Quaternionic Darmon points and arithmetic applications

M. Longo, joint work with V. Rotger and S. Vigni

November 4, 2011

Aim of the talk

1. Explain a Darmon-style construction of local points on Jacobians of compact Shimura curves (over \mathbb{Q}).

Aim of the talk

1. Explain a Darmon-style construction of local points on Jacobians of compact Shimura curves (over \mathbb{Q}).
2. Give some results on the rationality of these points, and some applications to the Birch and Swinnerton-Dyer conjecture

§1. Constructions.
 Notations

Fix:

- $D>1$ an integer which is a product of an even number of distinct primes;

§1. Constructions.
 Notations

Fix:

- $D>1$ an integer which is a product of an even number of distinct primes;
- M a square free integer, prime to D;

§1. Constructions.
 Notations

Fix:

- $D>1$ an integer which is a product of an even number of distinct primes;
- M a square free integer, prime to D;
- $p \nmid M D$ a prime number;

§1. Constructions. Notations

Fix:

- $D>1$ an integer which is a product of an even number of distinct primes;
- M a square free integer, prime to D;
- $p \nmid M D$ a prime number;
- B / \mathbb{Q} quaternion algebra of discriminant D and an isomorphism $i_{\infty}: B \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$;

§1. Constructions.
 Notations

Fix:

- $D>1$ an integer which is a product of an even number of distinct primes;
- M a square free integer, prime to D;
- $p \nmid M D$ a prime number;
- B / \mathbb{Q} quaternion algebra of discriminant D and an isomorphism $i_{\infty}: B \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$;
- $R_{M p} \subseteq R_{M}$ Eichler orders in B of level $M p$ and M, respectively.

§1. Constructions.
 Notations

Fix:

- $D>1$ an integer which is a product of an even number of distinct primes;
- M a square free integer, prime to D;
- $p \nmid M D$ a prime number;
- B / \mathbb{Q} quaternion algebra of discriminant D and an isomorphism $i_{\infty}: B \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathrm{M}_{2}(\mathbb{R})$;
- $R_{M p} \subseteq R_{M}$ Eichler orders in B of level $M p$ and M, respectively.
- $\Gamma_{M p} \subseteq \Gamma_{M}$ units of norm one in $R_{M p}$ and R_{M}, respectively.

Homology of Shimura curves

Define

$$
X_{M p}:=\Gamma_{M p} \backslash \mathcal{H}
$$

a compact Riemann surface, where the elements of positive norm in B^{\times}act on the upper half plane \mathcal{H} via i_{∞}.

Homology of Shimura curves

Define

$$
X_{M p}:=\Gamma_{M p} \backslash \mathcal{H}
$$

a compact Riemann surface, where the elements of positive norm in B^{\times}act on the upper half plane \mathcal{H} via i_{∞}.

Let

$$
H:=H_{1}\left(X_{M p}, \mathbb{Z}\right)^{p \text {-new }} / \text { torsion }
$$

where the upper index p-new denotes the submodule obtained by taking quotient of $H_{1}\left(X_{M p}, \mathbb{Z}\right)$ by the image of the homology of the Riemann surface $X_{M}:=\Gamma_{M} \backslash \mathcal{H}$ via the two canonical degeneracy maps.

First step to the construction of points:

Define

$$
T:=\mathbb{G}_{m} \otimes_{\mathbb{Z}} H
$$

First step to the construction of points:

Define

$$
\begin{gathered}
T:=\mathbb{G}_{m} \otimes_{\mathbb{Z}} H . \\
J:=\operatorname{Jac}\left(X_{M p}\right)^{p \text {-new }} .
\end{gathered}
$$

First step to the construction of points:

Define

$$
\begin{gathered}
T:=\mathbb{G}_{m} \otimes_{\mathbb{Z}} H \\
J:=\operatorname{Jac}\left(X_{M p}\right)^{p \text {-new }} .
\end{gathered}
$$

Denote by K_{p} the unramified quadratic extension of \mathbb{Q}_{p}.

First step to the construction of points:

Define

$$
\begin{gathered}
T:=\mathbb{G}_{m} \otimes_{\mathbb{Z}} H \\
J:=\operatorname{Jac}\left(X_{M p}\right)^{p \text {-new }}
\end{gathered}
$$

Denote by K_{p} the unramified quadratic extension of \mathbb{Q}_{p}.
Following works by S. Dasgupta and M. Greenberg, we will explicitly describe a lattice $L \subseteq T\left(K_{p}\right)$ such that there is an isogeny

$$
T\left(K_{p}\right) / L \rightarrow J^{2}\left(K_{p}\right)
$$

defined over K_{p} and Hecke-equivariant.

Measure-valued cohomology

We begin by constricting lattices in $T\left(K_{p}\right)$ which are the candidates for our uniformization result.

Measure-valued cohomology

We begin by constricting lattices in $T\left(K_{p}\right)$ which are the candidates for our uniformization result.

Define the Ihara's group:

$$
\Gamma:=\left(R_{M}[1 / p]\right)_{\text {norm }=1}
$$

Measure-valued cohomology

We begin by constricting lattices in $T\left(K_{p}\right)$ which are the candidates for our uniformization result.

Define the Ihara's group:

$$
\Gamma:=\left(R_{M}[1 / p]\right)_{\text {norm }=1} .
$$

Let

$$
\mathcal{M}:=\operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right), H\right)
$$

denote the group of measures on $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ with values in H and total mass equal to zero.

Measure-valued cohomology

We begin by constricting lattices in $T\left(K_{p}\right)$ which are the candidates for our uniformization result.

