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Modeling alignment interaction of self-propelled particles

Vicsek et al. (1995).
Alignment only, constant speed, discrete in time
(interval ∆t), synchronous reorientation.

New
direction =

Mean direction of neighboring
particles at previous step + Noise

Simulations: phase transition phenomenon, emergence of
coherent structures.
Degond-Motsch (2008).
Time-continuous version: relaxation (with constant rate ν)
towards the local mean direction.
Hydrodynamic limit without phase transition phenomenon.
Model presented here: making ν proportional to the local
mean momentum.
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Individual dynamics
Particles at positions: X1, . . . ,XN in Rn.
Orientations ω1, . . . , ωN in S (unit sphere).dXk = ωkdt

dωk = ν(Id− ωk ⊗ ωk) ω̄kdt +
√
2d(Id− ωk ⊗ ωk) ◦ dBk

t

Target direction:

ω̄k =
Jk
|Jk |

, Jk =
1
N

N∑
j=1

K (|Xj−Xk |)ωj .

Setting ν = |Jk | ν0, no more singularity (binary interactions):{
dXk = ωkdt
dωk = ν0(Id− ωk ⊗ ωk) Jkdt +

√
2d(Id− ωk ⊗ ωk) ◦ dBk

t
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Kinetic description

Theorem (F. Bolley, J. A. Cañizo, J. A. Carrillo, 2012)
Probability density function f (x , ω, t), as N →∞:

∂t f + ω · ∇x f + ν0∇ω · ((Id− ω ⊗ ω)Jf f ) = d∆ωf

Jf (x , ω, t) =

∫
y∈Rn, υ∈S

K (|y − x |) υ f (y , υ, t) dy dυ .

Tool : coupling process + estimations.
dX̄k = ω̄kdt
dω̄k = ν0(Id− ω̄k ⊗ ω̄k)Jf N

t
dt +

√
2d(Id− ω̄k ⊗ ω̄k) ◦ dBk

t

f N
t = law(X̄1, ω̄1) = law(X̄k , ω̄k)
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Hydrodynamic scaling
Scaling, with ε� 1 (and K0 =

∫
Rn K (x)dx):

f ε(x , ω, t) = ν0K0f ( 1
dεx , ω,

1
dε t).

Mean-field reduced and rescaled equation:

ε(∂t f ε + ω · ∇x f ε) = Q(f ε) + O(ε2),

with an effect of localization in space:

Q(f ) = −∇ω · ((Id− ω ⊗ ω)Jf f ) + ∆ωf ,

Jf (x , t) =

∫
S

f (x , ω, t)ω dω.

Since (Id− ω ⊗ ω)J = ∇ω(J · ω), we get

Q(f ) = ∇ω · (eω·Jf∇ω(e−ω·Jf f )).
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Local equilibria

Definitions: Fisher–von Mises distribution

MκΩ(ω) =
eκω·Ω∫

S eκυ·Ω dυ .

Orientation Ω ∈ S, concentration κ > 0.
Order parameter: c(κ) = |JMκΩ

| =

∫ π
0 cos θ eκ cos θ sinn−2 θ dθ∫ π

0 eκ cos θ sinn−2 θ dθ
.

For Jf = κf Ωf , we can write Q under the form:

Q(f ) = ∇ω ·
[
Mκf Ωf∇ω

(
f

Mκf Ωf

)]
.

Local equilibria: feq = ρMκΩ, for some Ω ∈ S.

Compatibility condition: κ = κfeq = |Jfeq | = ρ|JκΩ| = ρc(κ).
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Solutions to the compatibility condition ρc(κ) = κ

Proposition

The function κ 7→ c(κ)
κ is decreasing, its limit is 1

n when κ→ 0.

n = 4
n = 3
n = 2
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Concentration parameter κ

c(κ)
κ

ρ 6 n, only one solution: κ = 0.
Uniform equilibrium.
ρ > n, uniform equilibrium for
κ = 0.
Unique solution κ(ρ) > 0.
Manifold of equilibria:

{ρMκ(ρ)Ω, Ω ∈ S}.
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Homogeneous case: convergence to the equilibrium

Spatial homogeneous case: the equation becomes

ε∂t f = −∇ω · ((Id− ω ⊗ ω)Jf f ) + ∆ωf ,

also called Smoluchowski equation (with dipolar potential).

