Two grids approximation of non linear eigenvalue problems

Eric Cancès, Rachida Chakir - Yvon Maday

E.C. :Ecole des Ponts and INRIA, Paris, France
R.C. : Laboratoire Jacques-Louis Lions - UPMC, Paris, France
Y.M. : Laboratoire Jacques-Louis Lions - UPMC, Paris, France and Division of Applied Maths Brown University, Providence USA

Density Functional Theory:

Fundamentals and Applications in Condensed Matter Physics

Examples of nonlinear eigenvalue problems

- Mechanics : vibration modes within nonlinear elasticity
- Physics : steady states of Bose-Einstein condensates
- Chemistry and materials science : electronic structure calculations
- Hartree-Fock model
- Density Functional Theory

Examples of nonlinear eigenvalue problems

- Mechanics : vibration modes within nonlinear elasticity
- Physics : steady states of Bose-Einstein condensates
- Chemistry and materials science : electronic structure calculations
- Hartree-Fock model
- Density Functional Theory

A priori estimates for nonlinear eigenvalue problems

- A. Zhou (Nonlinearity 2004, M2AS 2007)
- E.Cancès, R. Chakir and Y. M. (JSC 2009, arXiv 2010)
- B. Langwallner, Ch. Ortner and E. Süli (arXiv, June 2009)

Two grids methods for eigenvalue problems

Introduced by J. Xu and A. Zhou ${ }^{1}$

1. J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp., 70 (2001), pp. 17-25.

Two grids methods for eigenvalue problems

Introduced by J. Xu and A. Zhou ${ }^{1}$

- Consider the following eigenvalue problem : find λ and $u,\|u\|_{L^{2}}=1$ solution of

$$
\int \nabla u \nabla v=\lambda \int u v
$$

1. J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp., 70 (2001), pp. 17-25.

Two grids methods for eigenvalue problems

Introduced by J. Xu and A. Zhou ${ }^{1}$

- Consider the following eigenvalue problem : find λ and $u,\|u\|_{L^{2}}=1$ solution of

$$
\int \nabla u \nabla v=\lambda \int u v
$$

Assume that you have two finite element meshes and two finite element spaces X_{H} and X_{h}

1. J. Xu and A . Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp., 70 (2001), pp. 17-25.

Two grids methods for eigenvalue problems

- Solve the coarse eigenvalue problem: find λ_{H} and $u_{H} \in X_{H}$, $\left\|u_{H}\right\|_{L^{2}}=1$ solution of

$$
\int \nabla u_{H} \nabla v_{H}=\lambda_{H} \int u_{H} v_{H}
$$

Two grids methods for eigenvalue problems

- Solve the coarse eigenvalue problem: find λ_{H} and $u_{H} \in X_{H}$, $\left\|u_{H}\right\|_{L^{2}}=1$ solution of

$$
\int \nabla u_{H} \nabla v_{H}=\lambda_{H} \int u_{H} v_{H}
$$

- Solve the fine problem : find $u_{h} \in X_{h}$, solution of

$$
\int \nabla u_{h}^{H} \nabla v_{h}=\lambda_{H} \int u_{H} v_{h}
$$

Two grids methods for eigenvalue problems

- Solve the coarse eigenvalue problem : find λ_{H} and $u_{H} \in X_{H}$, $\left\|u_{H}\right\|_{L^{2}}=1$ solution of

$$
\int \nabla u_{H} \nabla v_{H}=\lambda_{H} \int u_{H} v_{H}
$$

- Solve the fine problem : find $u_{h} \in X_{h}$, solution of

$$
\int \nabla u_{h}^{H} \nabla v_{h}=\lambda_{H} \int u_{H} v_{h}
$$

- reconstruct the eigenvalue by Reyleigh quotienty

$$
\lambda_{h}^{H}=\frac{\int\left[\nabla u_{h}^{H}\right]^{2}}{\int\left[u_{h}^{H}\right]^{2}}
$$

Two grids methods for eigenvalue problems

Error estimates

2.

Two grids methods for eigenvalue problems

Error estimates

2.