Define the Ihara's group:

$$
\Gamma:=\left(R_{M}[1 / p]\right)_{\text {norm }=1}
$$

Let

$$
\mathcal{M}:=\operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right), H\right)
$$

denote the group of measures on $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ with values in H and total mass equal to zero.
The group \mathcal{M} is endowed with an action of Γ as follows: fix an isomorphism

$$
i_{p}: B \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \simeq \mathrm{M}_{2}\left(\mathbb{Q}_{p}\right)
$$

and let Γ act on $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ by fractional linear transformations via i_{p}. Then define

$$
(\gamma \nu)(U):=\nu\left(\gamma^{-1}(U)\right)
$$

Construction of lattices/1

We know a procedure to construct lattices L_{ν} in $T\left(K_{p}\right)$ using classes

$$
\nu \in H^{1}(\Gamma, \mathcal{M})
$$

which we now describe.

Construction of lattices/1

We know a procedure to construct lattices L_{ν} in $T\left(K_{p}\right)$ using classes

$$
\nu \in H^{1}(\Gamma, \mathcal{M})
$$

which we now describe.
Define:

$$
\mathcal{H}_{p}:=K_{p}-\mathbb{Q}_{p} .
$$

The group B^{\times}acts on \mathcal{H}_{p} by fractional linear transformations via $i_{p}: B \otimes \mathbb{Q}_{p} \simeq \mathrm{M}_{2}\left(\mathbb{Q}_{p}\right)$.

Construction of lattices/1

We know a procedure to construct lattices L_{ν} in $T\left(K_{p}\right)$ using classes

$$
\nu \in H^{1}(\Gamma, \mathcal{M})
$$

which we now describe.
Define:

$$
\mathcal{H}_{p}:=K_{p}-\mathbb{Q}_{p} .
$$

The group B^{\times}acts on \mathcal{H}_{p} by fractional linear transformations via $i_{p}: B \otimes \mathbb{Q}_{p} \simeq \mathrm{M}_{2}\left(\mathbb{Q}_{p}\right)$.

There is a map (which depends on the choice of $\nu \in H^{1}(\Gamma, \mathcal{M})$):

$$
\phi_{\nu}: H_{2}(\Gamma, \mathbb{Z}) \xrightarrow{(1)} H_{1}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}\right) \xrightarrow{(2)} T\left(K_{p}\right)
$$

where (1) and (2) are as follows:

Construction of lattices/2

$$
H_{2}(\Gamma, \mathbb{Z}) \xrightarrow{(1)} H_{1}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}\right)
$$

arises taking the Γ-homology of the exact sequence:

$$
0 \longrightarrow \operatorname{Div}^{0} \mathcal{H}_{p} \longrightarrow \operatorname{Div} \mathcal{H}_{p} \xrightarrow{\operatorname{deg}} \mathbb{Z} \longrightarrow 0
$$

Construction of lattices/3

$$
H_{1}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}\right) \xrightarrow{(2)} T\left(K_{p}\right)
$$

can be described as follows:

Construction of lattices/3

$$
H_{1}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}\right) \xrightarrow{(2)} T\left(K_{p}\right)
$$

can be described as follows:
First we note that there is a pairing:

$$
\langle,\rangle: \operatorname{Div}^{0} \mathcal{H}_{p} \times \mathcal{M} \longrightarrow T\left(K_{p}\right)
$$

defined by the integration formula:

$$
\langle d, \nu\rangle:=\int_{\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)} f_{d} d \nu
$$

where f_{d} is any rational function on $\mathbb{P}^{1}\left(K_{p}\right)$ with $\operatorname{div}\left(f_{d}\right)=d$.

Construction of lattices/4

We get a pairing:

$$
H_{1}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}\right) \times H^{1}(\Gamma, \mathcal{M}) \longrightarrow T\left(K_{p}\right) .
$$

Fixing ν in the second variable gives the map (2):

$$
H_{1}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}\right) \xrightarrow{(2)} T\left(K_{p}\right) .
$$

Uniformization result

We thus have, for any $\nu \in H^{1}(\Gamma, \mathcal{M})$:

$$
\phi_{\nu}: H_{2}(\Gamma, \mathbb{Z}) \xrightarrow{(1)} H_{1}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}\right) \xrightarrow{(2)} T\left(K_{p}\right) .
$$

Uniformization result

We thus have, for any $\nu \in H^{1}(\Gamma, \mathcal{M})$:

$$
\phi_{\nu}: H_{2}(\Gamma, \mathbb{Z}) \xrightarrow{(1)} H_{1}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}\right) \xrightarrow{(2)} T\left(K_{p}\right) .
$$

We can explicitly construct an element

$$
\mu_{H} \in H^{1}(\Gamma, \mathcal{M})
$$

such that the following theorem is true.

Uniformization result

We thus have, for any $\nu \in H^{1}(\Gamma, \mathcal{M})$:

$$
\phi_{\nu}: H_{2}(\Gamma, \mathbb{Z}) \xrightarrow{(1)} H_{1}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{p}\right) \xrightarrow{(2)} T\left(K_{p}\right) .
$$

We can explicitly construct an element

$$
\mu_{H} \in H^{1}(\Gamma, \mathcal{M})
$$

such that the following theorem is true.
Theorem (L.-Rotger-Vigni)
Define

$$
L:=\phi_{\mu_{H}}\left(H_{2}(\Gamma, \mathbb{Z})\right) .
$$

Then there exists an Hecke-equivariant isogeny defined over K_{p} :

$$
\phi: T\left(K_{p}\right) / L \longrightarrow J^{2}\left(K_{p}\right)
$$

Darmon points

We now apply the above uniformization result to define Darmon (or Stark-Heegner) points on $J^{2}\left(K_{p}\right)$.

