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Modeling alignment interaction of self-propelled particles

@ Vicsek et al. (1995).
Alignment only, constant speed, discrete in time
(interval At), synchronous reorientation.

New  Mean direction of neighboring

L= . . + Noise
direction particles at previous step

Simulations: phase transition phenomenon, emergence of
coherent structures.

e Degond-Motsch (2008).

Time-continuous version: relaxation (with constant rate v)
towards the local mean direction.

Hydrodynamic limit without phase transition phenomenon.
@ Model presented here: making v proportional to the local
mean momentum.
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Outline

@ Time-continuous Vicsek model with phase transition
@ Presentation of the model
@ Kinetic model — Hydrodynamic scaling
@ The phase transition

© Formal derivation of macroscopic models
@ Ordered phase, hydrodynamic model
@ Disordered phase, diffusion
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Time-continuous Vicsek model with phase transition Presentation of the model
Kinetic model — Hydrodynamic scaling

The phase transition

Individual dynamics

Particles at positions: Xi,..., Xy in R".
Orientations wy,...,wpy in S (unit sphere).

dXi = wdt
dwi = v(Id — wy ® wi) Brdt + v/2d(Id — wy ® wg) o dBK

Target direction:
Ji N

Ok = ) (1Xi—Xk|) w
| Jk| ;

Setting v = |Jk| vp, no more singularity (binary interactions):

{ka = wydt

dwy = I/o(Id — Wk ® wk) Jidt + v 2d(Id —wk & wk) o dBé(
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Time-continuous Vicsek model with phase transition ’resentation of the model
i model — Hydrodynamic scaling
The phase transition

Kinetic description

Theorem (F. Bolley, J. A. Caiiizo, J. A. Carrillo, 2012)
Probability density function f(x,w,t), as N — oo:

Oef +w - Vif + 1V - ((Id — w ® w)Jf f) = dAf

Fixew )= [ Klly=x)vf(y.v,e)dydo.
yER" veS

Tool : coupling process + estimations.

d)_<k = (g dt
déoy, = Vo(Id — W ® (:)k) jftN dt + v 2d(Id — Wk ® ch) o dB{f
ftN = |aW()_<1,(:Jl) = Iaw(Xk,o?k)
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Time-continuous Vicsek model with phase transition Presentation of the model
Kinetic model — Hydrodynamic scaling
The phase transition

Hydrodynamic scaling

Scaling, with e < 1 (and Ky = [pa K(x)dx):
fe(x,w, t) = VOKof(d%x,w, diet).
Mean-field reduced and rescaled equation:

(0ef° +w - Vif?) = Q(f°) + O(£), |

with an effect of localization in space:
Q(f) = -V, ((Id —w@w)Js f) + A, f,
Jr(x,t) = / f(x,w, t)wdw.
S

Since (Id —w ® w)J = V,(J - w), we get
Q(f) = Vo - (e V(e F)).
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Time-continuous Vicsek model with phase transition Presentation of the model
Kinetic model — Hydrodynamic scaling
The phase transition

Local equilibria

Definitions: Fisher—von Mises distribution

emu-Q

fS ek v-Q dov .
Orientation Q2 € S, concentration k > 0.

foﬂ cos 0 e st sin1=2 9 49

fow ercos0sin1=29dg

Mq(w) =

Order parameter: ¢(k) = Iy | =

For Jr = k¢Q¢, we can write @ under the form:

f

Q) = Vo (Mo Vs 37—

Local equilibria: foq = pMq, for some Q2 € S.

Compatibility condition: x = kg, = |Jr | = pldsal = pc(r). J
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Time-continuous Vicsek model with phase transition 2 tation of
model
The phase transition

Solutions to the compatibility condition pc(k) = &

Proposition

@ p < n, only one solution: kK = 0.
Uniform equilibrium.

@ p > n, uniform equilibrium for
Kk = 0.
Unique solution x(p) > 0.
Manifold of equilibria:

0 2 4 6 8 10
Concentration parameter {pMﬁ(p)Q 3 Q € S} .
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Time-continuous Vicsek model with phase transition Presentation of the model
Kinetic model — Hydrodynamic scaling

The phase transition

Homogeneous case: convergence to the equilibrium

Spatial homogeneous case: the equation becomes
eof = =V ((Id —w @ w)Jr f) + AL f,

also called Smoluchowski equation (with dipolar potential).

Theorem (AF, J.-G. Liu) e

e If ps, < n, exponential
convergence to the uniform
distribution f — pg,.

o If pr, > nand Jg # 0, there
exists Qo € S such that f
converges exponentially 0
to pr Mﬁ(p)Qm.

