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Yvon Maday (LJLL - UPMC/ Brown Univ) 2 grids 4 nonlinear eigenvalue Pb Banff’11 2 / 51



Introduction

Two grids methods for eigenvalue problems

Introduced by J. Xu and A. Zhou 1

Consider the following eigenvalue problem : find λ and u, ‖u‖L2 = 1
solution of ∫

∇u∇v = λ

∫
uv

Assume that you have two finite element meshes and two finite element
spaces XH and Xh

1. J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math.
Comp., 70 (2001), pp. 17—25.
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Introduction

Two grids methods for eigenvalue problems

Solve the coarse eigenvalue problem : find λH and uH ∈ XH ,
‖uH‖L2 = 1 solution of∫

∇uH∇vH = λH

∫
uHvH

Solve the fine problem : find uh ∈ Xh, solution of∫
∇uH

h ∇vh = λH

∫
uHvh

reconstruct the eigenvalue by Reyleigh quotienty

λH
h =

∫
[∇uH

h ]2∫
[uH

h ]2
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Introduction

Two grids methods for eigenvalue problems

Error estimates

‖u − uH
h ‖H1 ≤ c(h + H2)

|λ− λH
h ≤ c(h2 + H4)

Two grids methods for non linear problems (V. Girault and J.-L. Lions 2 for
Navier Stokes)

2. Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra,
Port. Math. (N.S.) 58 (2001), no. 1, pp. 25-57.
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Outline of the talk

1 Two grids method for eigenvalue problems
2 Numerical analysis of the Gross-Pitaevskii equation

and two grids method
u ∈ H1

0 (Ω)
−∆u + Vu + u3 = λu∫

Ω
u2 = 1

3 Planewave (Fourier) discretization of the periodic GP equation
and two grids method

4 Planewave discretization of the periodic TFW problem

5 Planewave discretization of the periodic Kohn-Sham problem
and two grids method
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Finite element discretization of the GP equation

1 - Finite element discretization of
the GP equation
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Finite element discretization of the GP equation

Ω = (0, L)d , d = 1, 2 or 3, V ∈ L2(Ω) and µ ≥ 0

We consider the minimization problem

I = inf

{
E (v), v ∈ H1

0 (Ω),

∫
Ω

v2 = 1

}
(1)

where

E (v) =

∫
Ω
|∇v |2 +

∫
Ω

V |v |2 +
µ

2

∫
Ω
|v |4

(1) has exactly two minimizers u and −u

u is the ground state of the nonlinear eigenvalue problem

−∆u + Vu + µu3 = λu, ‖u‖L2 = 1

u ∈ C 0,α(Ω) for some α > 0 and u > 0 in Ω
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Finite element discretization of the GP equation

Variational approximation of (1)

Let (Xδ)δ>0 be a family of finite dimensional subspaces of H1
0 (Ω) s.t.

min {‖u − vδ‖H1 , vδ ∈ Xδ} −→
δ→0+

0 (2)

The variational approximation of (1) in Xδ consists in solving

Iδ = inf

{
E (vδ), vδ ∈ Xδ,

∫
Ω

v2
δ = 1

}
(3)

Problem (3) has at least one minimizer uδ such that (uδ, u)L2 ≥ 0, which
satisfies

∀vδ ∈ Xδ,

∫
Ω
∇uδ · ∇vδ +

∫
Ω

Vuδvδ + µ

∫
Ω

u3
δvδ = λδ

∫
Ω

uδvδ (4)

for some λδ ∈ R. This minimizer is unique for δ small enough
Yvon Maday (LJLL - UPMC/ Brown Univ) 2 grids 4 nonlinear eigenvalue Pb Banff’11 9 / 51
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Finite element discretization of the GP equation

A priori error estimates in the linear case (µ = 0)

There exist 0 < c ≤ C <∞ such that for all δ > 0

‖uδ − u‖H1 ≤ C min
vδ∈Xδ

‖vδ − u‖H1

c‖uδ − u‖2
H1 ≤ E (uδ)− E (u) ≤ C‖uδ − u‖2

H1

|λδ − λ| ≤ C‖uδ − u‖2
H1

Ref. : I. Babuška and J. Osborn, Eigenvalue problems, in : Handbook of
numerical analysis. Volume II, (North-Holland, 1991) 641-787
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Finite element discretization of the GP equation