Splitting 2-cocycles

Fix a representative $\gamma \mapsto \mu_{H, \gamma}$ of μ_{H} and a point $\tau \in \mathcal{H}_{p}$.

Splitting 2-cocycles

Fix a representative $\gamma \mapsto \mu_{H, \gamma}$ of μ_{H} and a point $\tau \in \mathcal{H}_{p}$.
Define the 2-cocycle $d_{\tau}: \Gamma \times \Gamma \rightarrow T\left(K_{p}\right)$ by:

$$
\left(\gamma_{1}, \gamma_{2}\right) \longmapsto 火_{\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)} \frac{t-\gamma_{1}^{-1}(\tau)}{t-\tau} d \mu_{H, \gamma_{2}} .
$$

Splitting 2-cocycles

Fix a representative $\gamma \mapsto \mu_{H, \gamma}$ of μ_{H} and a point $\tau \in \mathcal{H}_{p}$.
Define the 2-cocycle $d_{\tau}: \Gamma \times \Gamma \rightarrow T\left(K_{p}\right)$ by:

$$
\left(\gamma_{1}, \gamma_{2}\right) \longmapsto \mathcal{F}_{\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)} \frac{t-\gamma_{1}^{-1}(\tau)}{t-\tau} d \mu_{H, \gamma_{2}} .
$$

d_{τ} splits on $T\left(K_{p}\right) / L$.

Splitting 2-cocycles

Fix a representative $\gamma \mapsto \mu_{H, \gamma}$ of μ_{H} and a point $\tau \in \mathcal{H}_{p}$.
Define the 2-cocycle $d_{\tau}: \Gamma \times \Gamma \rightarrow T\left(K_{p}\right)$ by:

$$
\left(\gamma_{1}, \gamma_{2}\right) \longmapsto \psi_{\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)} \frac{t-\gamma_{1}^{-1}(\tau)}{t-\tau} d \mu_{H, \gamma_{2}}
$$

d_{τ} splits on $T\left(K_{p}\right) / L$.
Fix $\beta_{\tau}: \Gamma \rightarrow T\left(K_{p}\right) / L$ splitting d_{τ}.

Splitting 2-cocycles

Fix a representative $\gamma \mapsto \mu_{H, \gamma}$ of μ_{H} and a point $\tau \in \mathcal{H}_{p}$.
Define the 2-cocycle $d_{\tau}: \Gamma \times \Gamma \rightarrow T\left(K_{p}\right)$ by:

$$
\left(\gamma_{1}, \gamma_{2}\right) \longmapsto \mathcal{X}_{\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)} \frac{t-\gamma_{1}^{-1}(\tau)}{t-\tau} d \mu_{H, \gamma_{2}}
$$

d_{τ} splits on $T\left(K_{p}\right) / L$.
Fix $\beta_{\tau}: \Gamma \rightarrow T\left(K_{p}\right) / L$ splitting d_{τ}.
Let $t:=\left|\Gamma^{\mathrm{ab}}\right|$. Then $t \beta_{\tau}$ does not depend on the choice of β_{τ}.

Global data

Let K be a real quadratic field such that:

Global data

Let K be a real quadratic field such that:

- all primes $\ell \mid M$ are split in K;

Global data

Let K be a real quadratic field such that:

- all primes $\ell \mid M$ are split in K;
- all primes $\ell \mid D p$ are inert in K.

Global data

Let K be a real quadratic field such that:

- all primes $\ell \mid M$ are split in K;
- all primes $\ell \mid D p$ are inert in K.

Let \mathcal{O}_{c} be the order of K of conductor c with $c>1$ an integer such that $(c, \operatorname{disc}(K) M D p)=1$.

Global data

Let K be a real quadratic field such that:

- all primes $\ell \mid M$ are split in K;
- all primes $\ell \mid D p$ are inert in K.

Let \mathcal{O}_{c} be the order of K of conductor c with $c>1$ an integer such that $(c, \operatorname{disc}(K) M D p)=1$.

Fix an optimal embedding $\psi: K \hookrightarrow B$ of \mathcal{O}_{C} into R_{M}. So we have:

$$
\psi\left(\mathcal{O}_{c}\right)=\psi(K) \cap R_{M} .
$$

Global data

Let K be a real quadratic field such that:

- all primes $\ell \mid M$ are split in K;
- all primes $\ell \mid D p$ are inert in K.

Let \mathcal{O}_{c} be the order of K of conductor c with $c>1$ an integer such that $(c, \operatorname{disc}(K) M D p)=1$.

Fix an optimal embedding $\psi: K \hookrightarrow B$ of \mathcal{O}_{C} into R_{M}. So we have:

$$
\psi\left(\mathcal{O}_{c}\right)=\psi(K) \cap R_{M} .
$$

Denote by ϵ_{c} a positive (w.r.t. a chosen $K \hookrightarrow \mathbb{R}$) generator of \mathcal{O}_{C}^{\times}.

Global data

Let K be a real quadratic field such that:

- all primes $\ell \mid M$ are split in K;
- all primes $\ell \mid D p$ are inert in K.

Let \mathcal{O}_{c} be the order of K of conductor c with $c>1$ an integer such that $(c, \operatorname{disc}(K) M D p)=1$.

Fix an optimal embedding $\psi: K \hookrightarrow B$ of \mathcal{O}_{C} into R_{M}. So we have:

$$
\psi\left(\mathcal{O}_{C}\right)=\psi(K) \cap R_{M}
$$

Denote by ϵ_{c} a positive (w.r.t. a chosen $K \hookrightarrow \mathbb{R}$) generator of \mathcal{O}_{c}^{\times}.

