

@ Monolayer of water molecules on a material surface, e.g.
silicon surface.

@ Dynamics : sliding translation + rolling
= extreme case : purely rolling water molecules.
= Rolling water molecules under interaction.

@ Interaction : LJ potential (repulsion) + charge dipole
potential.
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An ensemble of interacting rolling balls: forces

@ LJ potential :

12 6
g g
us=3 f ]
J Ul

OUiy

L= ——F—, Tty =Si X Firy
6r,-

@ Dipole-induced electric field E and potential U:
€o : electrical permittivity, p;: dipole moment of jth ball.

3 < pj, Fi > b — p
L _ } : vl I 1
E/,dlpole - 47_‘_60’”/‘3 )
J

U, dipole

Ui dipote =< Pis Ei >, Fi dipole = — o
]

Tj dipole = Si X Fij dipole + Pi X E;j.
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An ensemble of interacting rolling balls: equations of

motion

@ Equations of motion:

(d +Qi><> ('Q' + ms' x (2 x s))

at

=m0 x x' 4+ m's’ x (' x "7, + Ttijl'pole’
i ) )

CZ; =-Q'xr'.

where i=1,2,3, ...
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An ensemble of interacting rolling balls: parameters

Parameters for each ball correspond to a water molecule
@ Mass m=2991-10"23 g

@ Moments of inertia
(I, 2, l3) = (0.2076,0.1108,0.3184) - 10~2° g.cm?

©Q Radiusr=1A

© Displacement of center of mass from the geometric center
¢ = 0.068A

© Dipole moment 6.17 - 10730 (C - m)

Q Lennard-Jones radius ¢ = 3.165 A and energy
e = 0.650kJ/mol

@ All energies are in eV.
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An ensemble of interacting rolling balls: simulations

@ Numerical simulation with 81-100 rolling spherical water
molecules near equilibrium lattice.

@ Conservation of total energy of the whole system : only
conservation law of the whole system.

@ Stationary states: lattices with balls rolling in the same or
alternating direction.
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Lattice (ordered) and gas (disordered) states
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@ Lattice states are nonlinearly stable for small energies, but
molecules undergo chaotic motions

© Statistical physics of ordered and disordered states?

© Rolling constraint leads to coupling of translational and
rotational motion = no equipartition of energy, ergodic
property breaks down, etc.
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Movies!
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Problems: no equipartition of energy

Maxwell distribution in x and y directions only!

15

Distribution
Distribution

-1 -0.5 0 0.5 0
Angular velocity X Angular velocity Z

@ Distribution in z-direction does not follow any obvious law
because of rolling constraint

© x and y distributions in linear and angular velocities give
"temperatures” T, and T3

© Linear and angular "temperatures” are not equal: T; # T,
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Linear relationship between "temperatures”

So, is it possible to define a "temperature”? Maybe

107 107 10° 10°
log(o*(V))

Linear relationship between linear and angular "temperatures”
for all states (lattice and gas).

Vakhtang Putkaradze Monolayers of rolling particles



Equations of state for lattices

@ Define temperature T as the scaled width of linear or
angular distribution o2.

25
0.05
20

0.04

~0%84-0.082 —0.08 ~0.078-0.076
E(eV)

@ When energy increases, lattices are destroyed
@ Critical transition at E;o; = E. ~ —0.074ev.
@ Equation of state for lattices is

1
E.— E
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Equations of state for rolling particle gas

60
50
40
% 30

20

0 20 40 60
E(eV)

Equation of state is approximately

T~E
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Continous modeling through kinetic theory

Describe an evolution equation for density f(¢, X, v, j, n,v) with
v=RRT j=RIRT n=RTx v=x "ux=X" "ur="R"
of
21 + Vx - (fux) + Vg - (fug) + Vy - (fay) + V. - (fa,) =0
How to define accelerations ay and a,? One way is to use
Euler-Poincaré theory.
The (SE(3)-symmetry-reduced) Lagrangian is (with
X[l =< jx, x >):°

LX,V,v,R,t) = ;/f(\uxlz + HRTURHJ' —Uxf-2RTE-x

energy part

2
+ lug — v 2+ HURRT - VH) dxdvdvdR .
j

N~

constraints defining velocities
5See Cendra, Holm, Hoyle, Marsden, J. Math. Phys. 1998
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Kinetic equations via Euler-Poincaré

Consider the mapping v := (¢x, ¥v, ¥r, ¥y, ) that takes initial
coordinates (Xp, Vo, R, Vo) to their values at time t. Define

X =XXV,v,R)=1oy ", n:=nXV,v,R)=0por)"
N———— N————
components components

Use the identity 60X = [X, 5] + 7:

6/£dt = / <§—§ , [X, n]+7’7> =0 = ;g(jtﬁxg(—fvg =0
v and v components give the constraints:
f(lur —vR) =0, f(ux—v)=0
Add the non-holonomic variational constraint ny = ngR o (R)
to get the dynamic equation closing the system

o 6l 51 sIN 7 (04l 51 AR

micropolar terms nonholonomic terms
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Euler-Poincaré equations, continued

Euler-Poincaré dynamic component gives equations for the
accelerations a,, .

