Mathematical models and some challenges in quantum chemistry

Gero Friesecke, TU Munich http://www-m7.ma.tum.de

Tutorial

Workshop 'Density Functional Theory: Fundamentals and Applications in Condensed Matter Physics', Organizers: E. Cancès, C.J.Garcia-Cervera, Y.A.Wang

Banff, 24.1.2011
2. Approximations and reduced models

Starting point

Exact (non-relativistic, Born-Oppenheimer) N-electron eq. known

$$
H \psi=E \psi, \quad \psi=\psi\left(x_{1}, . ., x_{N} ; s_{1}, . ., s_{N}\right), \quad \psi \text { antisymm }
$$

but not directly numerically accessible due to curse of dimension.

Starting point

Exact (non-relativistic, Born-Oppenheimer) N-electron eq. known

$$
H \psi=E \psi, \quad \psi=\psi\left(x_{1}, . ., x_{N} ; s_{1}, . ., s_{N}\right), \quad \psi \text { antisymm }
$$

but not directly numerically accessible due to curse of dimension.

Recall electronic Hamiltonian:

$$
H=T_{e}+V_{n e}+V_{e e}
$$

with

$$
T_{e}=\sum_{i}\left(-\frac{1}{2} \Delta_{x_{i}}\right), \quad V_{n e}=\sum_{i} v_{n e}\left(x_{i}\right), \quad V_{e e}=\sum_{i<j}\left|x_{i}-x_{j}\right|^{-1}
$$

Starting point, ctd.

Most computationally practicable methods are not numerical methods (in the sense in which this terminology is used in mathematics), but reduced models.

Starting point, ctd.

Most computationally practicable methods are not numerical methods (in the sense in which this terminology is used in mathematics), but reduced models.

Many reduced models exploit the variational formula for the lowest eigenvalue of H :

$$
E=\min _{\psi \in \mathcal{A}}\langle\psi| H|\psi\rangle
$$

where ψ is varied over the admissible set

$$
\mathcal{A}=\left\{\psi \in H^{1}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{N}\right) \mid \psi \text { antisymmetric, }\langle\psi \mid \psi\rangle=1\right\} .
$$

Hartree-Fock model

Keep exact energy functional, vary over smaller set of trial functions:

$$
E^{H F}=\min _{\psi \in \mathcal{S}}\langle\psi| H|\psi\rangle
$$

Hartree-Fock model

Keep exact energy functional, vary over smaller set of trial functions:

$$
E^{H F}=\min _{\psi \in \mathcal{S}}\langle\psi| H|\psi\rangle
$$

where

$$
\mathcal{S}=\left\{\left|\psi_{1} \cdots \psi_{N}\right\rangle \mid \psi_{1}, . ., \psi_{N} \in H^{1}\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right),\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}\right\}
$$

(set of Slater determinants), with

$$
\left|\psi_{1} \cdots \psi_{N}\right\rangle\left(x_{1}, . ., x_{N}\right)=\frac{1}{\sqrt{N!}} \operatorname{det}\left(\begin{array}{ccc}
\psi_{1}\left(x_{1}\right) & \cdots & \psi_{1}\left(x_{N}\right) \\
\vdots & & \vdots \\
\psi_{N}\left(x_{1}\right) & \cdots & \psi_{N}\left(x_{N}\right)
\end{array}\right)
$$

Hartree-Fock model, ctd.

Hartree-Fock model, ctd.

Energy functional as a function of the orbitals: Notation: $x=(r, s) \in \mathbb{R}^{3} \times \mathbb{Z}_{2}$

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\sum_{i}\left\langle\psi_{i}\right|-\frac{1}{2} \Delta+v_{n e}\left|\psi_{i}\right\rangle \\
& +\frac{1}{2} \sum_{i, j} \iint \frac{\left|\psi_{i}(x)\right|^{2}\left|\psi_{j}\left(x^{\prime}\right)\right|^{2}-\psi_{i}(x) \overline{\psi_{j}(x)} \psi_{j}\left(x^{\prime}\right) \overline{\psi_{i}\left(x^{\prime}\right)}}{\left|r-r^{\prime}\right|} d x d x^{\prime}
\end{aligned}
$$

Hartree-Fock model, ctd.

Energy functional as a function of the orbitals: Notation: $x=(r, s) \in \mathbb{R}^{3} \times \mathbb{Z}_{2}$

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\sum_{i}\left\langle\psi_{i}\right|-\frac{1}{2} \Delta+v_{n e}\left|\psi_{i}\right\rangle \\
& +\frac{1}{2} \sum_{i, j} \iint \frac{\left|\psi_{i}(x)\right|^{2}\left|\psi_{j}\left(x^{\prime}\right)\right|^{2}-\psi_{i}(x) \overline{\psi_{j}(x)} \psi_{j}\left(x^{\prime}\right) \overline{\psi_{i}\left(x^{\prime}\right)}}{\left|r-r^{\prime}\right|} d x d x^{\prime}
\end{aligned}
$$

Euler-Lagrange equations (Hartree-Fock equations):

$$
f_{\psi} \psi_{i}=\epsilon_{i} \psi_{i} \quad(i=1, . ., N)
$$

with the Fock operator
$\left.f_{\psi} \phi=\left(-\frac{1}{2} \Delta+v_{n e}+\int \sum_{i} \frac{\left|\psi_{i}\left(x^{\prime}\right)\right|^{2}}{\left|\cdot-r^{\prime}\right|} d x^{\prime}\right) \phi-\int \sum_{i} \frac{\phi\left(x^{\prime}\right) \overline{\psi_{i}\left(x^{\prime}\right)}}{\left|\cdot-r^{\prime}\right|} d x^{\prime}\right) \psi_{i}$

Hartree-Fock model, ctd.

Energy functional as a function of the orbitals: Notation: $x=(r, s) \in \mathbb{R}^{3} \times \mathbb{Z}_{2}$

$$
\begin{aligned}
\langle\psi| H|\psi\rangle & =\sum_{i}\left\langle\psi_{i}\right|-\frac{1}{2} \Delta+v_{n e}\left|\psi_{i}\right\rangle \\
& +\frac{1}{2} \sum_{i, j} \iint \frac{\left|\psi_{i}(x)\right|^{2}\left|\psi_{j}\left(x^{\prime}\right)\right|^{2}-\psi_{i}(x) \overline{\psi_{j}(x)} \psi_{j}\left(x^{\prime}\right) \overline{\psi_{i}\left(x^{\prime}\right)}}{\left|r-r^{\prime}\right|} d x d x^{\prime}
\end{aligned}
$$

Euler-Lagrange equations (Hartree-Fock equations):

$$
f_{\psi} \psi_{i}=\epsilon_{i} \psi_{i} \quad(i=1, . ., N)
$$

with the Fock operator

$$
\left.f_{\psi} \phi=\left(-\frac{1}{2} \Delta+v_{n e}+\int \sum_{i} \frac{\left|\psi_{i}\left(x^{\prime}\right)\right|^{2}}{\left|\cdot-r^{\prime}\right|} d x^{\prime}\right) \phi-\int \sum_{i} \frac{\phi\left(x^{\prime}\right) \overline{\psi_{i}\left(x^{\prime}\right)}}{\left|\cdot-r^{\prime}\right|} d x^{\prime}\right) \psi_{i}
$$

Note that the Fock operator depends itself on the ψ_{i}, so the HF equations are nonlinear.