Define $\gamma_{\psi}:=\psi\left(\epsilon_{c}\right) \in \Gamma$.

Global data

Let K be a real quadratic field such that:

- all primes $\ell \mid M$ are split in K;
- all primes $\ell \mid D p$ are inert in K.

Let \mathcal{O}_{c} be the order of K of conductor c with $c>1$ an integer such that $(c, \operatorname{disc}(K) M D p)=1$.

Fix an optimal embedding $\psi: K \hookrightarrow B$ of \mathcal{O}_{C} into R_{M}. So we have:

$$
\psi\left(\mathcal{O}_{c}\right)=\psi(K) \cap R_{M}
$$

Denote by ϵ_{c} a positive (w.r.t. a chosen $K \hookrightarrow \mathbb{R}$) generator of \mathcal{O}_{c}^{\times}.

Define $\gamma_{\psi}:=\psi\left(\epsilon_{C}\right) \in \Gamma$.
Let z_{ψ} denote one of the two fixed points of $\psi\left(K^{\times}\right)$acting on $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ via i_{p} (a suitable normalization specifies the choice).

Definition of Darmon points

Recall the data:

Definition of Darmon points

Recall the data:

1. The optimal embedding $\psi: K \hookrightarrow B$ of \mathcal{O}_{C} in R_{M}, the global unit ϵ_{C} and its image $\gamma_{\psi}:=\psi\left(\epsilon_{C}\right) \in \Gamma$.

Definition of Darmon points

Recall the data:

1. The optimal embedding $\psi: K \hookrightarrow B$ of \mathcal{O}_{C} in R_{M}, the global unit ϵ_{C} and its image $\gamma_{\psi}:=\psi\left(\epsilon_{C}\right) \in \Gamma$.
2. The fixed point $z_{\psi} \in K_{p}-\mathbb{Q}_{p}$, so that we can consider the function $\beta_{z_{\psi}}: \Gamma \rightarrow T\left(K_{p}\right) / L$ splitting the 2-cocycle $d_{z_{\psi}}$.

Definition of Darmon points

Recall the data:

1. The optimal embedding $\psi: K \hookrightarrow B$ of \mathcal{O}_{C} in R_{M}, the global unit ϵ_{C} and its image $\gamma_{\psi}:=\psi\left(\epsilon_{C}\right) \in \Gamma$.
2. The fixed point $z_{\psi} \in K_{p}-\mathbb{Q}_{p}$, so that we can consider the function $\beta_{z_{\psi}}: \Gamma \rightarrow T\left(K_{p}\right) / L$ splitting the 2-cocycle $d_{z_{\psi}}$.

Definition
Darmon points $P_{J, \psi}$ on $J^{2}\left(K_{p}\right)$ are

$$
\begin{array}{rll}
T\left(K_{p}\right) / L & \xrightarrow{\phi L_{\mu}} & J^{2}\left(K_{p}\right) \\
t \beta_{z_{\psi}}\left(\gamma_{\psi}\right) & \longmapsto & P_{J, \psi} .
\end{array}
$$

Definition of Darmon points

Recall the data:

1. The optimal embedding $\psi: K \hookrightarrow B$ of \mathcal{O}_{C} in R_{M}, the global unit ϵ_{C} and its image $\gamma_{\psi}:=\psi\left(\epsilon_{C}\right) \in \Gamma$.
2. The fixed point $z_{\psi} \in K_{p}-\mathbb{Q}_{p}$, so that we can consider the function $\beta_{z_{\psi}}: \Gamma \rightarrow T\left(K_{p}\right) / L$ splitting the 2-cocycle $d_{z_{\psi}}$.

Definition
Darmon points $P_{J, \psi}$ on $J^{2}\left(K_{p}\right)$ are

$$
\begin{array}{rll}
T\left(K_{p}\right) / L & \xrightarrow{L_{\mu}} & J^{2}\left(K_{p}\right) \\
t \beta_{z_{\psi}}\left(\gamma_{\psi}\right) & \longmapsto & P_{J, \psi} .
\end{array}
$$

Conjecture
$P_{J, \psi} \in J^{2}\left(H_{c}^{+}\right)$, where H_{c}^{+}is the narrow ring class field of conductor c of K, so that $G_{c}^{+}:=\operatorname{Gal}\left(H_{c}^{+} / K\right) \simeq \operatorname{Pic}^{+}\left(\mathcal{O}_{c}\right)$.

Modular forms

Let now f be a weight 2 newform of level $\Gamma_{0}(M D p)$. We may choose one component of J^{2} and compose with the projection to the abelian variety A_{f} associated with f.

$$
J^{2} \longrightarrow J \longrightarrow A_{f}
$$

In this way we also get points $P_{f, \psi} \in A_{f}\left(K_{p}\right)$.

Modular forms

Let now f be a weight 2 newform of level $\Gamma_{0}(M D p)$. We may choose one component of J^{2} and compose with the projection to the abelian variety A_{f} associated with f.

$$
J^{2} \longrightarrow J \longrightarrow A_{f}
$$

In this way we also get points $P_{f, \psi} \in A_{f}\left(K_{p}\right)$.
Conjecture
(1) $P_{f, \psi} \in A_{f}\left(H_{c}^{+}\right)$.
(2) For any $\chi: G_{c}^{+} \rightarrow \mathbb{C}^{\times}$, define the point

$$
P_{f, \chi}:=\sum_{\sigma \in G_{c}^{+}} P_{f, \psi}^{\sigma} \otimes \chi^{-1}(\sigma) \in\left(A_{f}\left(H_{c}^{+}\right) \otimes_{\mathbb{Z}} \mathbb{C}\right)^{\chi}
$$

Then $P_{f, \chi} \neq 0$ if and only if $L_{K}^{\prime}(f, \chi, 1) \neq 0$.