Theorem (Cancès, Chakir, Y.M. 2009). In the nonlinear setting (µ > 0).
There exist 0 < c ≤ C <∞ and δ0 > 0 such that for all 0 < δ ≤ δ0,

‖uδ − u‖H1 ≤ C min
vδ∈Xδ

‖vδ − u‖H1

c‖uδ − u‖2
H1 ≤ E (uδ)− E (u) ≤ C‖uδ − u‖2

H1

|λδ − λ| ≤ C‖uδ − u‖2
H1 + µ

∣∣∣∣∫
Ω

u2
δ (uδ + u)(uδ − u)

∣∣∣∣ (Zhou ’04)
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|λδ − λ| ≤ C‖uδ − u‖2
H1 + µ

∣∣∣∣∫
Ω

u2
δ (uδ + u)(uδ − u)

∣∣∣∣ (Zhou ’04)

‖uδ − u‖2
L2 ≤ C‖uδ − u‖H1 min

ψδ∈Xδ

‖ψuδ−u − ψδ‖H1

where ψuδ−u ∈ u⊥ =
{
v ∈ H1

0 (Ω) | (v , u)L2 = 0
}

is the unique solution to
the adjoint problem

∀v ∈ u⊥, 〈(E ′′(u)− λ)ψuδ−u, v〉H−1,H1
0

= 〈uδ − u, v〉H−1,H1
0
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Finite element discretization of the GP equation

Application to P1 and P2 finite element discretizations

Let (Th)h be a family of regular triangulations of Ω

P1 finite element discretization

|λh,1 − λ| ≤ C
(
‖uh,1 − u‖2

H1 + ‖uh,1 − u‖L2

)
There exists h0 > 0 and C ∈ R+ such that for all 0 < h ≤ h0,

‖uh,1 − u‖H1 ≤ C h ‖uh,1 − u‖L2 ≤ C h2 |λh,1 − λ| ≤ C h2

P2 finite element discretization (V ∈ H1(Ω))

|λh,2 − λ| ≤ C
(
‖uh,2 − u‖2

H1 + ‖uh,2 − u‖H−1

)
There exists h0 > 0 and C ∈ R+ such that for all 0 < h ≤ h0,

‖uh,2 − u‖H1 ≤ C h2 ‖uh,2 − u‖L2 ≤ C h3 |λh,2 − λ| ≤ C h4
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Finite element discretization of the GP equation

Numerical simulations

d = 2, V (x1, x2) = x2
1 + x2

2

y = 1.23182 x -  0.162848
y = 2.05194 x -  0.938633
y = 2.18825 x -  0.428804

-27. 10 -29. 10 -12. 10 -13. 10 -14. 10 -15. 10

-310

-210

-110

y = 2.00648 x -  1.05112
y = 2.98214 x -  2.12028
y = 3.99845 x -  2.12651

-27. 10 -29. 10 -12. 10 -13. 10 -14. 10 -15. 10

-710

-610

-510

-410

-310

-210

Errors ‖uh,k − u‖H1 (+), ‖uh,k − u‖L2 (×) and |λh,k − λ| (∗) for the P1

(k = 1, left) and P2 (k = 2, right) approximations as a function of h in log
scales
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Finite element discretization of the GP equation

Eigenvalue problems of the form

−div (A∇u) + Vu + f (|u|2)u = λu

are dealt with in E.Cancès., R. Chakir and Y. M., Numerical analysis of
nonlinear eigenvalue problems, JSC 2009

These estimates where improved accuracy is established on the lower order
norms are at the basis of a new method on two grids where the nonlinear
eigenvalue problem is solved on a coarse mesh and a linear eigenvalue or
even a linear problem with right hand side is solved on a fine mesh and
optimal results are obtained (both theoretically and numerically)

R. Chakir’s thesis
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Finite element discretization of the GP equation

Two grid method

On a coarse mesh

Non linear eigenvalue problem on a coarse grid XH

a(uH , v) +

∫
Ω

f (u2
H)uHv = λH

∫
Ω

uHv , ∀v ∈ XH
On a fine mesh

Problem 1

Linear eigenvalue

problem on a fine

space Xh

a(uH
h , v) +

∫
Ω

f (u2
H)uH

h v

= λH
h

∫
Ω

uH
h v ∀v ∈ Xh
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H)ũH

h v

= λH

∫
Ω

uHv ∀v ∈ Xh

Problem 3

Linear right hand side

problem on a fine

space Xh

a(uH
h , v) = −

∫
Ω

f (u2
H)uHv

+λH

∫
Ω

uHv ∀v ∈ Xh.