Hartree-Fock model, ctd.

Energy functional as a function of the orbitals: Notation: $x=(r, s) \in \mathbb{R}^{3} \times \mathbb{Z}_{2}$
$\langle\psi| H|\psi\rangle=\sum_{i}\left\langle\psi_{i}\right|-\frac{1}{2} \Delta+v_{n e}\left|\psi_{i}\right\rangle$

$$
+\frac{1}{2} \sum_{i, j} \iint \frac{\left|\psi_{i}(x)\right|^{2}\left|\psi_{j}\left(x^{\prime}\right)\right|^{2}-\psi_{i}(x) \overline{\psi_{j}(x)} \psi_{j}\left(x^{\prime}\right) \overline{\psi_{i}\left(x^{\prime}\right)}}{\left|r-r^{\prime}\right|} d x d x^{\prime}
$$

Euler-Lagrange equations (Hartree-Fock equations):

$$
f_{\psi} \psi_{i}=\epsilon_{i} \psi_{i} \quad(i=1, . ., N)
$$

with the Fock operator

$$
\left.f_{\psi} \phi=\left(-\frac{1}{2} \Delta+v_{n e}+\int \sum_{i} \frac{\left|\psi_{i}\left(x^{\prime}\right)\right|^{2}}{\left|\cdot-r^{\prime}\right|} d x^{\prime}\right) \phi-\int \sum_{i} \frac{\phi\left(x^{\prime}\right) \overline{\psi_{i}\left(x^{\prime}\right)}}{\left|\cdot-r^{\prime}\right|} d x^{\prime}\right) \psi_{i}
$$

Note that the Fock operator depends itself on the ψ_{i}, so the HF equations are nonlinear.

Easy to show that $\epsilon_{1}, . ., \epsilon_{N}$ are the lowest eigenvalues of f_{ψ}. This follows from positivity of the Hessian at a minimizer.

Hartre-Fock model, ctd

The HF energy and HF equations have a nice density matrix formulation.

Hartre-Fock model, ctd

The HF energy and HF equations have a nice density matrix formulation.

This is because HF energy and Fock operator depend only on the projector (density matrix)

$$
\sum_{i=1}^{N}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=: \gamma_{\psi}
$$

In particular, identifying γ_{ψ} with its integral kernel $\gamma_{\psi}\left(x, x^{\prime}\right)$ (and recalling $\left.x^{\prime}=\left(r^{\prime}, s^{\prime}\right)\right)$

$$
f_{\psi} \phi=\left(-\frac{1}{2} \Delta+v_{n e}+\int \frac{\gamma_{\psi}\left(x^{\prime}, x^{\prime}\right)}{\left|\cdot-r^{\prime}\right|} d x^{\prime}\right) \phi-\int \frac{\gamma_{\psi}\left(\cdot, x^{\prime}\right) \phi\left(x^{\prime}\right)}{\left|\cdot-r^{\prime}\right|} d x^{\prime}
$$

and the HF equation can be written as (writing $f_{\gamma_{\psi},}$ instead of f_{ψ})

$$
\gamma_{\psi}=\chi_{\left(-\infty, \epsilon_{\max }\right.}\left(f_{\gamma_{\psi}}\right) .
$$

Hartre-Fock model, ctd

The HF energy and HF equations have a nice density matrix formulation.

This is because HF energy and Fock operator depend only on the projector (density matrix)

$$
\sum_{i=1}^{N}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=: \gamma_{\psi}
$$

In particular, identifying γ_{ψ} with its integral kernel $\gamma_{\psi}\left(x, x^{\prime}\right)$ (and recalling $\left.x^{\prime}=\left(r^{\prime}, s^{\prime}\right)\right)$

$$
f_{\psi} \phi=\left(-\frac{1}{2} \Delta+v_{n e}+\int \frac{\gamma_{\psi}\left(x^{\prime}, x^{\prime}\right)}{\left|\cdot-r^{\prime}\right|} d x^{\prime}\right) \phi-\int \frac{\gamma_{\psi}\left(\cdot, x^{\prime}\right) \phi\left(x^{\prime}\right)}{\left|\cdot-r^{\prime}\right|} d x^{\prime}
$$

and the HF equation can be written as (writing $f_{\gamma_{\psi},}$ instead of f_{ψ})

$$
\gamma_{\psi}=\chi_{\left(-\infty, \epsilon_{\max }\right]}\left(f_{\gamma_{\psi}}\right)
$$

Roothaan algorithm (Roothaan 1955, math. analysis: Cancès/LeBris 2000)

$$
\gamma_{k+1}=\chi_{\left(-\infty, \epsilon_{\max }\right]}\left(f_{\gamma_{k}}\right)
$$

Hartree-Fock model, ctd.

The HF model yields remarkably good total energies.
(about 99 percent of the experimental GS energies of atoms)

Hartree-Fock model, ctd.

The HF model yields remarkably good total energies.
(about 99 percent of the experimental GS energies of atoms)

The rest is chemically important.
(energy differences such as binding energies can be off by a factor 2 , as in C_{2}, or even have the wrong sign, as in F_{2})

Hartree-Fock model, ctd.

The HF model yields remarkably good total energies.
(about 99 percent of the experimental GS energies of atoms)

The rest is chemically important.
(energy differences such as binding energies can be off by a factor 2 , as in C_{2}, or even have the wrong sign, as in F_{2})

Remark from audience (G.Scuseria):
For molecules, even total energies can be poor, as in H_{2}.

Cl and MCSCF

Cl and MCSCF

$\mathrm{Cl}=$ Configuration Interaction
MCSCF $=$ Multi-configuration self-consistent field

Cl and MCSCF

$\mathrm{Cl}=$ Configuration Interaction
MCSCF $=$ Multi-configuration self-consistent field

These are intermediate models between Hartree-Fock and full quantum mechanics, obtained by minimization of the energy $\mathcal{E}(\psi)=\langle\psi| H|\psi\rangle$ over intermediate sets:

Cl and MCSCF

$\mathrm{Cl}=$ Configuration Interaction
MCSCF $=$ Multi-configuration self-consistent field

These are intermediate models between Hartree-Fock and full quantum mechanics, obtained by minimization of the energy $\mathcal{E}(\psi)=\langle\psi| H|\psi\rangle$ over intermediate sets:

$$
\mathcal{S} \subsetneq \mathcal{A}^{C l} \subsetneq \mathcal{A}^{\text {MCSCF }} \subsetneq \mathcal{A}
$$

Cl and MCSCF

$\mathrm{Cl}=$ Configuration Interaction
MCSCF $=$ Multi-configuration self-consistent field

These are intermediate models between Hartree-Fock and full quantum mechanics, obtained by minimization of the energy $\mathcal{E}(\psi)=\langle\psi| H|\psi\rangle$ over intermediate sets:

$$
\mathcal{S} \subsetneq \mathcal{A}^{C l} \subsetneq \mathcal{A}^{\text {MCSCF }} \subsetneq \mathcal{A}
$$

Cl and MCSCF, ctd.