Theorem (AF, J.-G. Liu)
If ρf0 < n, exponential
convergence to the uniform
distribution f → ρf0 .
If ρf0 > n and Jf0 6= 0, there
exists Ω∞ ∈ S such that f
converges exponentially
to ρf0Mκ(ρ)Ω∞ .
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Ideas of the proofs, tools used

Decay of the free energy F(f ) =
∫
S f ln f − 1

2 |Jf |2

Instantaneous regularity, compactness ⇒ LaSalle Principle
Use of the spherical harmonics to derive a new conservation
relation:

1
2

d
dt ‖f − 1‖2

H̃−
n−1
2

= −τ‖f − 1‖2
H̃−

n−3
2

+
1

(n − 2)!
|J [f ]|2,

viewed as the dissipation of a “new entropy” when ρ < n
Expansion of F and its dissipation term around a “moving
equilibrium” MκΩ(t) when ρ > n:

f = (1 + αω · Ω(t) + g)Mκ(τ)Ω(t),

with exponential decay of α and g , which then gives the
convergence of Ω(t) to Ω∞.
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Region where ρε(x , t)− n� ε

Starting point: when ε→ 0, f ε converges (formally) to ρMκ(ρ)Ω.
Equation on ρ: conservation of mass (integration of the kinetic
equation against a constant).

∂tρ
ε +∇x · J ε = 0

In the limit ε→ 0, we get

∂tρ+∇x · (ρc(κ(ρ))Ω) = 0

Evolution of Ω? No more conservation relation. . .∫
S

Q(f ε)ψ(ω)dω 6= 0 in general (ψ non constant).

Idea: integrate against ψρε,Ωε(ω) instead.
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Generalized collisional invariants
Linearized operator: Q(f ) = Lκ(ρf )Ωf (f ), with

LκΩ(f ) = −∆ωf +κ∇ω·((Id−ω⊗ω)Ωf ) = −∇ω·
[
MκΩ∇ω

( f
MκΩ

)]
,

Definition: GCIs associated to κ and Ω

CκΩ =

{
ψ|
∫
ω∈S

LκΩ(f )ψ dω = 0, ∀f such that Jf ‖ Ω

}
.

In particular, for any generalized collisional invariant ψ ∈ CκΩ :

∀f such that Ωf = Ω and κ(ρf ) = κ,

∫
ω∈S

Q(f )ψ dω = 0.

Proposition

ψ ∈ CκΩ ⇔ ψ = Cte + hκ(ω · Ω) A · ω,A ∈ Rn,A ⊥ Ω.
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The macroscopic model

A ·
∫
ω∈S

Q(f ε) hκf ε (ω ·Ωf ε)ω dω = 0 for all A ∈ Rn s.t. A ·Ωf ε = 0

Equivalently, defining ~ψκ,Ω = hκΩ(ω · Ω)(Id− Ω⊗ Ω)ω, we get∫
ω∈S

Q(f ε)~ψκf ε ,Ωf εdω = 0

Theorem (P. Degond, AF, J.-G. Liu)
When ε→ 0, the (formal) limit of f ε is f 0 = ρ(x , t)Mκ(ρ)Ω(x ,t)

and the functions ρ,Ω satisfy the system{
∂tρ+∇x · (ρ c Ω) = 0,
ρ (∂tΩ + c̃(Ω · ∇x )Ω) + λ (Id− Ω⊗ Ω)∇xρ = 0,

with c̃ = 〈cos θ〉M̃κ
, and λ = ρ−n−κc̃

κ(ρ−n−κc) .
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Study of the coefficients

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

c̃
c

Density ρ, n = 2

n = 4
n = 3
n = 2

λ

Density ρ
4 62

0

-0.5

-1

-1.5

-2

-2.5

-3

c =


n+2

n
√
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√
ρ− n + O(ρ− n),

1− n−1
2 ρ−1 + (n−1)(n+1)

8 ρ−2 + O(ρ−3),
c̃ =


2n−1

2n
√

n+2
√
ρ− n + O(ρ− n),

1− n+1
2 ρ−1 − (n+1)(3n+1)

24 ρ−2 + O(ρ−3),

λ =


−1

4
√

n+2
1√
ρ−n + O(1),

−n+1
6 ρ−2 + O(ρ−3).

⇒ Loss of hyperbolicity.
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Region where n − ρε(x , t)� ε

Chapman–Enskog expansion.

Theorem (P. Degond, AF, J.-G. Liu)
When ε→ 0, a first order correction is (formally) given by

f ε(x , ω, t) = ρε(x , t)− ε nω · ∇xρ
ε(x , t)

(n − 1)(n − ρε(x , t))
,

And the density ρε(x , t) satisfies the following (nonlinear) diffusion
equation:

∂tρ
ε =

ε

n − 1∇x ·
( 1

n − ρε∇xρ
ε
)
.
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Perspectives

Take a more general function of |J | for the relaxation rate.
Allows to overcome the problem of the lack of hyperbolicity
(work in progress with J.-G. Liu and Pierre Degond).
More precise numerical study: comparison of the particular
model and its macroscopic limits (work in progress with S.
Motsch).
Understanding the “boundary region” where
ρε(x , t)− n = O(ε)? How to connect the two models?
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