Rate of convergence r(p)
am

Density p

11/20
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Time-continuous Vicsek model with phase transition ntation of the model
¢ model — Hydrodynamic scaling
hase transition

Ideas of the proofs, tools used

@ Decay of the free energy F(f) = [sfInf — %|Jf‘2
@ Instantaneous regularity, compactness = LaSalle Principle
@ Use of the spherical harmonics to derive a new conservation
relation:
1d

f2

—\If —1|\2 ——T||f—1||%7n_3+
H 2

(n—2)!
viewed as the dissipation of a “new entropy” when p < n

@ Expansion of F and its dissipation term around a “moving
equilibrium™ M.q(;) when p > n:

f=(14aw- Qt)+ )Mo

with exponential decay of o and g, which then gives the
convergence of Q(t) to Qq
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Ordered phas 1ic model

Formal derivation of macroscopic models A
Disordered pt

Outline

© Formal derivation of macroscopic models
@ Ordered phase, hydrodynamic model
@ Disordered phase, diffusion
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Ordered phase, hydrodynamic model

Formal derivation of macroscopic models A
Disordered phase, diffusion

Region where p°(x,t) — n> ¢

Starting point: when e — 0, f° converges (formally) to pM,(,)a
Equation on p: conservation of mass (integration of the kinetic
equation against a constant).

atp6+vx-j€:0
In the limit ¢ — 0, we get
Oep + Vi - (pe(k(p))2) =

Evolution of Q7 No more conservation relation. . .

/Q %) (w)dw # 0 in general (1) non constant).

Idea: integrate against 1, g (w) instead.
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Ordered phase, hydrodynamic model
Disordered phase, diffusion

Formal derivation of macroscopic models

Generalized collisional invariants

Linearized operator: Q(f) = Ly(,,)q,(f), with

Lia(f) = —Auf+kV (Id—wew)Qf) = =V,

f
MoV
Qv <M/@Q>

Definition: GCls associated to x and Q

Crcr {¢|/ Lea(F) 1 dw = 0, VF such that Js | Q}.

In particular, for any generalized collisional invariant ¥ € C.q :

Vf such that Qf = Q and k(pr) = /i,/ Q(f) ¢ dw = 0.
wes

Proposition

Y el tv=Cte+ hy(w- QA - w,AcR"ALQ.
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Ordered phase, hydrodynamic model

Formal derivation of macroscopic models N " e
Disordered phase, diffusion

The macroscopic model

A- Q(f?) hype (w-Qfc)wdw =0 forall Ac R" s.it. A-Qp =0
JweS

Equivalently, defining ﬁﬁ,g = hga(w - Q)(Id — Q2 ® Q)w, we get
/ Q(fg)zﬁl{fe ,Qfs dw = 0
weS

Theorem (P. Degond, AF, J.-G. Liu)

When ¢ — 0, the (formal) limit of ¢ is 0 = p(x, t)My(p)0(x,t)
and the functions p, Q satisfy the system

8tp+vx : (pCQ) = 0,
P (B +EQ- V)R + A(Id— Q® Q)V,p =0,

_p=n—rc_
rk(p—n—rkc)”

with ¢ = (cosf), , and A =
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Ordered phase, hydrodynamic model

Formal derivation of macroscopic models A
Disordered phase, diffusion

Study of the coefficients

% 2 2 6 s 3 2 s 6
Density p, n =2 Density p
e T S A
1 mdp g g2 4+ 0(p3), 1 midp~t - R =2 4+ 0(p3),
+ O(1
A= 4vn+ m (1), = Loss of hyperbolicity.

2152 4+ 0(p™2).
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Ordered phase, hydrodynamic model
Disordered phase, diffusion

Formal derivation of macroscopic models

Region where n — p°(x, t) > ¢

Chapman—Enskog expansion.

Theorem (P. Degond, AF, J.-G. Liu)

When £ — 0, a first order correction is (formally) given by

LW Vip®(x,t)
(n=1)(n—p(x, 1))’

And the density p°(x, t) satisfies the following (nonlinear) diffusion
equation:

e(x,w, t) = p°(x,t) —

€

1
Oip° = V- (pr€> .
n—1 n— p¢
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Conclusion

Perspectives

o Take a more general function of |J| for the relaxation rate.
Allows to overcome the problem of the lack of hyperbolicity
(work in progress with J.-G. Liu and Pierre Degond).

@ More precise numerical study: comparison of the particular
model and its macroscopic limits (work in progress with S.
Motsch).

@ Understanding the “boundary region” where
p°(x,t) —n= O(g)? How to connect the two models?
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