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Aim of the talk

1. Explain a Darmon-style construction of local points on
Jacobians of compact Shimura curves (over Q).

2. Give some results on the rationality of these points, and
some applications to the Birch and Swinnerton-Dyer conjecture
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§1. Constructions.
Notations

Fix:
I D > 1 an integer which is a product of an even number of

distinct primes;

I M a square free integer, prime to D;
I p - MD a prime number;
I B/Q quaternion algebra of discriminant D and an

isomorphism i∞ : B ⊗Q R ' M2(R);
I RMp ⊆ RM Eichler orders in B of level Mp and M,

respectively.
I ΓMp ⊆ ΓM units of norm one in RMp and RM , respectively.
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Homology of Shimura curves

Define
XMp := ΓMp\H

a compact Riemann surface, where the elements of positive
norm in B× act on the upper half plane H via i∞.

Let
H := H1

(
XMp,Z

)p-new
/torsion

where the upper index p-new denotes the submodule obtained
by taking quotient of H1

(
XMp,Z

)
by the image of the homology

of the Riemann surface XM := ΓM\H via the two canonical
degeneracy maps.
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First step to the construction of points:

Define
T := Gm ⊗Z H.

J := Jac
(
XMp

)p-new
.

Denote by Kp the unramified quadratic extension of Qp.

Following works by S. Dasgupta and M. Greenberg, we will
explicitly describe a lattice L ⊆ T (Kp) such that there is an
isogeny

T (Kp)/L→ J2(Kp)

defined over Kp and Hecke-equivariant.
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Measure-valued cohomology
We begin by constricting lattices in T (Kp) which are the
candidates for our uniformization result.

Define the Ihara’s group:

Γ :=
(
RM [1/p]

)
norm=1.

Let
M := Meas0(P1(Qp),H)

denote the group of measures on P1(Qp) with values in H and
total mass equal to zero.
The groupM is endowed with an action of Γ as follows: fix an
isomorphism

ip : B ⊗Q Qp ' M2(Qp)

and let Γ act on P1(Qp) by fractional linear transformations via
ip. Then define

(γν)(U) := ν(γ−1(U)).
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Construction of lattices/1

We know a procedure to construct lattices Lν in T (Kp) using
classes

ν ∈ H1(Γ,M)

which we now describe.

Define:
Hp := Kp −Qp.

The group B× acts on Hp by fractional linear transformations
via ip : B ⊗Qp ' M2(Qp).

There is a map (which depends on the choice of ν ∈ H1(Γ,M)):

φν : H2(Γ,Z)
(1)−→ H1(Γ,Div0Hp)

(2)−→ T (Kp)

where (1) and (2) are as follows:
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Construction of lattices/2

H2(Γ,Z)
(1)−→ H1(Γ,Div0Hp)

arises taking the Γ-homology of the exact sequence:

0 −→ Div0Hp −→ DivHp
deg−→ Z −→ 0.



Construction of lattices/3

H1(Γ,Div0Hp)
(2)−→ T (Kp)

can be described as follows:

First we note that there is a pairing:

〈, 〉 : Div0Hp ×M −→ T (Kp)

defined by the integration formula:

〈d , ν〉 := ×
∫
P1(Qp)

fddν

where fd is any rational function on P1(Kp) with div(fd ) = d .
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Construction of lattices/4

We get a pairing:

H1(Γ,Div0Hp)× H1(Γ,M) −→ T (Kp).

Fixing ν in the second variable gives the map (2):

H1(Γ,Div0Hp)
(2)−→ T (Kp).

.



Uniformization result
We thus have, for any ν ∈ H1(Γ,M):

φν : H2(Γ,Z)
(1)−→ H1(Γ,Div0Hp)

(2)−→ T (Kp).

We can explicitly construct an element

µH ∈ H1(Γ,M)

such that the following theorem is true.

Theorem (L.-Rotger-Vigni)
Define

L := φµH (H2(Γ,Z)).

Then there exists an Hecke-equivariant isogeny defined over
Kp:

φ : T (Kp)/L −→ J2(Kp).
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Darmon points

We now apply the above uniformization result to define Darmon
(or Stark-Heegner) points on J2(Kp).



Splitting 2-cocycles

Fix a representative γ 7→ µH,γ of µH and a point τ ∈ Hp.

Define the 2-cocycle dτ : Γ× Γ→ T (Kp) by:

(γ1, γ2) 7−→ ×
∫
P1(Qp)

t − γ−1
1 (τ)

t − τ
dµH,γ2 .

dτ splits on T (Kp)/L.