Two grids methods for eigenvalue problems

Error estimates

$$
\left\|u-u_{h}^{H}\right\|_{H^{1}} \leq c\left(h+H^{2}\right)
$$

2.

Two grids methods for eigenvalue problems

Error estimates

$$
\left\|u-u_{h}^{H}\right\|_{H^{1}} \leq c\left(h+H^{2}\right)
$$

$$
\mid \lambda-\lambda_{h}^{H} \leq c\left(h^{2}+H^{4}\right)
$$

2.

Two grids methods for eigenvalue problems

Error estimates

$$
\left\|u-u_{h}^{H}\right\|_{H^{1}} \leq c\left(h+H^{2}\right)
$$

$$
\mid \lambda-\lambda_{h}^{H} \leq c\left(h^{2}+H^{4}\right)
$$

Two grids methods for non linear problems (V. Girault and J.-L. Lions ${ }^{2}$ for Navier Stokes)
2.

Two grids methods for eigenvalue problems

Error estimates

$$
\left\|u-u_{h}^{H}\right\|_{H^{1}} \leq c\left(h+H^{2}\right)
$$

$$
\mid \lambda-\lambda_{h}^{H} \leq c\left(h^{2}+H^{4}\right)
$$

Two grids methods for non linear problems (V. Girault and J.-L. Lions ${ }^{2}$ for Navier Stokes)
2. Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra, Port. Math. (N.S.) 58 (2001), no. 1, pp. 25-57.
(1) Two grids method for eigenvalue problems (3) Numerical analysis of the Gross-Pitaevskii equation
(1) Two grids method for eigenvalue problems
(2) Numerical analysis of the Gross-Pitaevskii equation
and two grids method

$$
\left\{\begin{array}{l}
u \in H_{0}^{1}(\Omega) \\
-\Delta u+V u+u^{3}=\lambda u \\
\int_{\Omega} u^{2}=1
\end{array}\right.
$$

(1) Two grids method for eigenvalue problems
(2) Numerical analysis of the Gross-Pitaevskii equation and two grids method

$$
\left\{\begin{array}{l}
u \in H_{0}^{1}(\Omega) \\
-\Delta u+V u+u^{3}=\lambda u \\
\int_{\Omega} u^{2}=1
\end{array}\right.
$$

(1) Two grids method for eigenvalue problems
(2) Numerical analysis of the Gross-Pitaevskii equation and two grids method

$$
\left\{\begin{array}{l}
u \in H_{0}^{1}(\Omega) \\
-\Delta u+V u+u^{3}=\lambda u \\
\int_{\Omega} u^{2}=1
\end{array}\right.
$$

(3) Planewave (Fourier) discretization of the periodic GP equation
(1) Two grids method for eigenvalue problems
(2) Numerical analysis of the Gross-Pitaevskii equation and two grids method

$$
\left\{\begin{array}{l}
u \in H_{0}^{1}(\Omega) \\
-\Delta u+V u+u^{3}=\lambda u \\
\int_{\Omega} u^{2}=1
\end{array}\right.
$$

(3) Planewave (Fourier) discretization of the periodic GP equation and two grids method
(1) Two grids method for eigenvalue problems
(2) Numerical analysis of the Gross-Pitaevskii equation and two grids method

$$
\left\{\begin{array}{l}
u \in H_{0}^{1}(\Omega) \\
-\Delta u+V u+u^{3}=\lambda u \\
\int_{\Omega} u^{2}=1
\end{array}\right.
$$

(3) Planewave (Fourier) discretization of the periodic GP equation and two grids method
(4) Planewave discretization of the periodic TFW problem
(1) Two grids method for eigenvalue problems
(2) Numerical analysis of the Gross-Pitaevskii equation and two grids method

$$
\left\{\begin{array}{l}
u \in H_{0}^{1}(\Omega) \\
-\Delta u+V u+u^{3}=\lambda u \\
\int_{\Omega} u^{2}=1
\end{array}\right.
$$

