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Introduction

In 1980 Bourgain and Delbaen introduced a new class of
L∞-spaces providing counterexamples to a number of
outstanding conjectures.
More recently, variants of this construction have been used to
address other problems,in particular the following.
(Argyros–Haydon, Acta Math. 2011)
There is a Banach space on which every operator has the form
λI + K , with λ a scalar and K compact .
(Freeman–Odell–Schlumprecht, Math. Ann. 2011)
Every Banach space with separable dual embeds in a space
with dual isomorphic to `1.
Other speakers at this meeting will be presenting further results
that use the same basic framework. My hope in this talk is to
prepare the way, as well as giving a sketch of the
scalar-plus-compact space.
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A word about notation

The spaces X that we construct will be subspaces of `∞ (or
`∞(Γ) for various countable sets Γ). Depending on the details of
the construction, `1 will be naturally identifiable with the dual
space X ∗, or with a subspace of that dual.
For this reason, we shall think of elements of `1 as functionals,
using star notation f ∗ to remind ourselves of this. Elements of
`∞ will be called vectors. We use angle brackets for the action
of a functional on a vector:

〈f ∗, x〉 =
∑
n∈N

f ∗(n)x(n).

Notice the notation x(n) (resp. f ∗(n)) for the nth coordinate of x
(resp f ∗).

Richard Haydon The Bourgain–Delbaen construction and its applications



More notation

The usual unit vector (0,0, . . . ,0,1,0, . . . ) may be denoted
either by en or by e∗n, depending on whether we are thinking of
it as a vector or as a functional. In the latter case, it is the
evaluation functional satisfying

〈e∗n, x〉 = x(n).

If we are working with a countable set Γ, rather than with the
natural numbers, then e∗γ etc will have the obvious meanings.

For the moment, however, let’s stay with N.
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The BD framework

It may help to start by considering a very general situation. Let
(d∗n )n∈N be a Schauder basis for `1(N), and let (dn) be the
biorthogonal sequence of vectors in `∞.
The closed linear span X = sp〈dn : n ∈ N〉 is a separable
L∞-space whose structure (as it turns out) can be quite exotic.
Of course, if we take d∗n to be the usual unit vector e∗n the
biorthogonal vectors are just en and X = c0.
If we go a little further and make a small perturbation, setting
d∗n = e∗n − c∗n where supn ‖c∗n‖1 < 1, then the sequence (d∗n ) is
still equivalent to the unit vector basis of `1 and so X is still
isomorphic to c0.

To get something new and exciting, we shall look at a class of
large perturbations.
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BD-structures on countable sets

Let Γ be a countable set and let rank : Γ→ N be a function such
that each of the sets

∆n = {γ ∈ Γ : rank γ = n} is finite.

Write Γn =
⋃

k≤n ∆k = {γ ∈ Γ : rank γ ≤ n},
Γ+ = Γ \ Γ1 = {γ ∈ Γ : rank γ > 1}, and let

weight : Γ+ → [0,1)

top : Γ+ → ball `1(Γ)

base : Γ+ → Γ ∪ {undefined}

be further functions.
For γ ∈ Γ+ define d∗γ = e∗γ − c∗γ , where

c∗γ = e∗ξ + θb∗, resp. c∗γ = θb∗,

when θ = weight γ, b∗ = top γ and ξ = base γ ∈ Γ (resp. when
base γ is undefined.)

Richard Haydon The Bourgain–Delbaen construction and its applications



The BD conditions

We shall say that the functions rank ,weight , top , base form a
BD-structure on Γ if :

1 supγ∈Γ+ weight γ < 1;
2 for all γ ∈ Γ+, rank base γ < rank γ (if base γ is defined);
3 for all γ ∈ Γ+, top γ ∈ sp〈d∗η : rank base γ < rank η < rank γ〉.

A set Γ equipped with a structure of this kind will be called a
BD-set.

Theorem
If Γ is a BD-set, then the functionals d∗γ form a basis of `1(Γ)
and the biorthogonal vectors dγ form a basis for a L∞
subspace X (Γ) of `∞(Γ).