Precise definition of the set $\mathcal{A}^{C l}$:

Cl and MCSCF, ctd.

Precise definition of the set $\mathcal{A}^{C l}$: Linear combinations of the HF Slater determinant and suitable "excited" Slater determinants.

Cl and MCSCF, ctd.

Precise definition of the set $\mathcal{A}^{C l}$: Linear combinations of the HF Slater determinant and suitable "excited" Slater determinants.

$$
\begin{aligned}
& \Psi_{o}=\text { HF ground state }=\left|\psi_{1} \cdots \psi_{N}\right\rangle \text { (fixed) } \\
& \psi_{N+1}, \ldots, \psi_{K} \text { next (unoccupied) eigenstates of } f_{\psi_{0}} \text { (fixed) } \\
& \Psi_{i}^{a}=\left|\psi_{1} \cdots \psi_{i-1} \psi_{a} \psi_{i+1} \cdots \psi_{N}\right\rangle(i \leq N, a \geq N+1) \text { excitation } \\
& \mathcal{A}^{C l}=\left\{\left.\Psi=c \psi_{0}+\sum_{i, a} c_{i a} \Psi_{i}^{a}+\frac{1}{4} \sum_{i, j, a, b} c_{i j}^{a b} \Psi_{i j}^{a b}+\ldots \right\rvert\,\right. \\
& \left.c, c_{i}^{a}, c_{i j}^{a b}, \ldots \in \mathbb{C},\langle\Psi \mid \Psi\rangle=1\right\}
\end{aligned}
$$

Cl and MCSCF, ctd.

Precise definition of the set $\mathcal{A}^{C l}$: Linear combinations of the HF Slater determinant and suitable "excited" Slater determinants.

$$
\begin{aligned}
& \Psi_{o}=\text { HF ground state }=\left|\psi_{1} \cdots \psi_{N}\right\rangle \text { (fixed) } \\
& \psi_{N+1}, \ldots, \psi_{K} \text { next (unoccupied) eigenstates of } f_{\Psi_{0}} \text { (fixed) } \\
& \Psi_{i}^{a}=\left|\psi_{1} \cdots \psi_{i-1} \psi_{a} \psi_{i+1} \cdots \psi_{N}\right\rangle(i \leq N, a \geq N+1) \text { excitation } \\
& \mathcal{A}^{C l}=\left\{\left.\Psi=c \psi_{0}+\sum_{i, a} c_{i a} \Psi_{i}^{a}+\frac{1}{4} \sum_{i, j, a, b} c_{i j}^{a b} \Psi_{i j}^{a b}+\ldots \right\rvert\,\right. \\
& \left.c, c_{i}^{a}, c_{i j}^{a b}, \ldots \in \mathbb{C},\langle\Psi \mid \Psi\rangle=1\right\}
\end{aligned}
$$

Full CI: include all excitations (up to $N^{t h}$ order)
CISD: truncate after singles and doubles

Cl and MCSCF, ctd.

Precise definition of the set $\mathcal{A}^{C l}$: Linear combinations of the HF Slater determinant and suitable "excited" Slater determinants.

$$
\begin{aligned}
& \Psi_{o}=\text { HF ground state }=\left|\psi_{1} \cdots \psi_{N}\right\rangle \text { (fixed) } \\
& \psi_{N+1}, \ldots, \psi_{K} \text { next (unoccupied) eigenstates of } f_{\Psi_{0}} \text { (fixed) } \\
& \Psi_{i}^{a}=\left|\psi_{1} \cdots \psi_{i-1} \psi_{a} \psi_{i+1} \cdots \psi_{N}\right\rangle(i \leq N, a \geq N+1) \text { excitation } \\
& \mathcal{A}^{C l}=\left\{\left.\Psi=c \psi_{0}+\sum_{i, a} c_{i a} \Psi_{i}^{a}+\frac{1}{4} \sum_{i, j, a, b} c_{i j}^{a b} \Psi_{i j}^{a b}+\ldots \right\rvert\,\right. \\
& \left.c, c_{i}^{a}, c_{i j}^{a b}, \ldots \in \mathbb{C},\langle\Psi \mid \Psi\rangle=1\right\}
\end{aligned}
$$

Full CI: include all excitations (up to $N^{t h}$ order)
CISD: truncate after singles and doubles
Definition of $\mathcal{A}^{\text {MCSCF }}$:

Cl and MCSCF, ctd.

Precise definition of the set $\mathcal{A}^{C l}$: Linear combinations of the HF Slater determinant and suitable "excited" Slater determinants.

$$
\begin{aligned}
& \Psi_{o}=\text { HF ground state }=\left|\psi_{1} \cdots \psi_{N}\right\rangle \text { (fixed) } \\
& \psi_{N+1}, \ldots, \psi_{K} \text { next (unoccupied) eigenstates of } f_{\Psi_{0}} \text { (fixed) } \\
& \Psi_{i}^{a}=\left|\psi_{1} \cdots \psi_{i-1} \psi_{a} \psi_{i+1} \cdots \psi_{N}\right\rangle(i \leq N, a \geq N+1) \text { excitation } \\
& \mathcal{A}^{C l}=\left\{\left.\Psi=c \psi_{0}+\sum_{i, a} c_{i a} \Psi_{i}^{a}+\frac{1}{4} \sum_{i, j, a, b} c_{i j}^{a b} \Psi_{i j}^{a b}+\ldots \right\rvert\,\right. \\
& \left.c, c_{i}^{a}, c_{i j}^{a b}, \ldots \in \mathbb{C},\langle\Psi \mid \Psi\rangle=1\right\}
\end{aligned}
$$

Full CI: include all excitations (up to $N^{t h}$ order)
CISD: truncate after singles and doubles
Definition of $\mathcal{A}^{\text {MCSCF }}$: Analogous, except $\psi_{1}, . ., \psi_{K}$ are now allowed to vary subject to orthogonality $\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}$.

Cl and MCSCF , ctd.

Precise definition of the set $\mathcal{A}^{C l}$: Linear combinations of the HF Slater determinant and suitable "excited" Slater determinants.
$\psi_{o}=\mathrm{HF}$ ground state $=\left|\psi_{1} \cdots \psi_{N}\right\rangle$ (fixed)
$\psi_{N+1}, \ldots, \psi_{K}$ next (unoccupied) eigenstates of $f_{\Psi_{0}}$ (fixed)
$\psi_{i}^{a}=\left|\psi_{1} \cdots \psi_{i-1} \psi_{a} \psi_{i+1} \cdots \psi_{N}\right\rangle(i \leq N, a \geq N+1)$ excitation

$$
\begin{gathered}
\mathcal{A}^{C l}=\left\{\left.\Psi=c \Psi_{0}+\sum_{i, a} c_{i a} \Psi_{i}^{a}+\frac{1}{4} \sum_{i, j, a, b} c_{i j}^{a b} \Psi_{i j}^{a b}+\ldots \right\rvert\,\right. \\
\left.c, c_{i}^{a}, c_{i j}^{a b}, \ldots \in \mathbb{C},\langle\Psi \mid \Psi\rangle=1\right\}
\end{gathered}
$$

Full CI: include all excitations (up to $N^{t h}$ order)
CISD: truncate after singles and doubles
Definition of $\mathcal{A}^{\text {MCSCF }}$: Analogous, except $\psi_{1}, . ., \psi_{K}$ are now allowed to vary subject to orthogonality $\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}$.
Thus, in Cl we minimize over only expansion coefficients, while in MCSCF we minimize over orbitals and expansion coefficients.