(3) Planewave (Fourier) discretization of the periodic GP equation and two grids method
(9) Planewave discretization of the periodic TFW problem
(5) Planewave discretization of the periodic Kohn-Sham problem
(1) Two grids method for eigenvalue problems
(2) Numerical analysis of the Gross-Pitaevskii equation and two grids method

$$
\left\{\begin{array}{l}
u \in H_{0}^{1}(\Omega) \\
-\Delta u+V u+u^{3}=\lambda u \\
\int_{\Omega} u^{2}=1
\end{array}\right.
$$

(3) Planewave (Fourier) discretization of the periodic GP equation and two grids method
(9) Planewave discretization of the periodic TFW problem
(5) Planewave discretization of the periodic Kohn-Sham problem and two grids method

1 - Finite element discretization of the GP equation

$$
\Omega=(0, L)^{d}, d=1,2 \text { or } 3, \quad V \in L^{2}(\Omega) \text { and } \mu \geq 0
$$

We consider the minimization problem

$$
\begin{equation*}
I=\inf \left\{E(v), v \in H_{0}^{1}(\Omega), \int_{\Omega} v^{2}=1\right\} \tag{1}
\end{equation*}
$$

where

$$
E(v)=\int_{\Omega}|\nabla v|^{2}+\int_{\Omega} V|v|^{2}+\frac{\mu}{2} \int_{\Omega}|v|^{4}
$$

$$
\Omega=(0, L)^{d}, d=1,2 \text { or } 3, \quad V \in L^{2}(\Omega) \text { and } \mu \geq 0
$$

We consider the minimization problem

$$
\begin{equation*}
I=\inf \left\{E(v), v \in H_{0}^{1}(\Omega), \int_{\Omega} v^{2}=1\right\} \tag{1}
\end{equation*}
$$

where

$$
E(v)=\int_{\Omega}|\nabla v|^{2}+\int_{\Omega} V|v|^{2}+\frac{\mu}{2} \int_{\Omega}|v|^{4}
$$

- (1) has exactly two minimizers u and $-u$

$$
\Omega=(0, L)^{d}, d=1,2 \text { or } 3, \quad V \in L^{2}(\Omega) \text { and } \mu \geq 0
$$

We consider the minimization problem

$$
\begin{equation*}
I=\inf \left\{E(v), v \in H_{0}^{1}(\Omega), \int_{\Omega} v^{2}=1\right\} \tag{1}
\end{equation*}
$$

where

$$
E(v)=\int_{\Omega}|\nabla v|^{2}+\int_{\Omega} V|v|^{2}+\frac{\mu}{2} \int_{\Omega}|v|^{4}
$$

- (1) has exactly two minimizers u and $-u$
- u is the ground state of the nonlinear eigenvalue problem

$$
-\Delta u+V u+\mu u^{3}=\lambda u, \quad\|u\|_{L^{2}}=1
$$

$$
\Omega=(0, L)^{d}, d=1,2 \text { or } 3, \quad V \in L^{2}(\Omega) \text { and } \mu \geq 0
$$

We consider the minimization problem

$$
\begin{equation*}
I=\inf \left\{E(v), v \in H_{0}^{1}(\Omega), \int_{\Omega} v^{2}=1\right\} \tag{1}
\end{equation*}
$$

where

$$
E(v)=\int_{\Omega}|\nabla v|^{2}+\int_{\Omega} V|v|^{2}+\frac{\mu}{2} \int_{\Omega}|v|^{4}
$$

- (1) has exactly two minimizers u and $-u$
- u is the ground state of the nonlinear eigenvalue problem

$$
-\Delta u+V u+\mu u^{3}=\lambda u, \quad\|u\|_{L^{2}}=1
$$

- $u \in C^{0, \alpha}(\bar{\Omega})$ for some $\alpha>0$ and $u>0$ in Ω

Variational approximation of (1)

Let $\left(X_{\delta}\right)_{\delta>0}$ be a family of finite dimensional subspaces of $H_{0}^{1}(\Omega)$ s.t.

$$
\begin{equation*}
\min \left\{\left\|u-v_{\delta}\right\|_{H^{1}}, v_{\delta} \in X_{\delta}\right\} \underset{\delta \rightarrow 0^{+}}{\longrightarrow} 0 \tag{2}
\end{equation*}
$$

Variational approximation of (1)