We shall see in due course conditions under which the dual of
X (Γ) is naturally isomorphic to `1(Γ).
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The finite-dimensional decompositions

Although, by the above theorem, our spaces have Schauder
bases, what enters most naturally into our calculations is a
finite-dimensional decomposition of X (Γ), induced by the
partition of Γ into the strata ∆n, and the dual f.d.d. on `1(Γ).
We write P[1,n] and P∗[1,n] for the projections associated with this
f.d.d., which may be defined on X (Γ) and `1(Γ) as the bounded
linear operators satisfying

P[1,n](dγ) =

{
dγ if rank γ ≤ n
0 otherwise,

P∗[1,n](d
∗
γ ) =

{
d∗γ if rank γ ≤ n
0 otherwise,

It follows from the proof of the BD theorem that
‖Pn‖ ≤ (1− θ)−1 where θ = max γweight γ.
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Support versus range

For both functionals f ∗ ∈ `1(Γ) and vectors x ∈ `∞(Γ) we have a
notion of support, defined as usual to be the set of γ for which
f ∗(γ), resp x(γ), is non-zero.
There is another notion of “support with respect to the f.d.d.” To
avoid confusion, we call this notion range and, for x ∈ X (Γ),
resp. f ∗ ∈ `1, write ran x , resp. ran f ∗, for the minimal interval I
such that x ∈ sp〈dγ : rank γ ∈ I〉, resp. f ∗ ∈ sp〈d∗γ : rank γ ∈ I〉.
Note that if rank γ = n then ran d∗γ = {n} whilst there is no
reason for the support of d∗γ to be contained in ∆n; all we can
say is that

supp d∗γ ⊆ {γ} ∪ {η ∈ Γ : rank η < n}.

Dually, supp dγ ⊆ {γ} ∪ {δ ∈ Γ : rank δ > n}.
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FDD projections and extensions

There are the following explicit formulas for the f.d.d.
projections introduced earlier:

P∗[1,n](f
∗) =

∑
γ∈Γn

〈f ∗,dγ〉d∗γ

P[1,n](x) =
∑
γ∈Γn

〈d∗γ , x〉dγ .

Because the support of d∗γ is contained in Γn whenever γ ∈ Γn,
the value of P[1,n](x) is determined by the restriction of x to Γn.
We can therefore use the same formula to define an extension
operator Jn from the finite-dimensional space `∞(Γn) to X (Γ):

Jn(u) =
∑
γ∈Γn

〈d∗γ ,u〉dγ (u ∈ `∞(Γn)).

These extension operators will perhaps be familiar from earlier
presentations of the BD construction.
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How to construct BD-sets

Typically, we construct a BD set by recursion, starting with a
finite set ∆1. The elements of ∆1 have rank 1 and we do not
have to define anything else.
Subsequently, if we have defined Γn =

⋃
k≤n ∆k , as well as the

associated c∗γ , we need to decide for which triples (θ, ξ, b∗) we
shall admit into ∆n+1 an element δ with

weight δ = θ, top δ = b∗, base δ = ξ.

Sometimes it is convenient to use a notation that automatically
codes the above data, writing

δ = (n + 1, ξ, θ,b∗)

for for an element as above. Of course, we need a modification
(simply leaving out the “ξ”) if base δ is undefined.
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Regular BD-sets

We shall say that a BD-set is regular if the weight of the base of
γ (when this is defined) is always equal to the weight of γ.

We shall work only with BD-sets of this kind,and shall assume
moreover that the weights of elements of Γ are of the form
θ = m−1

i , where (mi)i∈N is a fairly fast-growing sequence of
natural numbers.

mi = 22i
will do fine.

We assume in particular that m1 ≥ 4, so that the norms of the
operators P[1,n], P∗[1,n] and Jn are all at most 4/3.
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The evaluation analysis

An important tool for norm estimates is a formula that
expresses the evaluation functionals e∗γ in terms of the basis
elements d∗γ .
By our definitions, we have

e∗γ = c∗γ + d∗γ = e∗ξ + θb∗ + d∗γ ,

whenever the base ξ is defined. If we repeat this operation and
continue until we meet an element whose base is undefined we
obtain

e∗γ = θb∗1 + d∗ξ1
+ θb∗2 + d∗ξ2

+ · · ·+ θb∗a + d∗ξa
,

where ξa = γ, θ = weight γ, b∗j = top ξj and ξj = base ξj+1
We call this the evaluation analysis. The natural number a is
called the age of γ.
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A criterion for X (Γ) to be a predual of `1(Γ)

Since X (Γ) is a subspace of `∞(Γ) there is a natural mapping
`1(Γ)→ X (Γ)∗ and it follows from our construction that this is
always an isomorphic embedding. If it is surjective, we shall
that the dual of X (Γ) is naturally isomorphic to `1(Γ). There are
obvious criteria for this expressed in terms of boundedly
complete and shrinking bases/f.d.d.’s, but the following is also
very useful.