§2 Results and applications §2.1 Applications to BSD conjecture.

Fix an elliptic curve E of conductor $M D$ and K / \mathbb{Q} a real quadratic extension such that

§2 Results and applications §2.1 Applications to BSD conjecture.

Fix an elliptic curve E of conductor $M D$ and K / \mathbb{Q} a real quadratic extension such that

- all primes dividing M are split in K;

§2 Results and applications §2.1 Applications to BSD conjecture.

Fix an elliptic curve E of conductor $M D$ and K / \mathbb{Q} a real quadratic extension such that

- all primes dividing M are split in K;
- all primes dividing D are inert in K.

§2 Results and applications §2.1 Applications to BSD conjecture.

Fix an elliptic curve E of conductor $M D$ and K / \mathbb{Q} a real quadratic extension such that

- all primes dividing M are split in K;
- all primes dividing D are inert in K.

Parity arguments show that the order of vanishing of $L_{K}(E, \chi, 1)$ is even, for characters $\chi: G_{c}^{+} \rightarrow \mathbb{C}^{\times}$with $(c, \operatorname{disc}(K) M D)=1$.

§2 Results and applications
 §2.1 Applications to BSD conjecture.

Fix an elliptic curve E of conductor $M D$ and K / \mathbb{Q} a real quadratic extension such that

- all primes dividing M are split in K;
- all primes dividing D are inert in K.

Parity arguments show that the order of vanishing of $L_{K}(E, \chi, 1)$ is even, for characters $\chi: G_{c}^{+} \rightarrow \mathbb{C}^{\times}$with $(c, \operatorname{disc}(K) M D)=1$.

Theorem (L.-Rotger-Vigni)
Assume the first conjecture $\left(P_{J, \psi} \in J^{2}\left(H_{c}^{+}\right)\right)$. If $L_{K}(E, \chi, 1) \neq 0$ then $\left(E\left(H_{c}^{+}\right) \otimes_{\mathbb{Z}} \mathbb{C}\right)^{\chi}=0$.

§2 Results and applications

§2.1 Applications to BSD conjecture.
Fix an elliptic curve E of conductor $M D$ and K / \mathbb{Q} a real quadratic extension such that

- all primes dividing M are split in K;
- all primes dividing D are inert in K.

Parity arguments show that the order of vanishing of $L_{K}(E, \chi, 1)$ is even, for characters $\chi: G_{c}^{+} \rightarrow \mathbb{C}^{\times}$with $(c, \operatorname{disc}(K) M D)=1$.

Theorem (L.-Rotger-Vigni)
Assume the first conjecture $\left(P_{J, \psi} \in J^{2}\left(H_{c}^{+}\right)\right.$). If $L_{K}(E, \chi, 1) \neq 0$ then $\left(E\left(H_{c}^{+}\right) \otimes_{\mathbb{Z}} \mathbb{C}\right)^{\chi}=0$.
As you may notice, the prime p inert in K does not appear in the statement of this result. To explain the connection with Darmon points, let us consider the simplest case when $c=1$ and $H_{1}^{+}=K$.

Proof: Selmer group and auxiliary primes p

Fix a prime $\ell \nmid M D$ and consider the Selmer group

$$
\operatorname{Sel}_{\ell}(E / K) \subseteq H^{1}(K, E[\ell])
$$

Proof: Selmer group and auxiliary primes p

Fix a prime $\ell \nmid M D$ and consider the Selmer group

$$
\operatorname{Sel}_{\ell}(E / K) \subseteq H^{1}(K, E[\ell])
$$

Our aim is to show that this group is trivial, for at least one prime ℓ as above if $L_{K}(E, 1) \neq 0$ (in fact, we can show this statement for all ℓ except a finite number, as predicted by the BSD conjecture).

Proof: Selmer group and auxiliary primes p

Fix a prime $\ell \nmid M D$ and consider the Selmer group

$$
\operatorname{Sel}_{\ell}(E / K) \subseteq H^{1}(K, E[\ell])
$$

Our aim is to show that this group is trivial, for at least one prime ℓ as above if $L_{K}(E, 1) \neq 0$ (in fact, we can show this statement for all ℓ except a finite number, as predicted by the BSD conjecture).

To this end, we consider a suitable infinite set of primes p, which are inert in K, and such that

$$
\ell \mid a_{p}^{2}-(p+1)^{2}
$$

For this primes, we have a raising the level result which allows to view the Galois module $E[\ell]$ as a quotient of $J_{\rho}[\ell]$, where

$$
J_{p}:=\operatorname{Jac}\left(X_{M p}\right)^{p \text { new }} .
$$

Proof: Darmon points

Kummer maps and the above observation can be used to associate $P_{J, \psi} \in J_{p}(K)$ with a cohomology class $\kappa_{p} \in H^{1}(K, E[p]):$

$$
J_{p}(K) \longrightarrow H^{1}\left(K, J_{p}[\ell]\right) \longrightarrow H^{1}(K, E[\ell])
$$

Proof: Darmon points

Kummer maps and the above observation can be used to associate $P_{J, \psi} \in J_{p}(K)$ with a cohomology class $\kappa_{p} \in H^{1}(K, E[p]):$

$$
J_{p}(K) \longrightarrow H^{1}\left(K, J_{p}[\ell]\right) \longrightarrow H^{1}(K, E[\ell])
$$

The collection $\left\{\kappa_{p}\right\}_{p}$ can be used, in combination with the global Tate pairing, to deduce the triviality of $\operatorname{Sel}_{\ell}(E / K)$ under the condition $L_{K}(E, 1) \neq 0$.