Fix βτ : Γ→ T (Kp)/L splitting dτ .

Let t := |Γab|. Then tβτ does not depend on the choice of βτ .
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Global data
Let K be a real quadratic field such that:

I all primes ` | M are split in K ;
I all primes ` | Dp are inert in K .

Let Oc be the order of K of conductor c with c > 1 an integer
such that (c, disc(K )MDp) = 1.

Fix an optimal embedding ψ : K ↪→ B of Oc into RM . So we
have:

ψ(Oc) = ψ(K ) ∩ RM .

Denote by εc a positive (w.r.t. a chosen K ↪→ R) generator of
O×c .

Define γψ := ψ(εc) ∈ Γ.

Let zψ denote one of the two fixed points of ψ(K×) acting on
P1(Qp) via ip (a suitable normalization specifies the choice).
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Definition of Darmon points

Recall the data:

1. The optimal embedding ψ : K ↪→ B of Oc in RM , the global
unit εc and its image γψ := ψ(εc) ∈ Γ.

2. The fixed point zψ ∈ Kp −Qp, so that we can consider the
function βzψ : Γ→ T (Kp)/L splitting the 2-cocycle dzψ .

Definition
Darmon points PJ,ψ on J2(Kp) are

T (Kp)/L
φLµ−→ J2(Kp)

tβzψ(γψ) 7−→ PJ,ψ.

Conjecture
PJ,ψ ∈ J2(H+

c ), where H+
c is the narrow ring class field of

conductor c of K , so that G+
c := Gal (H+

c /K ) ' Pic+(Oc).
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Modular forms

Let now f be a weight 2 newform of level Γ0(MDp). We may
choose one component of J2 and compose with the projection
to the abelian variety Af associated with f .

J2 −→ J −→ Af .

In this way we also get points Pf ,ψ ∈ Af (Kp).

Conjecture
(1) Pf ,ψ ∈ Af (H+

c ).
(2) For any χ : G+

c → C×, define the point

Pf ,χ :=
∑
σ∈G+

c

Pσ
f ,ψ ⊗ χ

−1(σ) ∈ (Af (H+
c )⊗Z C)χ.

Then Pf ,χ 6= 0 if and only if L′K (f , χ,1) 6= 0.
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§2 Results and applications
§2.1 Applications to BSD conjecture.

Fix an elliptic curve E of conductor MD and K/Q a real
quadratic extension such that

I all primes dividing M are split in K ;
I all primes dividing D are inert in K .

Parity arguments show that the order of vanishing of LK (E , χ,1)
is even, for characters χ : G+

c → C× with (c, disc(K )MD) = 1.

Theorem (L.-Rotger-Vigni)
Assume the first conjecture (PJ,ψ ∈ J2(H+

c )). If LK (E , χ,1) 6= 0
then (E(H+

c )⊗Z C)χ = 0.
As you may notice, the prime p inert in K does not appear in
the statement of this result. To explain the connection with
Darmon points, let us consider the simplest case when c = 1
and H+

1 = K .
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Proof: Selmer group and auxiliary primes p
Fix a prime ` - MD and consider the Selmer group

Sel`(E/K ) ⊆ H1(K ,E [`]).

Our aim is to show that this group is trivial, for at least one
prime ` as above if LK (E ,1) 6= 0 (in fact, we can show this
statement for all ` except a finite number, as predicted by the
BSD conjecture).

To this end, we consider a suitable infinite set of primes p,
which are inert in K , and such that

` | a2
p − (p + 1)2.

For this primes, we have a raising the level result which allows
to view the Galois module E [`] as a quotient of Jp[`], where

Jp := Jac
(
XMp

)p-new
.
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Proof: Darmon points

Kummer maps and the above observation can be used to
associate PJ,ψ ∈ Jp(K ) with a cohomology class
κp ∈ H1(K ,E [p]):

Jp(K ) −→ H1(K , Jp[`]) −→ H1(K ,E [`]).

The collection {κp}p can be used, in combination with the
global Tate pairing, to deduce the triviality of Sel`(E/K ) under
the condition LK (E ,1) 6= 0.

For this, we need a reciprocity law relating the restriction at ` of
the classes κp with the algebraic part of the special value of
LK (E ,1).
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§2.2 Results for genus characters

A genus character is a quadratic unramified character of
Gal (K ab/K ). Let Hχ denote the field cut out by χ (biquadratic,
unless χ is trivial).

Genus characters are described by unordered pairs (χ1, χ2) of
Dirichlet characters of discriminants d1 and d2 with d1d2 = dK .