Yvon Maday (LJLL - UPMC/ Brown Univ) 2 grids 4 nonlinear eigenvalue Pb Banff’11 16 / 51



Finite element discretization of the GP equation

Two grid method

On a coarse mesh

Non linear eigenvalue problem on a coarse grid XH

a(uH , v) +

∫
Ω

f (u2
H)uHv = λH

∫
Ω

uHv , ∀v ∈ XH
On a fine mesh

Problem 1

Linear eigenvalue

problem on a fine

space Xh

a(uH
h , v) +

∫
Ω

f (u2
H)uH

h v

= λH
h

∫
Ω

uH
h v ∀v ∈ Xh

Problem 2

Linear right hand side

problem on a fine

space Xh

a(ũH
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Finite element discretization of the GP equation

Numerical simulations

Yvon Maday (LJLL - UPMC/ Brown Univ) 2 grids 4 nonlinear eigenvalue Pb Banff’11 17 / 51



Finite element discretization of the GP equation

Numerical simulations fine mesh = T4
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Finite element discretization of the GP equation

Numerical simulations

Table: Comparison between the CPU times for the Two Grids Method.

reference time 121.46 sec

Tn
Méthode à 2 Grilles

Problème 1 Problème 2 Problème 3

0 14.64 s 7.57 s 7.17 s

1 15.61 s 8.65 s 8.22 s

2 21.08 s 12.78 s 12.27 s

3 39.36 s 34.25 s 33.68 s
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

2 - Planewave discretization of the
periodic GP equation
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

We now consider the minimization problem

I = inf

{
E (v), v ∈ H1

#(Ω),

∫
Ω
|v |2 = 1

}
(5)

where Ω = (0, 2π)d (d = 1, 2 or 3) and where

E (v) =

∫
Ω
|∇v |2 +

∫
Ω

V |v |2 +
1

2

∫
Ω
|v |4,

V being a 2πZd -periodic continuous function

Planewave basis sets

For k ∈ Zd , we denote by

ek(x) =
e ik·x

(2π)d/2
VN =

∑
|k|≤N

ckek | c−k = c∗k
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Spectral approximation

Let uN be a minimizer of

IN = inf

{
E (vN), v ∈ VN ,

∫
Ω
|vN |2 = 1

}
s.t. (uN , u)L2 ≥ 0

Theorem (Cancès, Chakir, Y.M. 2009) Assume that V ∈ Hσ
#(Ω) for some

σ > d/2. Then (uN)N∈N converges to u in Hσ+2
# (Ω) and there exists

0 < c ≤ C <∞ such that for all N ∈ N,

‖uN − u‖Hs
#
≤ C

Nσ+2−s
for all − σ ≤ s < σ + 2

c‖uN − u‖2
H1

#
≤ E (uN)− E (u) ≤ C‖uN − u‖2

H1
#

|λN − λ| ≤
C

N2(σ+1)
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Numerical simulations

d = 1, V (x) = sin(|x − π|/2) (V ∈ H
3/2−ε
# (0, 2π))

y = -2.67617 x +  0.205405
y = -3.67532 x +  0.434802
y = -4.6724 x +  0.677294
y = -5.00941 x -  0.275398

11009. 10 12. 10 13. 10 14. 10 15. 10 16. 10 17. 10

-910

-810

-710

-610

-510

-410

-310

Numerical errors ‖uN − u‖H1
#

(+), ‖uN − u‖L2
#

(×), ‖uN − u‖H−1
#

(∗),

|λN − λ| (◦), as functions of 2N + 1 (the dimension of X̃N) in log scales
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Pseudospectral approximation
Let uN,Ng be a minimizer of