Proof: Darmon points

Kummer maps and the above observation can be used to associate $P_{J, \psi} \in J_{p}(K)$ with a cohomology class $\kappa_{p} \in H^{1}(K, E[p]):$

$$
J_{p}(K) \longrightarrow H^{1}\left(K, J_{p}[\ell]\right) \longrightarrow H^{1}(K, E[\ell])
$$

The collection $\left\{\kappa_{p}\right\}_{p}$ can be used, in combination with the global Tate pairing, to deduce the triviality of $\operatorname{Sel}_{\ell}(E / K)$ under the condition $L_{K}(E, 1) \neq 0$.

For this, we need a reciprocity law relating the restriction at ℓ of the classes κ_{p} with the algebraic part of the special value of $L_{K}(E, 1)$.

§2.2 Results for genus characters

A genus character is a quadratic unramified character of $\mathrm{Gal}\left(K^{\mathrm{ab}} / K\right)$. Let H_{χ} denote the field cut out by χ (biquadratic, unless χ is trivial).

§2.2 Results for genus characters

A genus character is a quadratic unramified character of $\mathrm{Gal}\left(K^{\mathrm{ab}} / K\right)$. Let H_{χ} denote the field cut out by χ (biquadratic, unless χ is trivial).
Genus characters are described by unordered pairs $\left(\chi_{1}, \chi_{2}\right)$ of Dirichlet characters of discriminants d_{1} and d_{2} with $d_{1} d_{2}=d_{K}$.

§2.2 Results for genus characters

A genus character is a quadratic unramified character of $\mathrm{Gal}\left(K^{\mathrm{ab}} / K\right)$. Let H_{χ} denote the field cut out by χ (biquadratic, unless χ is trivial).
Genus characters are described by unordered pairs (χ_{1}, χ_{2}) of Dirichlet characters of discriminants d_{1} and d_{2} with $d_{1} d_{2}=d_{K}$.
Theorem (L.-Vigni)
Suppose that $A_{f}=E$ is an elliptic curve and χ is a genus character of K with $\chi_{1}(-M D)=\chi_{2}(-M D)=-w_{M D}$. Then there exists an integer $n \geq 1$ such that:

- $n P_{f, \chi} \in E\left(H_{\chi}\right)$
- $n P_{f, \chi} \neq 0$ in $\left(E\left(H_{\chi}\right) \otimes \mathbb{C}\right)^{\chi}$ if and only if $L_{K}^{\prime}(E, \chi, 1) \neq 0$.

§2.2 Results for genus characters

A genus character is a quadratic unramified character of $\mathrm{Gal}\left(K^{\mathrm{ab}} / K\right)$. Let H_{χ} denote the field cut out by χ (biquadratic, unless χ is trivial).
Genus characters are described by unordered pairs (χ_{1}, χ_{2}) of Dirichlet characters of discriminants d_{1} and d_{2} with $d_{1} d_{2}=d_{K}$.

Theorem (L.-Vigni)

Suppose that $A_{f}=E$ is an elliptic curve and χ is a genus character of K with $\chi_{1}(-M D)=\chi_{2}(-M D)=-w_{M D}$. Then there exists an integer $n \geq 1$ such that:

- $n P_{f, \chi} \in E\left(H_{\chi}\right)$
- $n P_{f, \chi} \neq 0$ in $\left(E\left(H_{\chi}\right) \otimes \mathbb{C}\right)^{\chi}$ if and only if $L_{K}^{\prime}(E, \chi, 1) \neq 0$.

The proof generalizes arguments by Bertolini-Darmon for the split quaternion algebra $\mathrm{M}_{2}(\mathbb{Q})$.

Step I. Lift of measure-valued cohomology/1

Choose a sign \pm (depending on χ) and let

$$
\mu_{f} \in H^{1}\left(\Gamma, \operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right), H_{E}^{ \pm}\right)\right)
$$

denote the projection of μ_{H} to

$$
H_{E}^{ \pm}:=H_{1}(E(\mathbb{C}), \mathbb{Z})^{ \pm}
$$

(=土-eigenmodule for the complex conjugation).

Step I. Lift of measure-valued cohomology/1

Choose a sign \pm (depending on χ) and let

$$
\mu_{f} \in H^{1}\left(\Gamma, \operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right), H_{E}^{ \pm}\right)\right)
$$

denote the projection of μ_{H} to

$$
H_{E}^{ \pm}:=H_{1}(E(\mathbb{C}), \mathbb{Z})^{ \pm}
$$

(=土-eigenmodule for the complex conjugation).
$-f \Longrightarrow f_{\infty}$: Hida family passing through f.

Step I. Lift of measure-valued cohomology/1

Choose a sign \pm (depending on χ) and let

$$
\mu_{f} \in H^{1}\left(\Gamma, \operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right), H_{E}^{ \pm}\right)\right)
$$

denote the projection of μ_{H} to

$$
H_{E}^{ \pm}:=H_{1}(E(\mathbb{C}), \mathbb{Z})^{ \pm}
$$

(=土-eigenmodule for the complex conjugation).

- $f \Longrightarrow f_{\infty}$: Hida family passing through f.
- Want: $\mu_{f} \Longrightarrow \tilde{\mu}_{f}$.