Coupled Cluster method

Coupled Cluster method

Motivation: truncated Cl not size-consistent, i.e.
$E^{C I S D}$ (n noninteracting atoms) $\neq n \cdot E^{C I S D}$ (1 atom).

Coupled Cluster method

Motivation: truncated Cl not size-consistent, i.e.
$E^{C I S D}$ (n noninteracting atoms) $\neq n \cdot E^{C I S D}$ (1 atom).
Fixed by the exponential (rather than linear) ansatz $\Psi_{C C}=e^{T} \Psi_{0}$

Coupled Cluster method

Motivation: truncated Cl not size-consistent, i.e.
$E^{C I S D}$ (n noninteracting atoms) $\neq n \cdot E^{C I S D}$ (1 atom).
Fixed by the exponential (rather than linear) ansatz $\Psi_{C C}=e^{T} \Psi_{0}$
$T=T_{1}+T_{2}+\ldots$ cluster operator
$T_{1} \Psi_{0}=\sum_{i, a} t_{i}^{a} \Psi_{i}^{a} \quad$ Second quantized notation: $T_{1}=\sum_{i, a} t^{a} a^{\dagger}(a) a(i)$
$T_{2} \Psi_{0}=\frac{1}{4} \sum_{i, j, a, b} t_{i j}^{a b} \Psi_{i j}^{a b}$
$E^{C C}=\left\langle\Psi_{0}\right| e^{-T} H e^{T}\left|\Psi_{0}\right\rangle$
where the coefficients $t_{i}^{a}, t_{i j}^{a b}, \ldots$ in T solve the amplitude equations

$$
\begin{aligned}
\left\langle\Psi_{i}^{a}\right| e^{-T} H e^{T}\left|\Psi_{0}\right\rangle & =0 \\
\left\langle\Psi_{i j}^{a b}\right| e^{-T} H e^{T}\left|\Psi_{0}\right\rangle & =0
\end{aligned}
$$

Coupled Cluster method

Motivation: truncated Cl not size-consistent, i.e.
$E^{C I S D}$ (n noninteracting atoms) $\neq n \cdot E^{C I S D}$ (1 atom).
Fixed by the exponential (rather than linear) ansatz $\Psi_{C C}=e^{T} \Psi_{0}$
$T=T_{1}+T_{2}+\ldots$ cluster operator
$T_{1} \Psi_{0}=\sum_{i, a} t_{i}^{a} \Psi_{i}^{a} \quad$ Second quantized notation: $T_{1}=\sum_{i, a} t^{a} \mathrm{a}^{\dagger}(a) a(i)$
$T_{2} \Psi_{0}=\frac{1}{4} \sum_{i, j, a, b} t_{i j}^{a b} \Psi_{i j}^{a b}$
$E^{C C}=\left\langle\Psi_{0}\right| e^{-T} H e^{T}\left|\Psi_{0}\right\rangle$
where the coefficients $t_{i}^{a}, t_{i j}^{a b}, \ldots$ in T solve the amplitude equations

$$
\begin{aligned}
\left\langle\Psi_{i}^{a}\right| e^{-T} H e^{T}\left|\Psi_{0}\right\rangle & =0 \\
\left\langle\Psi_{i j}^{a b}\right| e^{-T} H e^{T}\left|\Psi_{0}\right\rangle & =0
\end{aligned}
$$

Eqns nonlinear, no variational structure

RDM method

RDM $=$ reduced 2 -body density matrix

RDM method

RDM $=$ reduced 2 -body density matrix
"Dual" method - minimize over a too large set

RDM method

RDM $=$ reduced 2 -body density matrix
"Dual" method - minimize over a too large set
$\mathcal{R}_{N}^{\text {approx }}$
$\supsetneq \quad \mathcal{R}_{N}$

RDM method

RDM $=$ reduced 2 -body density matrix
"Dual" method - minimize over a too large set

$\mathcal{R}_{N}^{\text {approx }}$	\supsetneq	\mathcal{R}_{N}	
$\min _{\Gamma \in \mathcal{R}_{N}^{\text {aprox }}} \operatorname{tr} h \Gamma$		$\min _{\Gamma \in \mathcal{R}_{N}} \operatorname{tr} h \Gamma$	
$E^{R D M}$			
		$\\|$	

RDM method

RDM $=$ reduced 2 -body density matrix
"Dual" method - minimize over a too large set

The sets appearing here are subsets of the space of self-adjoint operators on the two-electron Hilbert space $L^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{2}\right)$.

RDM method

RDM $=$ reduced 2 -body density matrix
"Dual" method - minimize over a too large set

The sets appearing here are subsets of the space of self-adjoint operators on the two-electron Hilbert space $L^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{2}\right)$.
h is the 2-body version of the N -body Hamiltonian with GS energy E, $h=(N-1)^{-1}\left(h_{0}\left(x_{1}\right)+h_{0}\left(x_{2}\right)+\frac{1}{\left|x_{1}-x_{2}\right|}\right.$ where $h_{0}(x)=-\frac{1}{2} \Delta_{x}+v_{n e}(x)$.
$\Gamma_{\psi}\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right)=\binom{N}{2} \int \psi\left(x_{1}, x_{2}, z\right) \overline{\psi\left(x_{1}^{\prime}, x_{2}^{\prime}, z\right)} d z, z=\left(x_{3}, . ., x_{N}\right)$ RDM of ψ. Facts: cpct self-adj.nonneg.trace class op.; $\langle\psi| H|\psi\rangle=\operatorname{tr} h \Gamma_{\psi}$

RDM method

RDM $=$ reduced 2 -body density matrix
"Dual" method - minimize over a too large set

The sets appearing here are subsets of the space of self-adjoint operators on the two-electron Hilbert space $L^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{2}\right)$.
h is the 2-body version of the N -body Hamiltonian with GS energy E, $h=(N-1)^{-1}\left(h_{0}\left(x_{1}\right)+h_{0}\left(x_{2}\right)+\frac{1}{\left|x_{1}-x_{2}\right|}\right.$ where $h_{0}(x)=-\frac{1}{2} \Delta_{x}+v_{n e}(x)$.
$\Gamma_{\psi}\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right)=\binom{N}{2} \int \psi\left(x_{1}, x_{2}, z\right) \overline{\psi\left(x_{1}^{\prime}, x_{2}^{\prime}, z\right)} d z, z=\left(x_{3}, . ., x_{N}\right)$ RDM of ψ. Facts: cpct self-adj.nonneg.trace class op.; $\langle\psi| H|\psi\rangle=\operatorname{tr} h \Gamma_{\psi}$
$\mathcal{R}_{N}=\left\{\Gamma \mid \Gamma=\Gamma_{\psi}\right.$ for some $\left.\psi \in \mathcal{A}_{N}\right\} \mathrm{N}$-representable density matrices