IN,Ng = inf

{
ENg (vN), v ∈ VN ,

∫
Ω
|vN |2 = 1

}
s.t. (uN,Ng , u)L2 ≥ 0

where Ng ∈ N \ {0} (odd for simplicity), Ng ≥ 4N + 1 and

ENg (vN) =

∫
Ω
|∇vN |2 +

∫
Ω
INg (V )|vN |2 +

1

2

∫
Ω
|vN |4

INg denoting the interpolation projector on

WNg = {ek | |k |∞ ≤ (Ng − 1)/2}

The mean field matrix of the above minimization problem is

[H|vN |2 ]kl = |k |2δkl + V̂
FFT,Ng

k−l + |̂vN |2
FFT,Ng

k−l
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Pseudospectral error

If |V̂k | ≤ C |k |−s with s > d , then V ∈ H
s−d/2−ε
# (Ω) and

‖uN,Ng − uN‖H1
#
≤ CNd/2N−s

g ‖uN − u‖H1
#
≤ CN−(s−d/2+1−ε)

‖uN,Ng − uN‖L2
#
≤ CNd/2N−s

g ‖uN − u‖L2
#
≤ CN−(s−d/2+2−ε)

|λN,Ng − λN | ≤ CNd/2N−s
g |λN − λ| ≤ CN−2(s−d/2+1−ε)

The optimal choice for Ng therefore is

Ng ∼ N1+1/s−ε if the criterion is the H1 norm (or the energy)

Ng ∼ N1+2/s−ε if the criterion is the L2 norm

Ng ∼ N2−d/(2s)+2/s−ε if the criterion is the eigenvalue
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Numerical simulations

d = 1, V (x) = sin(|x − π|/2) (s = 2 and V ∈ H
3/2−ε
# (0, 2π))

11009. 10 12. 10 13. 10 14. 10 15. 10 16. 10

-410

-310

11009. 10 12. 10 13. 10 14. 10 15. 10 16. 10

-610

-510

-410

-310

11009. 10 12. 10 13. 10 14. 10 15. 10 16. 10 17. 10

-1010

-910

-810

-710

-610

-510

-410

Ng ∼ N3/2−ε Ng ∼ N2−ε Ng ∼ N11/4−ε

Numerical errors ‖uN,Ng
− u‖H1

#
(left), ‖uN,Ng

− u‖L2
#

(middle) and |λN,Ng
− λ| (right), as functions of 2N + 1

(the dimension of VN), for Ng = 128 (red), Ng = 256
(green), Ng = 512 (cyan), Ng = 1024 (gold), Ng = 2048
(magenta), Ng = 4096 (pink), Ng = 8192 (black),
Ng = 16384 (blue), Ng = 32768 (light blue)
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Numerical simulations

d = 1, V (x) = sin(|x − π|/2) (s = 2 and V ∈ H
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-910

-810

-710

-610

-510

-410

Ng ∼ N11/4−ε

Numerical errors |λN,Ng
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Finite element discretization of the GP equation Planewave discretization of the periodic GP equation

Two grids method – Numerical simulations fine mesh = N = 100

‖u − uN‖H1 = 1.310−6

‖u − uN‖L2 = 1.110−8

|λ− λN | = 8.10−12

Yvon Maday (LJLL - UPMC/ Brown Univ) 2 grids 4 nonlinear eigenvalue Pb Banff’11 28 / 51



Finite element discretization of the GP equation Planewave discretization of the periodic TFW model

3 - Planewave discretization of the
periodic TFW model
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Finite element discretization of the GP equation Planewave discretization of the periodic TFW model

The periodic Thomas-Fermi-von Weizsäcker (TFW) model

ITFW = inf
{
ETFW(ρ), ρ ∈ RN

}
, (6)

Set of admissible densities

RN =

{
ρ ≥ 0 | √ρ ∈ H1

#((0, L)3),

∫
(0,L)3

ρ = N

}

TFW energy functional

ETFW(ρ) =
CW

2

∫
(0,L)3

|∇√ρ|2+CTF

∫
(0,L)3

ρ5/3+

∫
(0,L)3

ρV ion+
1

2
DL(ρ, ρ)

where

DL(ρ, ρ′) := 4π
∑

k∈ 2π
L

Z3\{0}

ρ̂∗k ρ̂
′
k

|k |2
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Finite element discretization of the GP equation Planewave discretization of the periodic TFW model

