Strong Correlations from Constrained Mean-Field Approaches Gustavo E. Scuseria

Banff

24 Jan 11

Outline

Themes

- What is strong correlation and how to describe it "black-box"
- Symmetry breaking and restoration
- Specific Topics
 - Constrained-Pairing Mean-Field Theory
 - DMFT for strong correlations
 - Spin-off
 - **ROHF** theory made simple
 - Constrained Active Space Approaches
 - CUHF & CUMP2

What is Static/Strong Correlation?

- It is all about **near-degeneracies**
- A single-determinant **RHF** wavefunction (with correct symmetries) becomes a very poor descriptor of the electronic structure
- Static correlation examples:
 - Closed-shell H_2 at dissociation: σ_g/σ_u MO exact degeneracy (nonlocal, left-right correlation: the physics of entanglement)
 - Heavy atoms due to AO near degeneracies (transition metals, lanthanides, and actinides but even the Be atom)
 - Diradicals where unpaired spins localize and are entangled
 - Systems where magnetic effects are important
 - Large DOS at Fermi energy => heavy fermions in solid state

How to deal with strong correlation?

- Despite **80** years of Schrödinger equation, there is still no simple, black-bock, computationally efficient way of dealing with strong correlation
- The weak (dynamical) correlation problem has been solved, e.g., CCSD(T) with reasonable computational cost $N^6 \rightarrow O(N)$
- When strong correlation is pervasive, CCSD(T) does not yield highquality results (e.g., Cr_2). Multi-reference treatment is needed. Combinatorial blowup limits CASSCF to ~15e in ~15 orbs, or 10¹⁰ determinants
 - Strong correlation is connected with the physics of localization and **DFT** falls dead too because of **self-interaction error**
- **Density Matrix Functional Theory (DMFT)** retains **nonlocal HF** exchange and has better chances to deal with strong correlation

Symmetry Breaking

- Spontaneous symmetry breaking in mean-field approaches is associated with the onset of strong correlation
- Treating these cases with exact diagonalization (FCI or CASSCF) yields a combinatorial blowup wall
- Thus, it is tempting (and hopefully rewarding) to use inexpensive mean-field approaches for treating strong correlation
- In wavefunction methods like UHF, the problem is massive spin contamination
- Idea: break symmetry in an active space; control it elsewhere
- Restore symmetry by projection: if contamination is small, projection techniques should work really well (PAV)

<u>Theme</u>: symmetry breaking & restoration

- Ideally: Variation after Projection (VAP)
- Unfortunately VAP is generally very involved; PAV is cheaper and easier
- PAV yields <u>approximate</u> variational coefficients but overcomes the combinatorial blowup of exact diagonalization
 - Alternative view:
 - **CI** optimizes configurations coefficients
 - **MCSCF** or **CASSCF** optimizes conf coeffs and orbitals
 - Projected methods optimize orbitals and get non-variational CI coefficients by projection
 - VAP optimizes the CI coefficients. Key issue is whether this can be done in less than combinatorial complexity!
- Question: have we exhausted the exploration of symmetry breaking?
- Answer: NO !
- Most importantly particle number conservation has been overlooked

<u>Theme</u>: breaking electron number conservation

- HFB yields HF for Coulombic systems
- Our Constrained-Pairing Mean-Field Theory (CPMFT) induces symmetry breaking (fictitious attractive e-e interaction)
- Restores electron number conservation in the energy definition
- CPMFT is essentially a DMFT that breaks particle number conservation and restores it
- CPMFT yields excellent results if attractive pairing interactions are constrained to an <u>active</u> space

CPMFT Energy Functional (closed-shells)

- $E = 2 \Sigma h_{pq} P_{pq} + \Sigma [2(pq,rs)-(pr,qs)] P_{pq} P_{rs} \Sigma (pr,qs) K_{pq} K_{rs}$ where $K^2 = P - P^2$ $P = P_{\alpha} = P_{\beta}$
- Preserves space and spin symmetries
- Correctly dissociates any polyatomic molecule into ROHF atoms (or fragments)
- Smoothly connects the dissociation limit (full entanglement) with the equilibrium region (where it yields RHF in the absence of static correlation)
- Cleanly separates static & dynamic correlation
- Has low computational cost (mean-field) instead of CASSCF combinatorial blowup

 H_2 cc-pV5Z

 $N_2 6-311++G^{**}$

CPMFT results are similar but not identical to **UHF CPMFT** preserves symmetry in the density matrix

