
Molecular monolayers as interacting rolling
balls: crystals, liquid and vapor

Byungsoo Kim1 Vakhtang Putkaradzei,ii 1 Darryl D.
Holmiii Cesare Tronciiv

i Department of Mathematics
ii School of Biomedical Engineering

Colorado State University
iii Mathematics, Imperial College London

iv Mathematics, Surrey University

Jan 26 2012

1
References: B. Kim and V. Putkaradze, Ordered and Disordered Dynamics in Monolayers of Rolling Particles,

Phys. Rev. Lett, 105, 244302 (2011); D. D. Holm, V. Putkaradze and C. Tronci Kinetic theory of interacting rolling
particles, submitted (2011).

Partially supported by grants NSF-DMS-0908755 and HDTRA1-10-1-0070

Vakhtang Putkaradze Monolayers of rolling particles



Motivation: Dynamics of water monolayers
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FIG. 1: (Color online) Schematics of monolayer water confined between two surfaces. (a) The top

view of the confining surfaces. (b) The top view of the confining surface with the water molecules.

(c) The lateral view of the confined system. (d) Density profile ρ(z) of the surface atoms and the

water molecules along the confinement direction. The effective confinement width due to excluded

volume interaction between the water molecules and the surface molecules is 0.320nm, which is

about the diameter of a water molecule.
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Figure: Water molecules in confined geometry: From P. Kumar, 2010

Motion of molecules is a complex combination of rotation and
rolling due to interactions of molecules between themselves
and with the substrate.
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Introduction

This work

1 Model the molecule/substrate interaction as perfect rolling.
2 Perfect rolling is achieved when the interaction between

molecule and substrate is infinitely strong at contact point
decaying rapidly away from the contact point.

3 Molecules interact between themselves through long
distance interactions (e.g., electrostatic and
Lennard-Jones).

4 Thus, we consider the system of interacting asymmetric
rolling balls (tippe tops).

5 See N. M. Bou-Rabee, J. E. Marsden, and L. A. Romero,
SIAM Review 50, 325 (2008) for the theory of tippe top
motion.



Theorem It is not embarrassing to play with tippe tops

Figure: W. Pauli and N. Bohr are playing with a tippe top.
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Rolling motion of molecules has been demonstrated in
nano-car (nano-truck) design

Figure: Big/Nanotruck (Shirai et al, 2006)

Applications: precise delivery of medicine and chemicals, and
other fields
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Background: rigid ball rolling on a horizontal plane

CM: the center of mass, GC: geometric center of the ball,
I = diag(I1, I2, I3): moment of inertia,
Ω: angular velocity,
χ: displacement of CM from GC
All variables are in the body frame

Theorem (Chaplygin 1903)
The rolling motion of a ball on horizontal plane can be
analytically solvable if I1 = I2 and χ = E3, i.e, the mass
distribution being cylindrically symmetric.
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Rolling as constrained non-holonomic motion

Constrained dynamics:

ẍ = f (x , ẋ , t) , h(xi , ẋj , t) = 0 .

h = 0 is constraint condition imposed on the system.
Holonomic constraint: h = h(xi) . The constraint is
imposed on the configurational variables not involving the
time-derivatives.
Nonholonomic constraint: h = h(xi , ẋi) . The constraint
involving velocities cannot be integrated into a holonomic
constraint. Rolling motion is nonholonomic 2

Rolling motions are in general represented by
nonholonomically constrained dynamics.

2See A. Bloch, Nonholonomic mechanics and control (2003)
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Equation of motion for a rolling ball: Newton’s law

Force and Torque balance is spatial frame
Rolling constraint
Problem: Tensor of inertia changes with time

In body frame equations of motion are 3

(
d
dt

+ Ω×
)

(IΩ + ms × (Ω× s)) = mγ`Γ× χ+ mṡ × (Ω× s) ,

dΓ

dt
= −Ω× Γ .

where s = `χ+ rΓ – vector from CP to CM; Γ is a unit vector
pointing up in spatial frame
Rolling condition in body frame: V := vbody = Ω× s
Lagrange-D’Alembert principle : The constraint force does
no work.