Let $\left(X_{\delta}\right)_{\delta>0}$ be a family of finite dimensional subspaces of $H_{0}^{1}(\Omega)$ s.t.

$$
\begin{equation*}
\min \left\{\left\|u-v_{\delta}\right\|_{H^{1}}, v_{\delta} \in X_{\delta}\right\} \underset{\delta \rightarrow 0^{+}}{\longrightarrow} 0 \tag{2}
\end{equation*}
$$

The variational approximation of (1) in X_{δ} consists in solving

$$
\begin{equation*}
I_{\delta}=\inf \left\{E\left(v_{\delta}\right), v_{\delta} \in X_{\delta}, \int_{\Omega} v_{\delta}^{2}=1\right\} \tag{3}
\end{equation*}
$$

Variational approximation of (1)

Let $\left(X_{\delta}\right)_{\delta>0}$ be a family of finite dimensional subspaces of $H_{0}^{1}(\Omega)$ s.t.

$$
\begin{equation*}
\min \left\{\left\|u-v_{\delta}\right\|_{H^{1}}, v_{\delta} \in X_{\delta}\right\} \underset{\delta \rightarrow 0^{+}}{\longrightarrow} 0 \tag{2}
\end{equation*}
$$

The variational approximation of (1) in X_{δ} consists in solving

$$
\begin{equation*}
I_{\delta}=\inf \left\{E\left(v_{\delta}\right), v_{\delta} \in X_{\delta}, \int_{\Omega} v_{\delta}^{2}=1\right\} \tag{3}
\end{equation*}
$$

Problem (3) has at least one minimizer u_{δ} such that $\left(u_{\delta}, u\right)_{L^{2}} \geq 0$, which satisfies

$$
\begin{equation*}
\forall v_{\delta} \in X_{\delta}, \quad \int_{\Omega} \nabla u_{\delta} \cdot \nabla v_{\delta}+\int_{\Omega} V u_{\delta} v_{\delta}+\mu \int_{\Omega} u_{\delta}^{3} v_{\delta}=\lambda_{\delta} \int_{\Omega} u_{\delta} v_{\delta} \tag{4}
\end{equation*}
$$

for some $\lambda_{\delta} \in \mathbb{R}$. This minimizer is unique for δ small enough

A priori error estimates in the linear case $(\mu=0)$
There exist $0<c \leq C<\infty$ such that for all $\delta>0$

$$
\begin{aligned}
\left\|u_{\delta}-u\right\|_{H^{1}} & \leq C \min _{v_{\delta} \in X_{\delta}}\left\|v_{\delta}-u\right\|_{H^{1}} \\
c\left\|u_{\delta}-u\right\|_{H^{1}}^{2} & \leq E\left(u_{\delta}\right)-E(u) \leq C\left\|u_{\delta}-u\right\|_{H^{1}}^{2} \\
\left|\lambda_{\delta}-\lambda\right| & \leq C\left\|u_{\delta}-u\right\|_{H^{1}}^{2}
\end{aligned}
$$

Ref. : I. Babuška and J. Osborn, Eigenvalue problems, in : Handbook of numerical analysis. Volume II, (North-Holland, 1991) 641-787

Theorem (Cancès, Chakir, Y.M. 2009). In the nonlinear setting ($\mu>0$). There exist $0<c \leq C<\infty$ and $\delta_{0}>0$ such that for all $0<\delta \leq \delta_{0}$,

$$
\begin{aligned}
\left\|u_{\delta}-u\right\|_{H^{1}} & \leq C \min _{v_{\delta} \in X_{\delta}}\left\|v_{\delta}-u\right\|_{H^{1}} \\
c\left\|u_{\delta}-u\right\|_{H^{1}}^{2} & \leq E\left(u_{\delta}\right)-E(u) \leq C\left\|u_{\delta}-u\right\|_{H^{1}}^{2} \\
\left|\lambda_{\delta}-\lambda\right| & \leq C\left\|u_{\delta}-u\right\|_{H^{1}}^{2}+\mu\left|\int_{\Omega} u_{\delta}^{2}\left(u_{\delta}+u\right)\left(u_{\delta}-u\right)\right| \quad \text { (Zhou '04) }
\end{aligned}
$$