Step I. Lift of measure-valued cohomology/2

Write \mathbb{D} for the module of \mathbb{Z}_{p}-valued measures on $\mathbb{Y}:=\mathbb{Z}_{p}^{2}$ which are supported on the subset \mathbb{X} of primitive elements (i.e., those vectors in \mathbb{Y} which are not divisible by p).

Step I. Lift of measure-valued cohomology/2

Write \mathbb{D} for the module of \mathbb{Z}_{p}-valued measures on $\mathbb{Y}:=\mathbb{Z}_{p}^{2}$ which are supported on the subset \mathbb{X} of primitive elements (i.e., those vectors in \mathbb{Y} which are not divisible by p).

There is a map

$$
\pi: \mathbb{X} \longrightarrow \mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)
$$

taking (x, y) to x / y

Step I. Lift of measure-valued cohomology/2

Write \mathbb{D} for the module of \mathbb{Z}_{p}-valued measures on $\mathbb{Y}:=\mathbb{Z}_{p}^{2}$ which are supported on the subset \mathbb{X} of primitive elements (i.e., those vectors in \mathbb{Y} which are not divisible by p).

There is a map

$$
\pi: \mathbb{X} \longrightarrow \mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)
$$

taking (x, y) to x / y
If f_{k} is the weight k-specialization, trivial character, of f_{∞}, combining Jacquet-Langlands and Matsushima-Shimura we get an element

$$
\phi_{k} \in H^{1}\left(\Gamma_{M p}, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right) .
$$

Step I. Lift of measure-valued cohomology/3

We can construct an element $\tilde{\mu}_{f} \in H^{1}\left(\Gamma_{M}, \mathbb{D}\right) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$ such that:

Step I. Lift of measure-valued cohomology/3

We can construct an element $\tilde{\mu}_{f} \in H^{1}\left(\Gamma_{M}, \mathbb{D}\right) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$ such that:

- $\pi_{*}\left(\tilde{\mu}_{f}\right)=\mu_{f}\left(\right.$ recall $\left.\pi: \mathbb{X} \rightarrow \mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)\right)$.

Step I. Lift of measure-valued cohomology/3

We can construct an element $\tilde{\mu}_{f} \in H^{1}\left(\Gamma_{M}, \mathbb{D}\right) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$ such that:

- $\pi_{*}\left(\tilde{\mu}_{f}\right)=\mu_{f}\left(\right.$ recall $\left.\pi: \mathbb{X} \rightarrow \mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)\right)$.
- There are specialization maps ρ_{k} such that

$$
\rho_{k}\left(\tilde{\mu}_{f}\right)=(\text { multiple of }) \phi_{k} \in H^{1}\left(\Gamma_{M p}, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)
$$

Step II: Esplicit expression for Darmon points

Now let

$$
\Phi_{\text {Tate }}: \bar{K}_{p}^{\times} / q^{\mathbb{Z}} \longrightarrow E\left(\bar{K}_{p}\right)
$$

denote Tate's p-adic uniformization.

Step II: Esplicit expression for Darmon points

Now let

$$
\Phi_{\text {Tate }}: \bar{K}_{p}^{\times} / q^{\mathbb{Z}} \longrightarrow E\left(\bar{K}_{p}\right)
$$

denote Tate's p-adic uniformization.
Let $\log _{q}$ be the branch of the p-adic logarithm satisfying $\log _{q}(q)=0$ and define

$$
\log _{E}(P):=\log _{q}\left(\Phi_{\text {Tate }}^{-1}(P)\right)
$$

for all $P \in E\left(K_{p}\right)$.

Step II: Esplicit expression for Darmon points

Now let

$$
\Phi_{\text {Tate }}: \bar{K}_{p}^{\times} / q^{\mathbb{Z}} \longrightarrow E\left(\bar{K}_{p}\right)
$$

denote Tate's p-adic uniformization.
Let $\log _{q}$ be the branch of the p-adic logarithm satisfying $\log _{q}(q)=0$ and define

$$
\log _{E}(P):=\log _{q}\left(\Phi_{\text {Tate }}^{-1}(P)\right)
$$

for all $P \in E\left(K_{p}\right)$.
The first auxiliary result is the following
Theorem (Explicit expression of Darmon points)

$$
\log _{E}\left(P_{f, \psi}\right)=(-t) \cdot \int_{\mathbb{X}} \log _{q}\left(x-z_{\psi} y\right) d \tilde{\mu}_{f, \gamma_{\psi}}
$$

Step III. p-adic L-functions

Associate to $\tilde{\mu}_{f}$ a p-adic L-function $L_{p}\left(f_{\infty} / K, \chi, k\right)$ attached to f_{∞}, a genus character χ of K, and a p-adic variable k.

Step III. p-adic L-functions

Associate to $\tilde{\mu}_{f}$ a p-adic L-function $L_{p}\left(f_{\infty} / K, \chi, k\right)$ attached to f_{∞}, a genus character χ of K, and a p-adic variable k.

A result by Popa + the interpolation property $\rho_{k}\left(\tilde{\mu}_{f}\right)=\phi_{k}$ in $H^{1}\left(\Gamma_{M p}, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$ imply: for $k \geq 4$ an even integer

$$
L_{p}\left(f_{\infty} / K, \chi, k\right)=(\text { non-zero constant }) L\left(f_{k}^{\sharp} / K, \chi, k / 2\right)
$$

where the form f_{k} is the p-stabilization of $f_{k}^{\sharp} \in S_{k}\left(\Gamma_{0}(M D)\right)$.