3D. D. Holm, Geometric Mechanics I
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Conservation laws in rolling symmetric ball

Conservation laws: For rolling unbalanced symmetric ball
under gravity, I1 = I2 and χ = E3 there are following
conservation laws

1 Energy:

E =< IΩ,Ω > +m|Ω× s|2 + mΓ < s,Γ >

2 Jellett integral:

J =< IΩ, s >= I1Ω1s1 + I1Ω2s2 + I3Ω3s3 ,

3 Chaplygin, or Routh integral:

R =
√

I1I3 + m(I1s2
1 + I1s2

2 + I3s2
3) Ω3 .

The conservation laws, J and R, allow the equations of
motion to be completely integrable, but
The physical interpretation of J and R by (non-trivial)
symmetry arguments 4

4B. Kim, Reg. Chaotic Dyn. 16 (2011)
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An ensemble of interacting rolling balls with central
(CM) interactions

Interactions are acting only on the center of mass (e.g,
nucleii in atoms).
Conservation laws: total energy and Jellett integrals J i for
each ball (only for cylindrically symmetric ball under
central interactions).
J i =< I iΩi ,si > is conserved under any central force
acting on the CM, but is not conserved for e.g., dipole
interactions.
Chaplygin (Routh) integral is not conserved when
interaction forces between particles are present.

Vakhtang Putkaradze Monolayers of rolling particles



An ensemble of interacting rolling balls: setup

Monolayer of water molecules on a material surface, e.g.
silicon surface.
Dynamics : sliding translation + rolling
⇒ extreme case : purely rolling water molecules.
⇒ Rolling water molecules under interaction.
Interaction : LJ potential (repulsion) + charge dipole
potential.

⇒
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An ensemble of interacting rolling balls: forces

LJ potential :

Ui,LJ =
∑

j

4ε

[
σ12

r12
ij
− σ6

r6
ij

]
,

Fi,LJ = −∂Ui,LJ

∂ri
, τi,LJ = si × Fi,LJ

Dipole-induced electric field E and potential U:
ε0 : electrical permittivity, pj : dipole moment of jth ball.

Ei,dipole =
∑

j

3 < pj , r̂ji > r̂ji − pj

4πε0|rij |3
,

Ui,dipole =< pi ,Ei > , Fi,dipole = −∂Ui,dipole

∂ri
,

τi,dipole = si × Fi,dipole + pi × Ei .
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An ensemble of interacting rolling balls: equations of
motion

Equations of motion:
(

d
dt

+ Ωi×
)

(I iΩi + msi × (Ωi × si))

= mΓ`iΓi × χi + mi ṡi × (Ωi × si)+τ i
LJ + τ i

dipole ,

dΓi

dt
= −Ωi × Γi .

where i = 1,2,3, ...
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An ensemble of interacting rolling balls: parameters

Parameters for each ball correspond to a water molecule
1 Mass m = 2.991 · 10−23 g
2 Moments of inertia

(I1, I2, I3) = (0.2076,0.1108,0.3184) · 10−39 g·cm2

3 Radius r = 1 Å
4 Displacement of center of mass from the geometric center
` = 0.068Å

5 Dipole moment 6.17 · 10−30 (C · m)
6 Lennard-Jones radius σ = 3.165 Å and energy
ε = 0.650kJ/mol

7 All energies are in eV.
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An ensemble of interacting rolling balls: simulations

Numerical simulation with 81-100 rolling spherical water
molecules near equilibrium lattice.
Conservation of total energy of the whole system : only
conservation law of the whole system.
Stationary states: lattices with balls rolling in the same or
alternating direction.
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Lattice (ordered) and gas (disordered) states
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1 Lattice states are nonlinearly stable for small energies, but
molecules undergo chaotic motions