 CO_2 : a very challenging test

UHF fails to describe strong correlation

Connection to UHF formalism

CPMFT paper IV:

T. Tsuchimochi, T. M. Henderson, G. E. Scuseria, and A. Savin J. Chem. Phys. 133, 134108 (2010)

UHF, DMFT, and CPMFT

- In terms of a charge P and spin density M $P = \frac{1}{2} (P_a + P_\beta)$ $M = \frac{1}{2} (P_a - P_\beta)$ and a closed-shell energy term: $E_{CS} = \Sigma_{ij} 2h_{ij} P_{ij} + \Sigma_{ijkl} [2(ij,kl)-(ik,jl)] P_{ij} P_{kl}$
 - the UHF energy expression is a DMFT: $E_{UHF} = E_{CS} [P] - \Sigma_{ijkl} (ik, jl) M_{ij} M_{kl}$
- This has the same form as CPMFT $E_{CPMFT} = E_{CS} [P] - \Sigma_{ijkl} (ik, jl) K_{ij} K_{kl}$
 - Except that K = +sqrt [P P²] is not M !

CPMFT Summary

- A very efficient low-cost (mean-field) computational model for dealing with strong correlations within a DMFT framework
- The 1pdm is N-representable
- The **2pdm** (Γ) is not N-representable
- $E \sim Tr[H\Gamma]$ and the wavefunction is gone...
- Results are different from UHF, PUHF, and variants
- CPMFT inspired some interesting spin-off wavefunction work that I will discuss next:
 - **ROHF** theory made simple
 - Constraining symmetry breaking to an active space

ROHF theory made simple

T. Tsuchimochi & G. E. Scuseria J. Chem. Phys. 133, 141102 (2010)

Problems with ROHF

- Roothaan's formalism defines the wavefunction and densities (both charge and spin) but orbitals and orbital energies are ambiguous and depend on the choice of "coupling parameters"
- This is unsatisfactory for **post-ROHF** methods (correlation and excited states) as the results depend on these choices
- Long controversy in the literature for ~50 years
 No Koopmans' theorem in regular (Roothaan's) ROHF !
- Unphysical: why do we have the same orbitals and orbital energies for alpha and beta electrons if the potentials that they see are different?

 The MOs should be different
- UHF is not the answer because of spin contamination

Attempts to fix ROHF

- Handy's SUHF (Spin-projected UHF) uses a single Lagrange multiplier λ to constrain: $\lambda [\hat{S}^2 s(s+1)] = 0$
 - Unfortunately λ is infinity! \rightarrow not a practical scheme
- Our solution: Constrained UHF (CUHF)
 - Using the UHF energy formula as a function of P and M, we constrain M using (occ x vir) Lagrange multipliers
 - In "core" space: M=O; in "open-shell" space M=correct
 - "Spaces" are only defined in the NO basis
 - Solution for Lagrange multipliers is analytical
- It works! Crisp and quick convergence to ROHF energy and densities... Alpha orbitals and orbital energies are different from beta. CUHF carries no spin-contamination.

Errors (eV) on IPs $(-\varepsilon_{HOMO})$ (24 high-spin open-shell systems)

	ROHF (MD)	ROHF (PGB)	CUHF	UHF
ME	-7.38	0.57	0.54	0.68
MAE	7.38	0.64	0.61	0.71

CUHF gives good results and has no spin contamination

CUHF can predict both IPs & EAs

Valence and Rydberg excited states (eV) via quick & dirty TD-HF

	<5 ² >- s(s+1)	State	CUHF	UHF	Exp.
BeF	0.001	V ² ∏	4.19	4.20	4.14
		R ² Σ ⁺	6.33	6.34	6.16
CH₃	0.012	R ${}^{2}A'_{1}$	6.23	6.54	5.73
		R ² A " ₂	7.34	7.73	7.44
CO⁺	0.141	V ² ∏	4.84	6.93	3.26
		V ² Σ ⁺	9.81	11.10	5.82
CN	0.406	V ² ∏	0.95	4.13	1.32
		V ² Σ ⁺	2.01	5.42	3.22
MAE			0.77	1.44	0.00

Spin Symmetry Breaking in a Constrained Active Space: CUHF & CUMP2

T. Tsuchimochi & G. E. ScuseriaJ. Chem. Phys. in press.

Controlled Symmetry Breaking

M is the spin-density

A Cacophony of Methods:

- Some old: UHF, UMP2, PUHF, PUMP2
- Some new: CUHF, CUMP2, PCUHF, PCUMP2
- "P" is Lowdin's spin projection operator technique eliminating the first contaminant
- **PUMP2** is Schlegel's flavor of projected **UMP2** (2nd order **PT**)
- All of the new methods are mathematically defined rigorously in our **JCP (2011)** paper in press.
- A few results:
 - Singlet-triplet energy splitting in TMM: $C(CH_2)_3$ (this is a "normal" case for U and PU methods)
 - Singlet-triplet energy splittings in benzynes (pathological case for U and PU)

TMM: tri-methylene-methane

Triplet state has delocalized bonds

Singlet state is diradical in nature

TMM: wavefunction singlet-triplet splittings

	³ A' ₂ <s<sup>2></s<sup>	¹ A ₁ <s<sup>2></s<sup>	∆E _{st} (kcal/mol)
UHF	2.22	1.11	42.9
UMP2			26.6
PUHF	2.01	0.87	11.2
PUMP2			0.5
CUHF	2.00	1.00	14.9
CUMP2			35.5
PCUHF	2.00	0.00	10.5
PCUMP2			20.8
CAS(2,2)	2.00	0.00	9.8
CASPT2			23.0
Exp.			17.7 _c

<u>c</u>c-pvtz basis

TMM: DFT singlet-triplet splittings

	³ A' ₂	¹ A ₁	ΔE _{st}
	< S ² >	<s<sup>2></s<sup>	(kcal/mol)
UB3LYP	2.03	1.01	22.0
UHSE	2.04	1.01	24.6
ULCwPBE	2.08	1.01	29.6
CUB3LYP	2.00	1.00	17.5
CUHSE	2.00	1.00	18.8
CULCwPBE	2.00	1.00	19.0
Exp.			17.7

cc-pvtz basis

Benzynes:

wavefunction singlet-triplet splittings

	ortho	meta	para	MAE
UHF	-29.6	20.5	-31.1	25.7
UMP2	-24.4	-38.2	25.6	20.1
PUHF	-127.5	49.7	-292.9	149.7
PUMP2	-123.5	-30.0	-274.2	121.9
CUHF	-14.2	12.8	0.2	20.3
CUMP2	-34.4	-26.3	-2.1	3.6
PCUHF	-24.5	12.8	-0.5	16.6
PCUMP2	-37.8	-26.3	-1.6	2.6
CAS(2,2)	-29.0	8.5	-0.6	13.7
Exp.	-38.0	-20.6	3.5	0

All splittings in kcal/mol cc-pvtz basis

Benzynes: DFT singlet-triplet splittings

	ortho	meta	para	MAE
UB3LYP	-31.7	-13.0	-4.9	5.1
UHSE	-27.8	-15.6	-4.4	5.4
ULCwPBE	-27.8	-15.4	-3.4	5.2
CUB3LYP	-33.3	-16.3	-4.3	3.3
CUHSE	-29.7	-18.3	-3.5	3.5
CULCwPBE	-27.7	-18.7	-1.6	4.7
Exp.	-38.0	-20.6	3.5	0

All splittings in kcal/mol cc-pvtz basis

Spin Contamination in benzynes: <S²>

	Or	tho	Meta		Para	
	³ B ₂	¹ A ₁	³ B ₂	¹ A ₁	³ B _{1u}	${}^{1}A_{g}$
UHF	2.42	1.35	2.76	0.00	2.41	1.76
PUHF	2.09	3.55	2.35	0.00	2.09	5.22
CUHF	2.00	0.62	2.00	0.00	2.00	0.99
PCUHF	2.00	0.00	2.00	0.00	2.00	0.00
UB3LYP	2.01	0.00	2.02	0.00	2.01	0.94
UHSE	2.01	0.00	2.03	0.00	2.01	0.97
ULCwPBE	2.01	0.17	2.06	0.00	2.01	1.03
CUB3LYP	2.00	0.00	2.00	0.00	2.00	0.92
CUHSE	2.00	0.00	2.00	0.00	2.00	0.94
CULCwPBE	2.00	0.05	2.00	0.00	2.00	0.97

Last Thoughts

- Spontaneous symmetry breaking is intimately connected with the appearance of strong correlation
- Allowing symmetry breaking is not a bad idea if one can control the damage to good quantum numbers and somehow restore them
- Constraining symmetry breaking to an active space seems like a good idea
- Projection after variation as here done is successful if symmetry violations are small

Acknowledgements

- Group: Takashi Tsuchimochi, Tom Henderson, Jason Ellis, Carlos Jimenez-Hoyos
- **\$** DOE, LANL, NSF, Welch Foundation