Theorem
The following are equivalent:

1 X (Γ)∗ is naturally isomorphic to `1(Γ);
2 there is no infinite sequence (γn)n∈N in Γ such that
γn = base γn+1 for all n.
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Age and History

If we are building a BD-set and want to be sure of ending up
with a natural predual of `1 then we have to stop the growth of
infinite branches (γn) with γn = base γn+1.
The approach adopted in our first paper on the
scalar-plus-compact problem was to fix a second sequence
(ni)i∈N of natural numbers and demand that an element γ of
weight m−1

i may not have age greater than ni . The sequence
(ni) needs to grow a bit faster than (mi),

ni = 22i2+1
will do.

Subsequent applications oblige us to work with something a
little more complicated than age. We define the history hist γ by
recursion:

hist γ =

{
{min ran top γ} if base γ is undefined
hist base γ ∪ {min ran top γ} otherwise.
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Regular families of sets

Recall that a collection N of finite subsets of N is said to be
spreading if {n1, . . . ,nr} ∈ N whenever {m1, . . . ,mr} ∈ N and
mi ≤ ni for all i . Such a collection is called a regular family if it
is also compact for the pointwise topology on [N]<ω ⊂ {0,1}N.

A more general (and in a sense the most general) way to
ensure that our BD space is a predual of `1 is to demand that
there exist regular families Ni such that the history of an
element γ of weight m−1

i is always in Ni .

The “age-oriented” approach mentioned above corresponds to
taking Ni = Ani .
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Where have we got to?

We are by now considering a regular BD-set Γ with weights
(m−1

i )i∈N and having the property that the history of any
element of weight m−1

i is in the family Ni . For the moment, we
shall make no assumptions about these families.
We have two further small assumptions to make, both related to
the fact that in a BD-set Γ each of the strata ∆n has to be finite.
We thus assume that an element γ of weight m−1

i must have
rank at least i , and that the top b∗ of an element γ ∈ ∆n must
be a rational linear combination of d∗η ’s in which the
denominators of the coefficients all divide some suitably large
natural number Nn!.
We shall write Bn for the set of all linear combinations of this
type.
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Eligibility

A tuple (n + 1,m−1
i ,b∗, ξ) is thus eligible to be an element of

∆n+1 if
1 i ≤ n + 1, ξ ∈ Γn;
2 b∗ is a linear combination

b∗ =
∑

rank ξ<rank η≤n

αηd∗η ,

where Nn+1!αη ∈ Z for all η.;
3 hist ξ ∪ {min ran b∗} ∈ Ni .

In the sort of construction we are interested in, it is usual to
arrange that all eligible tuples of “even weight”, that is to say of
weight m−1

i with i even, do belong to ∆n+1. The careful
selection of the odd-weight elements introduces the more
subtle structure into the examples.
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An easy lower estimate

We have not yet mentioned mixed Tsirelson spaces, but we get
our first idea that they will have a role to play by noting an easy
lower estimate. Notice the use made of the richness of
even-weight elements in Γ.

Lemma
Let (xk )k ∈ N be a skipped-block sequence in X (Γ) and let i be
a natural number. Write νk = min ran xk and assume that
{ν1, . . . , νa} ∈ N2i . Then

‖
∑

k

xk‖X(Γ) ≥ 1
4m−1

2i

a∑
k=1

‖xk‖.

Sketch Proof. Our skipped-block assumption is that there exist
pk such that

ran x1 < p1 < ran x2 < p2 < · · · < ran xa < pa.
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An easy proof (continued)

We want to find an element γ whose evaluation analysis will
“pick up” a good contribution from each of the xk . For each k
we can find b∗k ∈ Bpk with ran b∗k ⊆ (pk−1,pk ) and 〈b∗k , xk 〉 close
to 3

8‖xk‖.
To simplify things, assume that p1 ≥ 2i : in this case there are
elements ξk ∈ ∆pk (1 ≤ k ≤ a) such that the evaluation analysis
of γ = ξa is

e∗γ =
a∑

k=1

(m−1
2i b∗k + d∗ξk

).

We see that

〈e∗γ ,
∑

xk 〉 =
∑
〈b∗k , xk 〉 ≈ 3

8

∑
‖xk‖.