2 Statistical physics of ordered and disordered states?
3 Rolling constraint leads to coupling of translational and

rotational motion⇒ no equipartition of energy, ergodic
property breaks down, etc.
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Movies!
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Problems: no equipartition of energy

Maxwell distribution in x and y directions only!
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1 Distribution in z-direction does not follow any obvious law
because of rolling constraint

2 x and y distributions in linear and angular velocities give
”temperatures” Tl and Ta

3 Linear and angular ”temperatures” are not equal: Tl 6= Ta
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Linear relationship between ”temperatures”

So, is it possible to define a ”temperature”? Maybe
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Linear relationship between linear and angular ”temperatures”
for all states (lattice and gas).
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Equations of state for lattices

Define temperature T as the scaled width of linear or
angular distribution σ2.
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When energy increases, lattices are destroyed
Critical transition at Etot = E∗ ' −0.074ev .
Equation of state for lattices is

T ∼ 1
E∗ − E
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Equations of state for rolling particle gas
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Equation of state is approximately

T ∼ E
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Continous modeling through kinetic theory

Describe an evolution equation for density f (t ,x,ν, j ,n,v) with

ν = ṘRT j = RIRT n = RTχ v = ẋ ”ux = ẋ” ”uR = Ṙ”

∂f
∂t

+∇x · (fux) +∇R · (fuR) +∇v · (fav) +∇ν · (faν) = 0

How to define accelerations av and aν? One way is to use
Euler-Poincaré theory.
The (SE(3)-symmetry-reduced) Lagrangian is (with
‖x‖j =< jx , x >): 5

L(x,v,ν,R, t) =
1
2

∫
f
(
|ux|2 + ‖RT uR‖j − U ∗ f − 2RT E · χ
︸ ︷︷ ︸

energy part

+ |ux − v |2 +
∥∥∥uRRT − ν

∥∥∥
2

j

)

︸ ︷︷ ︸
constraints defining velocities

dxdvdνdR .

5See Cendra, Holm, Hoyle, Marsden, J. Math. Phys. 1998
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Kinetic equations via Euler-Poincaré

Consider the mapping ψ := (ψx, ψv, ψR, ψvR) that takes initial
coordinates (x0,v0,R,vR,0) to their values at time t . Define

X := X (x,v,ν,R)︸ ︷︷ ︸
components

= ψ̇ ◦ ψ−1 , η := η (x,v,ν,R)︸ ︷︷ ︸
components

= δψ ◦ ψ−1

Use the identity δX = [X , η] + η̇:

δ

∫
Ldt =

∫ 〈 δL
δX

, [X , η]+η̇
〉

= 0 ⇒ ∂

∂t
δl
δX

+LX
δl
δX
−f∇ δl

δf
= 0

v and ν components give the constraints:

f (uR − νR) = 0 , f (ux − v) = 0

Add the non-holonomic variational constraint ηx = ηRRTσ(R)
to get the dynamic equation closing the system
(
∂

∂t
δl
δX

+ LX
δl
δX
− f∇ δl

δf

)

R
RT

︸ ︷︷ ︸
micropolar terms

+

(
∂

∂t
δl
δX

+ LX
δl
δX
− f∇ δl

δf

)

x
σT

︸ ︷︷ ︸
nonholonomic terms

= 0
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Euler-Poincaré equations, continued

Euler-Poincaré dynamic component gives equations for the
accelerations aν .
However, there is a problem: the evolution occurs on the
nonholonomic distribution

v = ν × (−ln + rΓ) := ν × σ(n)

This set is, in general, a distribution and not a manifold, so we
cannot do usual calculus (derivatives, tangent bundles, etc)
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Workaround: solutions concentrated on constraint
distribution

Solution Look at the PDF defined everywhere, but concentrated
on the distribution only:

f0(x0,v0,ν0,R0) = φ0(x0,ν0,R0)δ(v0 − ν0 × σ(n0))

Lemma
Any solution concentrated at the constraint distribution at time
t = 0 will remain concentrated on the distribution at all later
times t > 0, i.e.,

f (x,v,ν,R, t) = φ(x,ν,R, t) δ(v− ν × σ(n)) .