However, there is a problem: the evolution occurs on the
nonholonomic distribution

V=vXx(=In+rT):=v xa(n)

This set is, in general, a distribution and not a manifold, so we
cannot do usual calculus (derivatives, tangent bundles, etc)
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Workaround: solutions concentrated on constraint

distribution

Solution Look at the PDF defined everywhere, but concentrated
on the distribution only:

fo(Xo, Vo, v0, Ro) = do(Xo, ¥0, Ro)d(Vo — o x a(Nng))

Any solution concentrated at the constraint distribution at time
t = 0 will remain concentrated on the distribution at all later
timest >0, i.e.,

f(x,v,v,R,t) = (X, v, R, 1) 6(V— v x o(n)).

Proof (most straightforward) direct substitution.
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Final solution for nonholonomic kinetic theory

Evolution equation for ¢ (for technical reasons, change R to the
microinertia tensor j = RiR'):

8—Jruxa 8—+u><n a+<[A] > ;/-(goa,,)—o.

with  a,(X,V,,n,j) =(j+560) " (ju xv+2x N —Nx Il % ¢
+o X (VX v XN)+ o x kU *p)

Lemma
Kinetic equation admits single-particle solutions of the form

¢ = o(x = X(1))o(v — V(1))d(n — N(t))

with X(t), V(t), N(t) satisfying the single particle solutions for
the individual ball and the rolling constraint X(t) = V x a(N).

Proof Substitute & compare.
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Continous modeling: conservation laws

Fluid approach: conservation laws for momentum-energy.
Does not work here because momentum is not conserved.
Can we formulate any conservation laws? Yes!

Theorem (Existence of exact conservation laws)

Suppose q(R,v,n) is a conserved quantity for the motion of
individual ball, 1.e. % = 0 when R, v, n satisfy the equations for
individual particles. Define the kinetic density of Q:

Q(t, x) = / (R, v, N)é(t, X, R, v, n)dvaodR .

Then, Q(x, t) satisfies the conservation law

%? — _div, / v x o(n)gédRdvan.

Three conservation laws for non-interacting particles: energy,
Jellet and Chaplygin densities.
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Exact solution of kinetic equation: "Poiuseulle” flow

p(t, %, v,n,j) = po(x)d (V—Vo(x))d(n—no(x))d (v—r0(x))(—i) -
Axis of rotation for each ball is aligned with ez, and /; = b.

Non-uniqueness: For a given potential, there exists a
one-parameter family of solutions.
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Hydrodynamic models based on cold fluid closure

Take moments of the kinetic equations; close them using the
cold fluid ansatz

o(X v, t) = p(X, 1) (v —w(x, t))o(n—n(x, 1) é(j— T(x,t)).

Fluid equations are (no exact reduction!)

Jp .
a—t—l—v-(pwxa(n))—o

%—c:—i—(wxa(nyV)w:a

‘Z’t’ﬂwxa(n)-V)n_wxn

0T .
W%—(wxa(n)'V)j:[w,J]
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Possible experimental verification |

Experimental evidence of rolling:

Wave propagation through a lattice (no spinning in base state).
Assume an infinite square lattice, and disturbances

~ e~ lwttkotikyy with (ky, ky) being the wave vector; then

{ (14 ¢1)w? — 2 + 2 cos(kya) cos(ky )}

{

where (; = I;/(m(r + €)?), K = d?V,,/dr? is the spring constant
of the LJ potential and a is the periodicity of the square lattice.

(1 + G2)w? — 2+ 2cos(kea )cos(kya)} (1)
—8sin?(kya) sin? (kya) =0,

X\E

Absence of rolling is given by ¢; = 0 which is 10+-20 %
difference.
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Possible experimental verification |l

evLLJMloton oy
E E
dt o dt

@ Surfaces (e.g. silica) are charged = rolling involves areas
with increased potential energy.

@ These areas may be forbidden in classical sense.

@ Predict diffusion of water molecules with classical and
quantum mechanics.
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Conclusions and future work

@ Rolling systems show a surprising richness of behavior —
gas, fluid and solid states.

@ There is no equipartition between linear and angular
degrees of freedom

@ There is a robust linear relationship between linear/angular
temperatures

@ Nonholonomic kinetic theory is made possible by
considering PDF concentrated on distributions and
Euler-Poincare theory.

@ Cold fluid closure for continuous equations.

@ Future work: Connections to experiments, other
constraints etc.
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