Reformulation of TFW model in terms of v =
√
ρ

ITFW = inf

{
ETFW(v), v ∈ H1

#((0, L)3),

∫
(0,L)3

|v |2 = N

}
(7)

where

ETFW(v) =
CW

2

∫
(0,L)3 |∇v |2 + CTF

∫
(0,L)3 |v |10/3 +

∫
(0,L)3 V ion|v |2 + 1

2DL(|v |2, |v |2)

Yvon Maday (LJLL - UPMC/ Brown Univ) 2 grids 4 nonlinear eigenvalue Pb Banff’11 31 / 51



Finite element discretization of the GP equation Planewave discretization of the periodic TFW model

Mathematical properties of the periodic TFW model

Under the following assumption

∃m > 3, C ≥ 0 s.t. ∀k ∈ R∗, |V̂ ion
k | ≤ C |k |−m (8)

1 (6) has a unique minimizer ρ0, and the minimizers of (7) are u and
−u where u =

√
ρ0

2 u is positive everywhere in (0, L)3 and satisfies the Euler equation

−CW

2
∆u +

(
5

3
CTFu4/3 + V ion + V Coulomb

u2

)
u = λu

for some λ ∈ R

3 the function u is in H
m+1/2−ε
# ((0, L)3) (and therefore in C 2

#((0, L)3))
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Finite element discretization of the GP equation Planewave discretization of the periodic TFW model

The PW discretization of the TFW model is obtained by choosing

1 an energy cut-off Ec > 0 or, equivalently, a finite dimensional Fourier
space VNc , the integer Nc being related to Ec through the relation
Nc := [

√
2Ec L/2π] ;

2 a cartesian grid GNg with step size L/Ng where Ng ∈ N∗ is such that
Ng ≥ 4Nc + 1,

and by considering the finite dimensional minimization problem

ITFW
Nc ,Ng

= inf

{
ETFW

Ng
(vNc ), vNc ∈ VNc ,

∫
Γ
|vNc |2 = N

}
, (9)

where

ETFW
Ng

(vNc ) =
CW

2

∫
Γ
|∇vNc |2 + CTF

∫
Γ
INg (|vNc |10/3) +

∫
Γ
INg (V ion)|vNc |2

+
1

2
DΓ(|vNc |2, |vNc |2),

INg denoting the Fourier interpolation operator
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Finite element discretization of the GP equation Planewave discretization of the periodic TFW model

Spectral approximation of the TFW model

Theorem (Cancès, Chakir, Y.M. 2009) For Nc ∈ N, we denote by uNc a
minimizer to

ITFW
Nc

= inf

{
ETFW(vNc ), vNc ∈ VNc ,

∫
Γ
|vNc |2 = N

}
. (10)

such that (uNc , u)L2
#
≥ 0. Then for Nc large enough, uNc is unique, and for

each ε > 0, the following estimates hold true

‖uNc − u‖Hs
#
≤ CsN

−(m−s+1/2−ε)
c (11)

|λNc − λ| ≤ CN
−(2m−1−ε)
c (12)

γ‖uNc − u‖2
H1

#
≤ ITFW

Nc
− ITFW ≤ C‖uNc − u‖2

H1
#

(13)

for all −m + 3/2 < s < m + 1/2 and for some constants γ > 0, C ≥ 0 and
Cs ≥ 0 independent of Nc
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Finite element discretization of the GP equation Planewave discretization of the periodic TFW model

Pseudospectral approximation of the TFW model

Theorem (Cancès, Chakir, Y.M. 2009) For Nc ∈ N and Ng ≥ 4Nc + 1, we
denote by uNc a minimizer to