RDM method

RDM $=$ reduced 2 -body density matrix
"Dual" method - minimize over a too large set

$\mathcal{R}_{N}^{\text {approx }}$	\supsetneq	\mathcal{R}_{N}	
$\min _{\Gamma \in \mathcal{R}_{N}^{\text {aprox }}} \operatorname{tr} h \Gamma$		$\min _{\Gamma \in \mathcal{R}_{N}} \operatorname{tr} h \Gamma$	
$E^{R D M}$			
$E^{R D M}$		$\\|$	

The sets appearing here are subsets of the space of self-adjoint operators on the two-electron Hilbert space $L^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{2}\right)$.
h is the 2-body version of the N -body Hamiltonian with GS energy E, $h=(N-1)^{-1}\left(h_{0}\left(x_{1}\right)+h_{0}\left(x_{2}\right)+\frac{1}{\left|x_{1}-x_{2}\right|}\right.$ where $h_{0}(x)=-\frac{1}{2} \Delta_{x}+v_{n e}(x)$.
$\Gamma_{\psi}\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right)=\binom{N}{2} \int \psi\left(x_{1}, x_{2}, z\right) \overline{\psi\left(x_{1}^{\prime}, x_{2}^{\prime}, z\right)} d z, z=\left(x_{3}, . ., x_{N}\right)$ RDM of ψ. Facts: cpct self-adj.nonneg.trace class op.; $\langle\psi| H|\psi\rangle=\operatorname{tr} h \Gamma_{\psi}$ $\mathcal{R}_{N}=\left\{\Gamma \mid \Gamma=\Gamma_{\psi}\right.$ for some $\left.\psi \in \mathcal{A}_{N}\right\}$ N-representable density matrices
Not known, but useful bounds known (Coleman, Percus, Erdahl)

RDM method

RDM $=$ reduced 2-body density matrix
"Dual" method - minimize over a too large set

$\mathcal{R}_{N}^{\text {approx }}$	\supsetneq	\mathcal{R}_{N}	
$\min _{\Gamma \in \mathcal{R}_{N}^{\text {aprox }}} \operatorname{tr} h \Gamma$		$\min _{\Gamma \in \mathcal{R}_{N}} \operatorname{tr} h \Gamma$	
$E^{R D M}$			
$E^{R D M}$		$\\|$	

The sets appearing here are subsets of the space of self-adjoint operators on the two-electron Hilbert space $L^{2}\left(\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)^{2}\right)$.
h is the 2-body version of the N -body Hamiltonian with GS energy E, $h=(N-1)^{-1}\left(h_{0}\left(x_{1}\right)+h_{0}\left(x_{2}\right)+\frac{1}{\left|x_{1}-x_{2}\right|}\right.$ where $h_{0}(x)=-\frac{1}{2} \Delta_{x}+v_{n e}(x)$.
$\Gamma_{\psi}\left(x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right)=\binom{N}{2} \int \psi\left(x_{1}, x_{2}, z\right) \overline{\psi\left(x_{1}^{\prime}, x_{2}^{\prime}, z\right)} d z, z=\left(x_{3}, . ., x_{N}\right)$ RDM of ψ. Facts: cpct self-adj.nonneg.trace class op.; $\langle\psi| H|\psi\rangle=\operatorname{tr} h \Gamma_{\psi}$ $\mathcal{R}_{N}=\left\{\Gamma \mid \Gamma=\Gamma_{\psi}\right.$ for some $\left.\psi \in \mathcal{A}_{N}\right\} \mathrm{N}$-representable density matrices
Not known, but useful bounds known (Coleman, Percus, Erdahl) $\mathcal{R}_{N}^{\text {approx }}=\{\Gamma \mid \Gamma$ satisfies a set of known bounds $\}$

DFT-LDA

DFT-LDA

Basic version of DFT.

Mathematically: similar to HF model, except the nonlocal exchange term is replaced by a local exchange-correlation term.

DFT-LDA

Basic version of DFT.

Mathematically: similar to HF model, except the nonlocal exchange term is replaced by a local exchange-correlation term.

$$
E^{D F T}=\min _{\mathcal{A}^{\mathcal{D} \mathcal{F} \mathcal{T}}} \mathcal{E}^{D F T}
$$

with admissible set

$$
\left.\mathcal{A}^{D F T}=\left\{\left(\phi_{1}, . ., \phi_{N}\right) \in H^{1}\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)\right)^{N} \mid\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i j}\right\}
$$

(Kohn-Sham orbitals) and energy functional

$$
\mathcal{E}^{D F T}=\sum_{i, j} \int \frac{1}{2}\left|\nabla \phi_{i}\right|^{2}+\int v_{n e} \rho+\frac{1}{2} \iint \frac{\rho(r) \rho\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|} d r d r^{\prime}+\int \varepsilon_{x c}(\rho)
$$

where $\rho(r)=\sum_{s} \sum_{i}\left|\phi_{i}(r, s)\right|^{2}$ (density) and $\varepsilon_{x c}$ is a "known" function of ρ (exchange-correlation energy density of a homog.el.gas with density ρ).

DFT-LDA

Basic version of DFT.

Mathematically: similar to HF model, except the nonlocal exchange term is replaced by a local exchange-correlation term.

$$
E^{D F T}=\min _{\mathcal{A}^{\mathcal{D} \mathcal{F} \mathcal{T}}} \mathcal{E}^{D F T}
$$

with admissible set

$$
\left.\mathcal{A}^{D F T}=\left\{\left(\phi_{1}, . ., \phi_{N}\right) \in H^{1}\left(\mathbb{R}^{3} \times \mathbb{Z}_{2}\right)\right)^{N} \mid\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i j}\right\}
$$

(Kohn-Sham orbitals) and energy functional

$$
\mathcal{E}^{D F T}=\sum_{i, j} \int \frac{1}{2}\left|\nabla \phi_{i}\right|^{2}+\int v_{n e} \rho+\frac{1}{2} \iint \frac{\rho(r) \rho\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|} d r d r^{\prime}+\int \varepsilon_{x c}(\rho),
$$

where $\rho(r)=\sum_{s} \sum_{i}\left|\phi_{i}(r, s)\right|^{2}$ (density) and $\varepsilon_{x c}$ is a "known" function of ρ (exchange-correlation energy density of a homog.el.gas with density ρ).