If p1 < 2i then there a few extra terms to deal with.
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Coding and odd-weight elements

We introduce a coding function σ which maps Γ injectively into
N; actually, if we are constructing Γ recursively then we define σ
“as we go along”.
The rules for admission of an eligible odd-weight tuple
(n + 1,m−1

2j−1,b
∗) into ∆n+1 are that b∗ must have the special

form e∗η where p < rank η ≤ n, and weight η is of the form m−1
4i−2

with i > 1
2 j .

For a tuple (n + 1, ξ,m−1
2j−1,b

∗) we are even more demanding:
b∗ must have the form e∗η where rank ξ < ran e∗η ≤ n and the
weight of η is exactly m−1

4σ(ξ).

Thinking back to the lemma on the previous slide, we can see,
at least intuitively, that it will only be in exceptional
circumstances that a skipped block sequence will satisfy a
lower estimate of a similar kind with weight m−1

2j−1.
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Mixed Tsirelson spaces

We recall the definition of the mixed Tsirelson space

T [(m−1
i ,Ni)i∈N],

starting with the recursive definition of the norming set

W [(m−1
i ,Ni)i∈N].

This is defined to be the smallest subset W of c00(N) that
contains all ±e∗n and also has the property that
m−1

i
∑a

r=1 f ∗r ∈W whenever the successive functionals f ∗r are
all in W and the set {min supp f ∗r : 1 ≤ r ≤ a} is in Ni .
A functional of the form f ∗ = m−1

i
∑a

r=1 f ∗r is said to have weight
m−1

i .
The space T [(m−1

i ,Ni)i∈N] is defined to be the completion of
c00(N) for the norm defined by

‖x‖ = sup
f∗∈W [(m−1

i ,Ni )i∈N]

〈f ∗, x〉.
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Our assumptions about Ni

At this point introduce some assumptions about the families Nj .
We require them to be regular, and N1 can be any regular
family. Thereafter, we require them to grow very fast. A little
more precisely, we want every maximal N in Nj+1 to be the
support of a convex vector a that is extremely small with
respect to Nj .
For those desperate for precision what we actually require of
the convex vector a is that∑

m∈M

a(m) < m−1
j+1,

for every set M in (N ′
j )∗lj+1 , where N ′

j = A3 ∗Nj and
lj+1 = log2 mj+1.
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Special convex vectors

A vector a ∈ c00(N) with the property set out in the previous
slide is called a (j + 1)-special convex vector.
The following norm estimates play an important role.

Lemma

Let T = T [(Ni ,m−1
i )i∈N], T ′ = T [(N ′

i ,m
−1
i )i∈N] and

T ′′ = T [(N ′
i ,m

−1
i )i 6=j+1]. If a is a (j + 1)-special convex vector

then
‖a‖T = ‖a‖T ′ = m−1

j+1, while ‖a‖T ′′ ≤ m−2
j+1.
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RIS and the Basic Inequality

A rapidly increasing sequence, or RIS, will be a block sequence
in X for which we have upper mixed-Tsirelson estimates. These
estimates, together with facts about special convex vectors in
mT-spaces, will give us strong norm estimates for certain
vectors in X .

Definition
Let (xk )k∈N be a block sequence in X (Γ). We shall say that (xk )
is a C-RIS if

1 ‖xk‖ ≤ C/2 for all k ;
and there exist natural numbers j1 ≤ j ′1 < j2 ≤ j ′2 < . . . such
that

2 |xk (γ)| ≤ C/mh if weight γ = m−1
h with h < jk ;

3 |xk (γ)| ≤ Cmjk/mh if weight γ = m−1
h with h > j ′k .
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Existence of RIS

There are plenty of RIS in the space X (Γ).

Lemma
If (wj) is a block sequence in X (Γ) then there is a normalized
block-subsequence (xi) that is a 2-RIS.

The next lemma, which seems to peculiar to constructions
using the BD method, shows that the behaviour of arbitrary
block sequences is determined by that of RIS.

Lemma
Let Y be a Banach space and let T : X → Y be a bounded
linear operator. If ‖Txn‖ → 0 for every RIS then ‖T (xn)‖ → 0 for
every bounded block sequence, and hence T is compact.

The relevance to the scalar-plus-compact problem should be
obvious.