ITFW
Nc ,Ng

= inf

{
ETFW

Ng
(vNc ), vNc ∈ VNc ,

∫
Γ
|vNc |2 = N

}
, (14)

such that (uNc ,Ng , u)L2
#
≥ 0. Then for Nc large enough, uNc ,Ng is unique,

and the following estimates hold true

‖uNc ,Ng − uNc‖Hs
#
≤ Cs N

3/2+(s−1)+
c N−m

g , (15)

|λNc ,Ng − λNc | ≤ CN
3/2
c N−m

g , (16)

|ITFW
Nc ,Ng

− ITFW
Nc

| ≤ CN
3/2
c N−m

g , (17)

for all −m + 3/2 < s < m + 1/2 and for some constants γ > 0, C ≥ 0 and
Cs ≥ 0 independent of Nc and Ng
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

4 - Planewave discretization of the
Kohn-Sham model
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

We’ll be back after this advertisement
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

Continuation of our program

Yvon Maday (LJLL - UPMC/ Brown Univ) 2 grids 4 nonlinear eigenvalue Pb Banff’11 39 / 51



Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

The Kohn-Sham model LDA model

IKS = inf
{
EKS(Φ), Φ ∈M

}
(18)

where

M =

{
Φ = (φ1, · · · , φN )T ∈ (H1

#(Γ))N |
∫

Γ
φiφj = δij

}
,

N being the number of valence electron pairs in the simulation cell, and

EKS(Φ) =
N∑
i=1

∫
Γ
|∇φi |2+

∫
Γ
ρΦVlocal+2

N∑
i=1

〈φi |Vnl|φi 〉+J(ρΦ)+ELDA
xc (ρΦ).

(19)
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

The Kohn-Sham model LDA model

It is possible to prove that under appropriate assumptions, (18) has a
minimizer Φ0 = (φ0

1, · · · , φ0
N )T with density ρ0 = ρΦ0 . Some regularity

assumptions on Vlocal, on ELDA
xc and on Vnl allow to state that the

minimizer Φ0 is in [H3
#(Γ)]N , and even in [H

m+1/2−ε
# (Γ)]N for any ε > 0,

if at least one of the following conditions is satisfied :
ELDA

xc ∈ C [m]([0,+∞)) or ρc + ρ0 > 0 in R3.

The former condition is not satisfied for usual LDA exchange-correlation
functionals. On the other hand, it is satisfied for the Hartree (also called
reduced Hartree-Fock) model, for which eLDA

xc = 0. The latter condition
seems to be satisfied in practice, but we were not able to establish it
rigourously.

Remember that the uniqueness is not at all proven... In fact, (18) has an
infinity of minimizers since any unitary transform of the Kohn-Sham
orbitals Φ0 is also a minimizer of the Kohn-Sham energy.
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

The Kohn-Sham model LDA model

∀Φ = (φ1, · · · , φN )T ∈M, we introduce the tangent space to M at Φ

TΦM =

{
(ψ1, · · · , ψN )T ∈ (H1

#(Γ))N |
∫

Γ
φiψj + ψiφj = 0

}
Since the problem we are considering is a minimization problem, the
second order condition further states

∀W ∈ TΦ0M, aΦ0(W ,W ) ≥ 0,

where

aΦ0(Ψ,Υ) =
1

4
EKS′′(Φ0)(Ψ,Υ)−

N∑
i=1

ε0
i

∫
Γ
ψiυi (20)

It follows from the invariance property through unitary transform that

aΦ0(Ψ,Ψ) = 0 for all Ψ ∈ AΦ0.

where A =
{
A ∈ RN×N | AT = −A

}
is the space of the N ×N

antisymmetric real matrices.
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

The Kohn-Sham model LDA model

∀Φ = (φ1, · · · , φN )T ∈M, we denote by

Φ⊥⊥ =

{
Ψ = (ψ1, · · · , ψN )T ∈ (H1

#(Γ))N |
∫

Γ
φiψj = 0

}
.