Euler-Lagrange equations: (system of N coupled nonlinear PDE's in \mathbb{R}^{3})

$$
f_{\rho} \phi_{i}=\epsilon_{i} \phi_{i} \quad i=1, \ldots, N
$$

with the Kohn-Sham operator

$$
f_{\rho}=-\frac{1}{2} \Delta+v_{n e}+\int \frac{1}{\left|\cdot-r^{\prime}\right|} \rho\left(r^{\prime}\right) d r^{\prime}+\frac{d \varepsilon_{x c}(\rho)}{d \rho}
$$

Kinematic cost

Kinematic cost

$\mathrm{N}=$ no. of electrons
$\mathrm{K}=$ no. of one-body orbitals; assume $\mathrm{K}=c \cdot N$

Kinematic cost

$\mathrm{N}=$ no. of electrons
$\mathrm{K}=$ no. of one-body orbitals; assume $\mathrm{K}=c \cdot N$

HF, DFT-LDA $K \cdot N \sim N^{2}$

Kinematic cost

$\mathrm{N}=$ no. of electrons
$\mathrm{K}=$ no. of one-body orbitals; assume $\mathrm{K}=c \cdot N$
$\begin{array}{lll}\text { HF, DFT-LDA } & K \cdot N & \sim N^{2} \\ \text { CISD, CCSD } & \binom{K-N}{2} \cdot\binom{N}{2} & \sim N^{4}\end{array}$

Kinematic cost

$\mathrm{N}=$ no. of electrons
$\mathrm{K}=$ no. of one-body orbitals; assume $\mathrm{K}=c \cdot N$
$\begin{array}{lll}\text { HF, DFT-LDA } & K \cdot N & \sim N^{2} \\ \text { CISD, CCSD } & \binom{K-N}{2} \cdot\binom{N}{2} & \sim N^{4} \\ \text { RDM } & \binom{K}{2}^{2} & \sim N^{4}\end{array}$

Kinematic cost

$\mathrm{N}=$ no. of electrons
$\mathrm{K}=$ no. of one-body orbitals; assume $\mathrm{K}=c \cdot N$

HF, DFT-LDA $K \cdot N \sim N^{2}$
CISD, CCSD $\quad\binom{K-N}{2} \cdot\binom{N}{2} \sim N^{4}$
$\operatorname{RDM} \quad\binom{K}{2}^{2} \sim N^{4}$
CCSDTQ $\quad\binom{K-N}{4} \cdot\binom{N}{4} \sim N^{8}$

Kinematic cost

$\mathrm{N}=$ no. of electrons
$\mathrm{K}=$ no. of one-body orbitals; assume $\mathrm{K}=c \cdot N$

HF, DFT-LDA $K \cdot N \sim N^{2}$
CISD, CCSD $\quad\binom{K-N}{2} \cdot\binom{N}{2} \sim N^{4}$
$\operatorname{RDM} \quad\binom{K}{2}^{2} \sim N^{4}$
CCSDTQ $\quad\binom{K-N}{4} \cdot\binom{N}{4} \sim N^{8}$
FCI
$\binom{K}{N} \quad \sim N^{-1 / 2}$ const N

3. Mathematical challenges

other than designing the perfect $E_{x c}$ which everybody would want to use

Challenge 1: Representability

Challenge 1: Representability

Obtain better insight into the N -representability problem for 2-body density matrices.

Challenge 1: Representability

Obtain better insight into the N -representability problem for 2-body density matrices.

In particular, re-derive known bounds (such as Erdahl's 3-index-conditions) by a systematic method, rather than Guess-And-Verify.

Challenge 1: Representability

Obtain better insight into the N -representability problem for 2-body density matrices.

In particular, re-derive known bounds (such as Erdahl's 3-index-conditions) by a systematic method, rather than Guess-And-Verify.

In fact, even the nec. and suff. bounds on one-body DM's are only derived by Guess-And-Verify.

Challenge 2: Empiricism in basis sets and active spaces

Challenge 2: Empiricism in basis sets and active spaces

Remove some of the empiricism underlying the choice of basis sets and active spaces in $\mathrm{Cl}, \mathrm{CASSCF}, \mathrm{MCSCF}, \mathrm{CC}$.

Challenge 2: Empiricism in basis sets and active spaces

Remove some of the empiricism underlying the choice of basis sets and active spaces in $\mathrm{Cl}, \mathrm{CASSCF}, \mathrm{MCSCF}, \mathrm{CC}$.

In fact, stop claiming that wavefunction methods, unlike DFT functionals, contain no empiricism - they do: use of

- AO's
- their LC's
- background Gaussian basis functions
- occupied core orbitals
- cc-pVTZ...

Challenge 2: Empiricism in basis sets and active spaces

Remove some of the empiricism underlying the choice of basis sets and active spaces in CI, CASSCF, MCSCF, CC.

In fact, stop claiming that wavefunction methods, unlike DFT functionals, contain no empiricism - they do: use of

- AO's
- their LC's
- background Gaussian basis functions
- occupied core orbitals
- cc-pVTZ...

Yes, results would become independent of these choices in a complete one-body basis.

Challenge 2: Empiricism in basis sets and active spaces

Remove some of the empiricism underlying the choice of basis sets and active spaces in CI, CASSCF, MCSCF, CC.

In fact, stop claiming that wavefunction methods, unlike DFT functionals, contain no empiricism - they do: use of

- AO's
- their LC's
- background Gaussian basis functions
- occupied core orbitals
- cc-pVTZ...

Yes, results would become independent of these choices in a complete one-body basis. But the basis sets in actual computations are far from complete, so these choices hugely matter.

Challenge 2: Empiricism in basis sets and active spaces

Remove some of the empiricism underlying the choice of basis sets and active spaces in $\mathrm{CI}, \mathrm{CASSCF}, \mathrm{MCSCF}, \mathrm{CC}$.

In fact, stop claiming that wavefunction methods, unlike DFT functionals, contain no empiricism - they do: use of

- AO's
- their LC's
- background Gaussian basis functions
- occupied core orbitals
- cc-pVTZ...

Yes, results would become independent of these choices in a complete one-body basis. But the basis sets in actual computations are far from complete, so these choices hugely matter.

That's why wavefunction methods designed by chemists beat, e.g., clever general-purpuse sparse grid methods by mathematicians, hands down.

Challenge 3: Regularity/singularity structure

Challenge 3: Regularity/singularity structure

Current methods do not exploit recent mathematical results on the precise regularity/singularity structure of electronic WF's:

Challenge 3: Regularity/singularity structure

Current methods do not exploit recent mathematical results on the precise regularity/singularity structure of electronic WF's:

- local analyticity in $x_{i},\left|x_{i}\right|,\left|x_{i}-x_{j}\right|$ (T.Hoffmann-Ostenhof, M.Hoffmann-Ostenhof, T.Oestargaard Soerensen, 2009)

Challenge 3: Regularity/singularity structure

Current methods do not exploit recent mathematical results on the precise regularity/singularity structure of electronic WF's:

- local analyticity in $x_{i},\left|x_{i}\right|,\left|x_{i}-x_{j}\right|$ (T.Hoffmann-Ostenhof, M.Hoffmann-Ostenhof, T.Oestargaard Soerensen, 2009)
- high mixed derivatives (H.Yserentant, 2005)

Challenge 3: Regularity/singularity structure

Current methods do not exploit recent mathematical results on the precise regularity/singularity structure of electronic WF's:

- local analyticity in $x_{i},\left|x_{i}\right|,\left|x_{i}-x_{j}\right|$ (T.Hoffmann-Ostenhof, M.Hoffmann-Ostenhof, T.Oestargaard Soerensen, 2009)
- high mixed derivatives (H.Yserentant, 2005)

Try to exploit these results optimally.