Theorem (L.-Vigni)
Suppose that Af = E is an elliptic curve and χ is a genus
character of K with χ1(−MD) = χ2(−MD) = −wMD. Then there
exists an integer n ≥ 1 such that:

I nPf ,χ ∈ E(Hχ)

I nPf ,χ 6= 0 in (E(Hχ)⊗ C)χ if and only if L′K (E , χ,1) 6= 0.

The proof generalizes arguments by Bertolini-Darmon for the
split quaternion algebra M2(Q).
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Step I. Lift of measure-valued cohomology/1

Choose a sign ± (depending on χ) and let

µf ∈ H1(Γ,Meas0(P1(Qp),H±E ))

denote the projection of µH to

H±E := H1(E(C),Z)±

(=±-eigenmodule for the complex conjugation).

I f =⇒ f∞: Hida family passing through f .
I Want: µf =⇒ µ̃f .
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Step I. Lift of measure-valued cohomology/2

Write D for the module of Zp-valued measures on Y := Z2
p

which are supported on the subset X of primitive elements (i.e.,
those vectors in Y which are not divisible by p).

There is a map
π : X −→ P1(Qp)

taking (x , y) to x/y

If fk is the weight k -specialization, trivial character, of f∞,
combining Jacquet-Langlands and Matsushima-Shimura we
get an element

φk ∈ H1(ΓMp,Symk−2(C2)).
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Step I. Lift of measure-valued cohomology/3

We can construct an element µ̃f ∈ H1(ΓM ,D)⊗Zp Qp such that:

I π∗(µ̃f ) = µf (recall π : X→ P1(Qp)).
I There are specialization maps ρk such that

ρk (µ̃f ) = (multiple of )φk ∈ H1(ΓMp,Symk−2(C2)).



Step I. Lift of measure-valued cohomology/3

We can construct an element µ̃f ∈ H1(ΓM ,D)⊗Zp Qp such that:
I π∗(µ̃f ) = µf (recall π : X→ P1(Qp)).

I There are specialization maps ρk such that

ρk (µ̃f ) = (multiple of )φk ∈ H1(ΓMp,Symk−2(C2)).



Step I. Lift of measure-valued cohomology/3

We can construct an element µ̃f ∈ H1(ΓM ,D)⊗Zp Qp such that:
I π∗(µ̃f ) = µf (recall π : X→ P1(Qp)).
I There are specialization maps ρk such that

ρk (µ̃f ) = (multiple of )φk ∈ H1(ΓMp,Symk−2(C2)).



Step II: Esplicit expression for Darmon points

Now let
ΦTate : K̄×p

/
qZ −→ E(K̄p)

denote Tate’s p-adic uniformization.

Let logq be the branch of the p-adic logarithm satisfying
logq(q) = 0 and define

logE (P) := logq
(
Φ−1

Tate(P)
)

for all P ∈ E(Kp).

The first auxiliary result is the following

Theorem (Explicit expression of Darmon points)

logE (Pf ,ψ) = (−t) ·
∫
X

logq(x − zψy)d µ̃f ,γψ .
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Step III. p-adic L-functions
Associate to µ̃f a p-adic L-function Lp(f∞/K , χ, k) attached to
f∞, a genus character χ of K , and a p-adic variable k .

A result by Popa + the interpolation property ρk (µ̃f ) = φk in
H1(ΓMp,Symk−2(C2)) imply: for k ≥ 4 an even integer

Lp(f∞/K , χ, k) = (non-zero constant) L(f ]k/K , χ, k/2)

where the form fk is the p-stabilization of f ]k ∈ Sk (Γ0(MD)).

Theorem (Factorization of p-adic L-functions)

Lp(f∞/K , χ, k) = η(k)Lp(f∞, χ1, k , k/2)Lp(f∞, χ2, k , k/2)

I L(f∞, χi , k , s) is the Mazur-Kitagawa p-adic L-function
I k 7→ η(k) 6= 0 is a p-adic analytic function.
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Proof of the main result

1. Step II (explicit expressions for Darmon points):

Pf ,χ ←→
d

d2k
Lp(f∞/K , χ, k)|k=2

2. Step III (factorization of L-functions)

d
d2k

Lp(f∞/K , χ, k)|k=2 ←→
d

d2k
Lp(f∞, χ1, k , k/2)|k=2

(for a suitable ordering of (χ1, χ2)).
3. Bertolini and Darmon:

d
d2k

Lp(f∞, χ1, k , k/2)|k=2 ←→ Heegner divisors
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