Let us indicate that
TΦM = AΦ⊕ Φ⊥⊥,

We are lead to make the assumption (see M. Turinici Numer. Math.,
2003) that aΦ0 is positive definite on Φ0,⊥⊥, in which case there exists a
positive constant cΦ0 such that

∀Ψ ∈ Φ0,⊥⊥, aΦ0(Ψ,Ψ) ≥ cΦ0‖Ψ‖2
H1

#
. (21)

In the linear framework (J = 0 and ELDA
xc = 0 in (19)), this condition

amounts to assuming that there is a gap between the lowest N th and
(N + 1)st eigenvalues of the linear self-adjoint operator
h = −1

2 ∆ + Vlocal + Vnl.
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

Variational approximation
Let us focus on the variational approximation

IKS
Nc

= inf
{
EKS(ΦNc ), ΦNc ∈ VNNc

∩M
}

(22)

One way to take the unitary invariance of the Kohn-Sham model into
account is to work with density matrices. An alternative is to define for
each Φ ∈M the set

MΦ :=

{
Ψ ∈M | ‖Ψ− Φ‖L2

#
= min

U∈U(N )
‖UΨ− Φ‖L2

#

}
,

and to use the fact that all the local minimizers of (22) are obtained by
unitary transforms from the local minimizers of

IKS
Nc

= inf
{

EKS(ΦNc ), ΦNc ∈ VNNc
∩MΦ0

}
. (23)
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Finite element discretization of the GP equation Planewave discretization of the Kohn-Sham model

A priori estimates
The main result is the following.

Theorem

Let Φ0 be a local minimizer of (18) satisfying (21). Then there exists
r0 > 0 and N0

c such that for Nc ≥ N0
c , (23) has a unique local minimizer

Φ0
Nc

in the set {
ΦNc ∈ VNNc

∩MΦ0 | ‖ΦNc − Φ0‖H1
#
≤ r0

}
.

If we assume either that eLDA
xc ∈ C [m]([0,+∞)) or that ρc + ρ0 > 0 on Γ,

then we have the following estimates :

‖Φ0
Nc
− Φ0‖Hs

#
≤ Cs,εN

−(m−s+1/2−ε)
c , (24)

|ε0
i ,Nc
− ε0

i | ≤ CεN
−(2m−1−ε)
c , (25)

γ‖Φ0
Nc
− Φ0‖2

H1
#
≤ IKS

Nc
− IKS ≤ C‖Φ0

Nc
− Φ0‖2

H1
#
, (26)

for all −m + 3/2 < s < m + 1/2 and ε > 0, and for some constants γ > 0,
Cs,ε ≥ 0, Cε ≥ 0 and C ≥ 0, where the ε0

i ,Nc
’s are the eigenvalues of the

symmetric matrix Λ0
Nc

, the Lagrange multiplier of the matrix constraint∫
Γ φi ,Ncφj ,Nc = δij .
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Numerical simulations

We have run simulation tests with the Hartree functional (i.e. with
eLDA
xc = 0), for which there is no numerical integration error. In this

particular case, the problems solved numerically by Abinit and (22)
(analyzed in Theorem 1) are identical.
For Troullier-Martins pseudopotentials, the parameter m in Theorem 1 is
equal to 5. Therefore, we expect the following error bounds (as functions

of the cut-off energy Ec = 1
2

(
2πNc

L

)2
)

‖Φ0
Nc
− Φ0‖H1

#
≤ C1,εE

−2.25+ε
c , (27)

‖Φ0
Nc
− Φ0‖L2

#
≤ C2,εE

−2.75+ε
c , (28)

|ε0
i ,Nc
− ε0

i | ≤ C3,εE
−4.5+ε
c , (29)

0 ≤ IKS
Nc
− IKS ≤ C4,εE

−4.5+ε
c . (30)
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Two grids method – Numerical simulations – hydrogen atom
fine mesh = E = 300

‖u − uE‖H1 = 3.10−5

‖u − uE‖L2 = 7.10−7

|λ− λE | = 7.10−10
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Conclusions and perspectives
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Finite element discretization of the GP equation Conclusions and perspectives

1 A priori error estimates for the finite element, and for the Fourier
spectral and pseudospectral approximations of nonlinear eigenvalue
problems of the form

−∆u + Vu + u3 = λu

have been derived pay attention to the numerical integration

2 The optimality of these error estimates is confirmed by numerical
simulations

3 Similar results can be obtained for orbital-free and Kohn-Sham
models (numerical simulations with numerical integration are work in
progress)

4 The two grid method can be implemented leading to large speedup ..
numerical analysis has to be completed
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