Challenge 3: Regularity/singularity structure

Current methods do not exploit recent mathematical results on the precise regularity/singularity structure of electronic WF's:

- local analyticity in $x_{i},\left|x_{i}\right|,\left|x_{i}-x_{j}\right|$ (T.Hoffmann-Ostenhof, M.Hoffmann-Ostenhof, T.Oestargaard Soerensen, 2009)
- high mixed derivatives (H.Yserentant, 2005)

Try to exploit these results optimally.
(But beware of the difficulties with established explicitly correlated methods and emerging sparse methods.)

Challenge 4: Wavefunction boundary conditions

Challenge 4: Wavefunction boundary conditions

By pure luck, the kinematics of DFT (use ρ) is compatible with periodic boundary conditions, reducing electronic structure computations for crystalline solids to a cell problem.

Challenge 4: Wavefunction boundary conditions

By pure luck, the kinematics of DFT (use ρ) is compatible with periodic boundary conditions, reducing electronic structure computations for crystalline solids to a cell problem.

Try to come up with feasible "cell problems" for WF methods.

Challenge 4: Wavefunction boundary conditions

By pure luck, the kinematics of DFT (use ρ) is compatible with periodic boundary conditions, reducing electronic structure computations for crystalline solids to a cell problem.

Try to come up with feasible "cell problems" for WF methods.
(The naive idea to make the WF periodic in each coordinate is clearly wrong.)

Challenge 4: Wavefunction boundary conditions

By pure luck, the kinematics of DFT (use ρ) is compatible with periodic boundary conditions, reducing electronic structure computations for crystalline solids to a cell problem.

Try to come up with feasible "cell problems" for WF methods.
(The naive idea to make the WF periodic in each coordinate is clearly wrong.)

Remark from audience (K.Burke):
'Pure luck' is perhaps an overstatement. When first introducing DFT,
Walter Kohn - with his background in solid-state physics - did have applicability to solids in mind.

Challenge 5: Multiscale effects

Challenge 5: Multiscale effects

Learn to understand and exploit hidden scale separation effects. Hidden because no small par. in Hamiltonian.

Challenge 5: Multiscale effects

Learn to understand and exploit hidden scale separation effects. Hidden because no small par. in Hamiltonian.

Example (experimental data)

Atom	Li	Be	B	C	N	O	F	Ne	Cr
Ratio of first spectral gap to ground state energy	0.0093	0.0068	0.0053	0.0012	0.0016	0.00096	0.0078	0.0047	0.00003

Challenge 5: Multiscale effects

Learn to understand and exploit hidden scale separation effects. Hidden because no small par. in Hamiltonian.

Example (experimental data)

Atom	Li	Be	B	C	N	O	F	Ne	Cr
Ratio of first spectral gap to ground state energy	0.0093	0.0068	0.0053	0.0012	0.0016	0.00096	0.0078	0.0047	0.00003

Multiscale strategy for this particular example:

Challenge 5: Multiscale effects

Learn to understand and exploit hidden scale separation effects. Hidden because no small par. in Hamiltonian.

Example (experimental data)

Atom	Li	Be	B	C	N	O	F	Ne	Cr
Ratio of first spectral gap to ground state energy	0.0093	0.0068	0.0053	0.0012	0.0016	0.00096	0.0078	0.0047	0.00003

Multiscale strategy for this particular example:

- Identify and analyze suitable asymptotic limit in which $\frac{\text { gap }}{\text { total en. }} \rightarrow 0$ (here: $Z \rightarrow \infty$ at fixed N)

GF, B.D.Goddard, SIAM J. Math. Anal. 41, 631-664, 2009; Phys. Rev. A 81, 032516, 2010

Challenge 5: Multiscale effects

Learn to understand and exploit hidden scale separation effects.
Hidden because no small par. in Hamiltonian.
Example (experimental data)

Atom	Li	Be	B	C	N	O	F	Ne	Cr
Ratio of first spectral gap to ground state energy	0.0093	0.0068	0.0053	0.0012	0.0016	0.00096	0.0078	0.0047	0.00003

Multiscale strategy for this particular example:

- Identify and analyze suitable asymptotic limit in which $\frac{\text { gap }}{\text { total en. }} \rightarrow 0$ (here: $Z \rightarrow \infty$ at fixed N)

GF, B.D.Goddard, SIAM J. Math. Anal. 41, 631-664, 2009; Phys. Rev. A 81, 032516, 2010

- Design asymptotics-based method that resolves gaps correctly in limit GF, B.D.Goddard, Multiscale Model. Simul. 7, 1876-1879, 2009

Challenge 5: Multiscale effects

Learn to understand and exploit hidden scale separation effects.
Hidden because no small par. in Hamiltonian.
Example (experimental data)

Atom	Li	Be	B	C	N	O	F	Ne	Cr
Ratio of first spectral gap to ground state energy	0.0093	0.0068	0.0053	0.0012	0.0016	0.00096	0.0078	0.0047	0.00003

Multiscale strategy for this particular example:

- Identify and analyze suitable asymptotic limit in which $\frac{\text { gap }}{\text { total en. }} \rightarrow 0$ (here: $Z \rightarrow \infty$ at fixed N)

GF, B.D.Goddard, SIAM J. Math. Anal. 41, 631-664, 2009; Phys. Rev. A 81, 032516, 2010

- Design asymptotics-based method that resolves gaps correctly in limit GF, B.D.Goddard, Multiscale Model. Simul. 7, 1876-1879, 2009
- Use the method to correcty predict interconfigurational ordering of transition metal atoms (missed by standard methods)
Ch.Mendl, GF, J.Chem.Phys. 133, 184101, 2010

Orbital filling, 3d transition metal series, various methods

Atom	Madelung	HF	Rel.HF	LSDA	Becke 88	B3LYP	Expt.
Sc	$4 s^{2} 3 d^{1}$						
Ti	$4 s^{2} 3 d^{2}$	$4 s^{1} 3 d^{3}$	$4 s^{2} 3 d^{2}$	$4 s^{2} 3 d^{2}$			
V	$4 s^{2} 3 d^{3}$	$4 s^{2} 3 d^{3}$	$4 s^{2} 3 d^{3}$	$4 s^{1} 3 d^{4}$	$4 s^{1} 3 d^{4}$	$4 s^{1} 3 d^{4}$	$4 s^{2} 3 d^{3}$
Cr	$4 s^{2} 3 d^{4}$	$4 s^{2} 3 d^{4}$	$4 s^{1} 3 d^{5}$				
Mn	$4 s^{2} 3 d^{5}$	$4 s^{2} 3 d^{5}$	$4 s^{1} 3 d^{6}$	$4 s^{2} 3 d^{5}$			
Fe	$4 s^{2} 3 d^{6}$	$4 s^{2} 3 d^{6}$	$4 s^{1} 3 d^{7}$	$4 s^{2} 3 d^{6}$			
Co	$4 s^{2} 3 d^{7}$	$4 s^{2} 3 d^{7}$	$4 s^{2} 3 d^{7}$	$4 s^{1} 3 d^{8}$	$4 s^{2} 3 d^{7}$	$4 s^{1} 3 d^{8}$	$4 s^{2} 3 d^{7}$
Ni	$4 s^{2} 3 d^{8}$	$4 s^{2} 3 d^{8}$	$4 s^{1} 3 d^{9}$	$4 s^{2} 3 d^{8}$			
Cu	$4 s^{2} 3 d^{9}$	$4 s^{2} 3 d^{9}$	$4 s^{1} 3 d^{10}$				