Step III. p-adic L-functions

Associate to $\tilde{\mu}_{f}$ a p-adic L-function $L_{p}\left(f_{\infty} / K, \chi, k\right)$ attached to f_{∞}, a genus character χ of K, and a p-adic variable k.

A result by Popa + the interpolation property $\rho_{k}\left(\tilde{\mu}_{f}\right)=\phi_{k}$ in $H^{1}\left(\Gamma_{M p}, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$ imply: for $k \geq 4$ an even integer

$$
L_{p}\left(f_{\infty} / K, \chi, k\right)=(\text { non-zero constant }) L\left(f_{k}^{\sharp} / K, \chi, k / 2\right)
$$

where the form f_{k} is the p-stabilization of $f_{k}^{\sharp} \in S_{k}\left(\Gamma_{0}(M D)\right)$.
Theorem (Factorization of p-adic L-functions)

$$
L_{p}\left(f_{\infty} / K, \chi, k\right)=\eta(k) L_{p}\left(f_{\infty}, \chi_{1}, k, k / 2\right) L_{p}\left(f_{\infty}, \chi_{2}, k, k / 2\right)
$$

Step III. p-adic L-functions

Associate to $\tilde{\mu}_{f}$ a p-adic L-function $L_{p}\left(f_{\infty} / K, \chi, k\right)$ attached to f_{∞}, a genus character χ of K, and a p-adic variable k.

A result by Popa + the interpolation property $\rho_{k}\left(\tilde{\mu}_{f}\right)=\phi_{k}$ in $H^{1}\left(\Gamma_{M p}, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$ imply: for $k \geq 4$ an even integer

$$
L_{p}\left(f_{\infty} / K, \chi, k\right)=(\text { non-zero constant }) L\left(f_{k}^{\sharp} / K, \chi, k / 2\right)
$$

where the form f_{k} is the p-stabilization of $f_{k}^{\sharp} \in S_{k}\left(\Gamma_{0}(M D)\right)$.
Theorem (Factorization of p-adic L-functions)

$$
L_{p}\left(f_{\infty} / K, \chi, k\right)=\eta(k) L_{p}\left(f_{\infty}, \chi_{1}, k, k / 2\right) L_{p}\left(f_{\infty}, \chi_{2}, k, k / 2\right)
$$

- $L\left(f_{\infty}, \chi_{i}, k, s\right)$ is the Mazur-Kitagawa p-adic L-function

Step III. p-adic L-functions

Associate to $\tilde{\mu}_{f}$ a p-adic L-function $L_{p}\left(f_{\infty} / K, \chi, k\right)$ attached to f_{∞}, a genus character χ of K, and a p-adic variable k.

A result by Popa + the interpolation property $\rho_{k}\left(\tilde{\mu}_{f}\right)=\phi_{k}$ in $H^{1}\left(\Gamma_{M p}, \operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)\right)$ imply: for $k \geq 4$ an even integer

$$
L_{p}\left(f_{\infty} / K, \chi, k\right)=(\text { non-zero constant }) L\left(f_{k}^{\sharp} / K, \chi, k / 2\right)
$$

where the form f_{k} is the p-stabilization of $f_{k}^{\sharp} \in S_{k}\left(\Gamma_{0}(M D)\right)$.
Theorem (Factorization of p-adic L-functions)

$$
L_{p}\left(f_{\infty} / K, \chi, k\right)=\eta(k) L_{p}\left(f_{\infty}, \chi_{1}, k, k / 2\right) L_{p}\left(f_{\infty}, \chi_{2}, k, k / 2\right)
$$

- $L\left(f_{\infty}, \chi_{i}, k, s\right)$ is the Mazur-Kitagawa p-adic L-function
- $k \mapsto \eta(k) \neq 0$ is a p-adic analytic function.

Proof of the main result

Proof of the main result

1. Step II (explicit expressions for Darmon points):

$$
\mathrm{P}_{f, \chi} \longleftrightarrow \frac{d}{d^{2} k} L_{p}\left(f_{\infty} / K, \chi, k\right)_{\mid k=2}
$$

Proof of the main result

1. Step II (explicit expressions for Darmon points):

$$
\mathrm{P}_{f, \chi} \longleftrightarrow \frac{d}{d^{2} k} L_{p}\left(f_{\infty} / K, \chi, k\right)_{\mid k=2}
$$

2. Step III (factorization of L-functions)

$$
\frac{d}{d^{2} k} L_{p}\left(f_{\infty} / K, \chi, k\right)_{\mid k=2} \longleftrightarrow \frac{d}{d^{2} k} L_{p}\left(f_{\infty}, \chi_{1}, k, k / 2\right)_{\mid k=2}
$$

(for a suitable ordering of $\left(\chi_{1}, \chi_{2}\right)$).

Proof of the main result

1. Step II (explicit expressions for Darmon points):

$$
\mathrm{P}_{f, \chi} \longleftrightarrow \frac{d}{d^{2} k} L_{p}\left(f_{\infty} / K, \chi, k\right)_{\mid k=2}
$$

2. Step III (factorization of L-functions)

$$
\frac{d}{d^{2} k} L_{p}\left(f_{\infty} / K, \chi, k\right)_{\mid k=2} \longleftrightarrow \frac{d}{d^{2} k} L_{p}\left(f_{\infty}, \chi_{1}, k, k / 2\right)_{\mid k=2}
$$

(for a suitable ordering of $\left(\chi_{1}, \chi_{2}\right)$).
3. Bertolini and Darmon:

$$
\frac{d}{d^{2} k} L_{p}\left(f_{\infty}, \chi_{1}, k, k / 2\right)_{\mid k=2} \longleftrightarrow \text { Heegner divisors }
$$