Proof (most straightforward) direct substitution.
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Final solution for nonholonomic kinetic theory

Evolution equation for φ (for technical reasons, change R to the
microinertia tensor j = RiRT):

∂ϕ

∂t
+ ν ×σ · ∂ϕ

∂x
+ ν × n · ∂ϕ

∂n
+

〈
[ν̂, j] ,

∂ϕ

∂j

〉
+

∂

∂ν
· (ϕaν) = 0 .

with aν(x,v,ν,n, j) = (j + σ̂σ̂)−1 (jν × ν + ẑ× n− n× ∂nU ∗ ϕ
+σ × (ν × ν × n) + σ × ∂xU ∗ ϕ)

Lemma
Kinetic equation admits single-particle solutions of the form

φ = δ(x− X(t))δ(ν − V(t))δ(n− N(t))

with X(t), V(t), N(t) satisfying the single particle solutions for
the individual ball and the rolling constraint Ẋ(t) = V × σ(N) .

Proof Substitute & compare.
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Continous modeling: conservation laws

Fluid approach: conservation laws for momentum+energy.
Does not work here because momentum is not conserved.
Can we formulate any conservation laws? Yes!

Theorem (Existence of exact conservation laws)

Suppose q(R,ν,n) is a conserved quantity for the motion of
individual ball, ı.e. dq

dt = 0 when R,ν,n satisfy the equations for
individual particles. Define the kinetic density of Q:

Q(t ,x) =

∫
q(R,ν,n)φ(t ,x,R,ν,n)dνdωdR .

Then, Q(x, t) satisfies the conservation law

∂Q
∂t

= −divx

∫
ν × σ(n)qφdRdνdn .

Three conservation laws for non-interacting particles: energy,
Jellet and Chaplygin densities.
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Exact solution of kinetic equation: ”Poiuseulle” flow

ϕ(t ,x,ν,n, j) := ϕ0(x)δ
(
v−v0(x)

)
δ
(
n−n0(x)

)
δ
(
ν−ν0(x)

)
δ(j−i) .

Axis of rotation for each ball is aligned with e3, and I1 = I2.

y x

Holm, Putkaradze and Tronci Collisionless kinetic theory of rolling molecules 26

4.2 Exact solution of kinetic equation (53) in the cold fluid class

CT: is it equation (47) or equation (53)?
VP: Yes, misprint - it is (53)

We shall show how to write exact solutions of (53) and (54) in a geometrical setting similar to the
Poiseulle flow. Namely, let us consider a statistical ensemble of rolling balls, whose direction of
motion is along the x1-axis, and whose solution is independent of x1, but depends on x2. Let us first
look at the ensemble from the microscopic point of view. We need to enforce that a microscopic
particle rolls along the x1-axis with a constant speed. This is possible to achieve in Chaplygin case,
when each particle is symmetric, so i1 = i2 (two components of the microinertia tensor are equal),
and the third axis of inertia is collinear with the director from the center of mass to the geometric
center, i.e., � k e3. If these assumptions about the properties of the microscopic particles are
satisfied, the rotation about e3-axis leaves the tensor of inertia invariant, so j = i. This result is
a↵orded by the following

Lemma 4.1 (Rotation about the inertia axis of symmetry). Suppose R is a rotation about the e3

axis of inertia by the angle ↵, and the body-frame microscopic tensor of inertia is i = diag(i1, i2, i3).
Then,

j = RiRT = diag
�
i1, i2, i3

�
+
�
i2 � i1

�
2
4

sin2 ↵ � cos↵ sin↵ 0
� cos↵ sin↵ sin2 ↵ 0

0 0 0

3
5 . (75)

Proof. Proof of this Lemma is obtained by direct computation.