Red: Deviation from experiment

Orbital filling, 3d transition metal series, various methods

Atom	Madelung	HF	Rel.HF	LSDA	Becke 88	B3LYP	Expt.
Sc	$4 s^{2} 2 d^{1}$	$4 s^{2} 3 d^{1}$					
Ti	$4 s^{2} 3 d^{2}$	$4 s^{1} 3 d^{3}$	$4 s^{2} 2 d^{2}$	$4 s^{2} 3 d^{2}$			
V	$4 s^{2} 3 d^{3}$	$4 s^{2} 3 d^{3}$	$4 s^{2} 3 d^{3}$	$4 s^{1} 3 d^{4}$	$4 s^{1} 3 d^{4}$	$4 s^{1} 3 d^{4}$	$4 s^{2} 3 d^{3}$
Cr	$4 s^{2} 3 d^{4}$	$4 s^{2} 3 d^{4}$	$4 s^{1} 3 d^{5}$				
Mn	$4 s^{2} 3 d^{5}$	$4 s^{2} 3 d^{5}$	$4 s^{1} 3 d^{6}$	$4 s^{2} 3 d^{5}$			
Fe	$4 s^{2} 3 d^{6}$	$4 s^{2} 3 d^{6}$	$4 s^{1} 3 d^{7}$	$4 s^{2} 3 d^{6}$			
Co	$4 s^{2} 3 d^{7}$	$4 s^{2} 3 d^{7}$	$4 s^{2} 3 d^{7}$	$4 s^{1} 3 d^{8}$	$4 s^{2} 3 d^{7}$	$4 s^{1} 3 d^{8}$	$4 s^{2} 3 d^{7}$
Ni	$4 s^{2} 3 d^{8}$	$4 s^{2} 3 d^{8}$	$4 s^{1} 3 d^{9}$	$4 s^{2} 3 d^{8}$			
Cu	$4 s^{2} 3 d^{9}$	$4 s^{2} 3 d^{9}$	$4 s^{1} 3 d^{10}$				

Red: Deviation from experiment
Blue: The first two of the 20 experimental 'anomalies' w.r.to the Madelung rule (fill via $n+\ell \sim$ no. of WF nodes)

HF: M.P.Melrose, E.Scerri, J.Chem.Edu.73, 498, 1996 (nice discussion of limitations)
Relativistic HF: T.Kagawa, Phys.Rev.A 12, 2245, 1975
LSDA: J.Harris, R.O.Jones, J.Chem.Phys. 68, 3316, 1978
Becke 88, B3LYP: S.Yanagisawa, T.Tsuneda, K.Hirao, J.Chem.Phys.112, 545, 2000

Orbital filling, 3d transition metal series, various methods

Atom	Madelung	HF	Rel.HF	LSDA	Becke 88	B3LYP	Expt.
Sc	$4 s^{2} 2 d^{1}$	$4 s^{2} 3 d^{1}$					
Ti	$4 s^{2} 3 d^{2}$	$4 s^{1} 3 d^{3}$	$4 s^{2} 2 d^{2}$	$4 s^{2} 3 d^{2}$			
V	$4 s^{2} 3 d^{3}$	$4 s^{2} 3 d^{3}$	$4 s^{2} 3 d^{3}$	$4 s^{1} 3 d^{4}$	$4 s^{1} 3 d^{4}$	$4 s^{1} 3 d^{4}$	$4 s^{2} 3 d^{3}$
Cr	$4 s^{2} 3 d^{4}$	$4 s^{2} 3 d^{4}$	$4 s^{1} 3 d^{5}$				
Mn	$4 s^{2} 3 d^{5}$	$4 s^{2} 3 d^{5}$	$4 s^{1} 3 d^{6}$	$4 s^{2} 3 d^{5}$			
Fe	$4 s^{2} 3 d^{6}$	$4 s^{2} 3 d^{6}$	$4 s^{1} 3 d^{7}$	$4 s^{2} 3 d^{6}$			
Co	$4 s^{2} 3 d^{7}$	$4 s^{2} 3 d^{7}$	$4 s^{2} 3 d^{7}$	$4 s^{1} 3 d^{8}$	$4 s^{2} 3 d^{7}$	$4 s^{1} 3 d^{8}$	$4 s^{2} 3 d^{7}$
Ni	$4 s^{2} 3 d^{8}$	$4 s^{2} 3 d^{8}$	$4 s^{1} 3 d^{9}$	$4 s^{2} 3 d^{8}$			
Cu	$4 s^{2} 3 d^{9}$	$4 s^{2} 3 d^{9}$	$4 s^{1} 3 d^{10}$				

Red: Deviation from experiment
Blue: The first two of the 20 experimental 'anomalies' w.r.to the Madelung rule (fill via $n+\ell \sim$ no. of WF nodes)

HF: M.P.Melrose, E.Scerri, J.Chem.Edu.73, 498, 1996 (nice discussion of limitations)
Relativistic HF: T.Kagawa, Phys.Rev.A 12, 2245, 1975
LSDA: J.Harris, R.O.Jones, J.Chem.Phys. 68, 3316, 1978
Becke 88, B3LYP: S.Yanagisawa, T.Tsuneda, K.Hirao, J.Chem.Phys.112, 545, 2000
Ch.Mendl, GF, J.Chem.Phys. 133, 184101, 2010: anomalous filling order correctly predicted via asymptotics-based Cl method

Open: correct prediction via an asymptotics-based DFT

Challenge 5, ctd: List of interesting asymptotic limits

Challenge 5, ctd: List of interesting asymptotic limits

 Isoelectronic limit atomic ions, N fixed, $\mathrm{Z} \rightarrow \infty$Hylleraas, Layzer, Wilson, G.F., Goddard, Mendl
Quantum oscillations, shell structure, electron correlation
Thomas-Fermi limit neutral atoms, $\mathrm{N}=\mathrm{Z} \rightarrow \infty$
Lieb, Simon, Scott, Siedentop/Weikard, Hughes, Bach, Fefferman/Seco, Burke
Basic prototype of DFT, averaged semiclassics
Dissociation limit $\left|R_{A}-R_{B}\right| \rightarrow \infty$
London, Casimir/Polder, ...
Leading order van der Waals term not captured by any standard DFT
Coalescence limit $r_{12} \rightarrow 0$
Kato, Soerensen et al, N.R.Hill, Kutzelnigg, Goddard
Slow convergence of Cl and related expansions
Thermodynamic limit $N \rightarrow \infty$, vol $\rightarrow \infty, \frac{N}{\text { vol }}=$ const
Lieb/Lebowitz, Fefferman, Ceperley/Alder, Catto/Le Bris/Lions, Hainzl/Lewin/Solovej, Cancès/Deleurence/Lewin, ... 'stability of matter', 'size consistency', energy of defects

My current other favourite $\hbar \rightarrow 0$ limit of $E_{x c}$ at fixed ρ
G.F., Cotar, Klueppelberg

Work in progress: leading order term. Novel functional form.

Thanks for attention!