Richard Haydon The Bourgain–Delbaen construction and its applications



The Basic Inequality

Theorem (A simple version)

Let (xk ) be a C-RIS in X (Γ), let νk = min ran xk and let tk be the
unit vector eνk in the mixed Tsirelson space
T ′ = T [(m−1

i ,N ′
i )i∈N]. Then for all l and all scalars αk

‖
l∑

k=1

αkxk‖X ≤ 2C‖
l∑

k=1

αk tk‖T ′ .

The family N ′
i can often be taken to be the same as Ni , but for

the moment we are trying not to make any special assumptions
about the Ni . In any case N ′

i does not need to be much
bigger than Ni . We may take N ′

i = A3 ∗Ni .
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The Basic Inequality (continued)

Theorem (A more technical version)

Let (xk ), (tk ) and αk be as before. Let I ⊂ N be an interval and
define xI =

∑
k∈I αkxk , tI =

∑
k∈I αk tk . Let weight γ = m−1

h .
1 There exists g∗ ∈ c00(N) satisfying

|xI(γ)| ≤ C〈g∗, tI〉,

such that g∗ = ±t∗k0
+ f ∗, for suitably chosen k0 ∈ I and f ∗

that is either 0 or a weight-m−1
h element of

W [(N ′
j ,m

−1
j )j∈N] with νk0 < supp f ∗.

2 If the scalar sequence (αk ) has the property that
|xJ(η)| ≤ Cmj−1

0
for every subinterval J of I and every η ∈ Γ

of weight m−1
j0

, then the functional f ∗ (when not zero) may
be chosen to lie in W [(N ′

j ,m
−1
j )j 6=j0 ]. In this case,

‖xI‖ ≤ 2C‖tI‖T [(N ′
j ,m

−1
j )j 6=j0

]
.
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Special convex combinations

Let (xk )k∈N be a C-RIS and let tk be as above. If a =
∑

k αk tk is
a (j + 1)-special convex vector we shall say that

∑
k αkxk is a

(j + 1)-special convex combination.
The Basic Inequality and norm estimates for special convex
vectors yield the following

Lemma
If y is a (j + 1)-special s.c.c. of a C-RIS (xk ) then

‖y‖ ≤ 2Cm−1
j+1.

If |
∑

k∈J αkxk (η)| ≤ Cm−1
j+1 for every interval J and every η of

weight m−1
j+1 then

‖y‖ ≤ 2Cm2
j+1.
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The scalar-plus-compact property

The key is the following lemma.

Lemma
Let T be a bounded linear operator on X (Γ). If (xk ) is a RIS
then dist (Txk ,Rxk )→ 0 as k →∞.

Let’s see first how this leads to what we want. First of all, a
couple of easy steps show that there exists a scalar λ such that
‖Txk − λxk‖ → 0 for every RIS.
But as we noted earlier, this implies that T − λI is compact.
Now, without getting too technical, we shall try to sketch a proof
of the Key Lemma.
Assume that (xk ) is a C-RIS and that dist (T (xk ),Rxk ) > 1 for
all k .
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The Key Lemma

By taking subsequences and small perturbations, we may
suppose that there are natural numbers p0 < p1 < . . . and
functionals b∗k , of norm 1 such that pj−1 < ranxk , ran Txk , ran b∗k
and 〈b∗k , xk 〉 = 0, 〈b∗k ,Txk 〉 > 1

4 .
The next step is to consider a 2j-special convex combinations
y =

∑
k∈I αkxk and an element η of Γ, of weight m−1

2j in whose
evaluation analysis the “b∗”s are exactly b∗k (k ∈ I). This will
satisfy 〈e∗η,T (y)〉 ≥ 1

4m−1
2j and 〈e∗η, y〉 = 0.

The above can be done for each j yielding a block
subsequence (yj) with associated ηj . If we seminormalize yj ,
setting zj = m2jyj , we have another RIS!
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The Key Lemma (continued)

Now we work with an odd weight m−1
2i−1 and, taking some care

with coding, find a γ of that weight in whose evaluation analysis
the “b∗k ”s form some subsequence of (e∗ηj

).

For a suitably chosen (2i − 1)-s.c.c. w of the RIS (zj),
evaluation at γ witnesses that

‖T (w)‖ ≥ 1
4m−1

2i−1.

But, because of the rigidity imposed by the coding function, it
turns out that

‖Tw‖ ≤ Cm−2
2i−1.

For a suitably large i this contradicts boundedness of T .

Richard Haydon The Bourgain–Delbaen construction and its applications