Thus, in the Chaplygin case of a symmetric unbalanced ball, i1 = i2 and i = j, so the tensor of
inertia is the same in the body and spatial frame for this particular motion of rotation about the e3

axis. In addition, for such motions the position of the center of mass of this particle does not change
in time, so � =const, and ⌫=const, since the ball will move indefinitely with a constant speed.
Moreover, since ⌫ k e3, it is easy to see that j⌫ k ⌫, so j⌫ ⇥ ⌫ = 0. In addition, since the rotation
is about the � axis, we have n = R� = �. In the absence of external forces and interaction
potential, all microscopic particles will move independently. Such a microscopic solution sets up a
reasonable ansatz for the full solution of the kinetic equation.

Let us now turn our attention to the kinetic equation (53). We need to enforce the microscopic
motion preserving the Poiseulle flow geometry, so we assume

'(t,x,⌫,n, j) := '0(x2)�
�
⌫ � ⌫0(x2)

�
�
�
n � n0(x2)

�
�
�
v � v0(x2)

�
�(j � i) . (76)

Here, i is a given constant matrix, having the physical meaning of the microscopic inertia matrix
as described above. Following the microscopic picture, we assume the functions �0(x2) and ⌫0(x2)
to be both perpendicular to the x1-axis, and ⌫0 k n, so �0 ⇥ ⌫0 k x1-axis. Then, ⌫0 ⇥ n0 = 0,
and since the rotation is only about the third principal axis of the tensor of inertia, one finds that
j = i and ' is independent of j. This leads to the simple equation ⌫(x)

@

@⌫
'0(x2)a⌫ = 0 . (77)
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@

@⌫
'0(x2)a⌫ = 0 . (77)

Non-uniqueness: For a given potential, there exists a
one-parameter family of solutions.
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Hydrodynamic models based on cold fluid closure

Take moments of the kinetic equations; close them using the
cold fluid ansatz

ϕ(x,ν,n, j , t) = ρ(x, t) δ(ν −ω(x, t)) δ(n−n(x, t)) δ(j −J (x, t)) .

Fluid equations are (no exact reduction!)

∂ρ

∂t
+∇ · (ρω × σ(n)) = 0

∂ω

∂t
+ (ω × σ(n) · ∇)ω = a

∂n
∂t

+ (ω × σ(n) · ∇)n = ω × n

∂J
∂t

+ (ω × σ(n) · ∇)J = [ω̂,J ]
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Possible experimental verification I

Experimental evidence of rolling:
Wave propagation through a lattice (no spinning in base state).
Assume an infinite square lattice, and disturbances
∼ e−iωt+ikx x+iky y , with (kx , ky ) being the wave vector; then

{m
K
(
1 + ζ1)ω2 − 2 + 2 cos(kxa) cos(kya)

}
×

{m
K
(
1 + ζ2)ω2 − 2 + 2 cos(kxa) cos(kya)

}
(1)

−8 sin2(kxa) sin2(kya) = 0 ,

where ζi = Ii/
(
m(r + `)2), K = d2VLJ/dr2 is the spring constant

of the LJ potential and a is the periodicity of the square lattice.

Absence of rolling is given by ζi = 0 which is 10÷20 %
difference.
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Possible experimental verification II

- - - - - - - - - - - - - - - - --

E E

d d d

Motion

Surfaces (e.g. silica) are charged⇒ rolling involves areas
with increased potential energy.
These areas may be forbidden in classical sense.
Predict diffusion of water molecules with classical and
quantum mechanics.
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Conclusions and future work

Rolling systems show a surprising richness of behavior –
gas, fluid and solid states.
There is no equipartition between linear and angular
degrees of freedom
There is a robust linear relationship between linear/angular
temperatures
Nonholonomic kinetic theory is made possible by
considering PDF concentrated on distributions and
Euler-Poincare theory.
Cold fluid closure for continuous equations.
Future work: Connections to experiments, other
constraints etc.
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