Theorem (Cancès, Chakir, Y.M. 2009). In the nonlinear setting ($\mu>0$). There exist $0<c \leq C<\infty$ and $\delta_{0}>0$ such that for all $0<\delta \leq \delta_{0}$,

$$
\begin{align*}
\left|\lambda_{\delta}-\lambda\right| & \leq C\left\|u_{\delta}-u\right\|_{H^{1}}^{2}+\mu\left|\int_{\Omega} u_{\delta}^{2}\left(u_{\delta}+u\right)\left(u_{\delta}-u\right)\right| \tag{Zhou'04}\\
\left\|u_{\delta}-u\right\|_{L^{2}}^{2} & \leq C\left\|u_{\delta}-u\right\|_{H^{1}} \min _{\psi_{\delta} \in X_{\delta}}\left\|\psi_{u_{\delta}-u}-\psi_{\delta}\right\|_{H^{1}}
\end{align*}
$$

where $\psi_{u_{\delta}-u} \in u^{\perp}=\left\{v \in H_{0}^{1}(\Omega) \mid(v, u)_{L^{2}}=0\right\}$ is the unique solution to the adjoint problem

$$
\forall v \in u^{\perp}, \quad\left\langle\left(E^{\prime \prime}(u)-\lambda\right) \psi_{u_{\delta}-u}, v\right\rangle_{H^{-1}, H_{0}^{1}}=\left\langle u_{\delta}-u, v\right\rangle_{H^{-1}, H_{0}^{1}}
$$

Application to \mathbb{P}_{1} and \mathbb{P}_{2} finite element discretizations
Let $\left(\mathcal{T}_{h}\right)_{h}$ be a family of regular triangulations of Ω

- \mathbb{P}_{1} finite element discretization

$$
\left|\lambda_{h, 1}-\lambda\right| \leq C\left(\left\|u_{h, 1}-u\right\|_{H^{1}}^{2}+\left\|u_{h, 1}-u\right\|_{L^{2}}\right)
$$

There exists $h_{0}>0$ and $C \in \mathbb{R}_{+}$such that for all $0<h \leq h_{0}$,

$$
\left\|u_{h, 1}-u\right\|_{H^{1}} \leq C h \quad\left\|u_{h, 1}-u\right\|_{L^{2}} \leq C h^{2} \quad\left|\lambda_{h, 1}-\lambda\right| \leq C h^{2}
$$

Application to \mathbb{P}_{1} and \mathbb{P}_{2} finite element discretizations
Let $\left(\mathcal{T}_{h}\right)_{h}$ be a family of regular triangulations of Ω

- \mathbb{P}_{1} finite element discretization

$$
\left|\lambda_{h, 1}-\lambda\right| \leq C\left(\left\|u_{h, 1}-u\right\|_{H^{1}}^{2}+\left\|u_{h, 1}-u\right\|_{L^{2}}\right)
$$

There exists $h_{0}>0$ and $C \in \mathbb{R}_{+}$such that for all $0<h \leq h_{0}$,

$$
\left\|u_{h, 1}-u\right\|_{H^{1}} \leq C h \quad\left\|u_{h, 1}-u\right\|_{L^{2}} \leq C h^{2} \quad\left|\lambda_{h, 1}-\lambda\right| \leq C h^{2}
$$

- \mathbb{P}_{2} finite element discretization $\left(V \in H^{1}(\Omega)\right)$

$$
\left|\lambda_{h, 2}-\lambda\right| \leq C\left(\left\|u_{h, 2}-u\right\|_{H^{1}}^{2}+\left\|u_{h, 2}-u\right\|_{H^{-1}}\right)
$$

There exists $h_{0}>0$ and $C \in \mathbb{R}_{+}$such that for all $0<h \leq h_{0}$,

$$
\left\|u_{h, 2}-u\right\|_{H^{1}} \leq C h^{2} \quad\left\|u_{h, 2}-u\right\|_{L^{2}} \leq C h^{3} \quad\left|\lambda_{h, 2}-\lambda\right| \leq C h^{4}
$$

Numerical simulations

$d=2, V\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$

Errors $\left\|u_{h, k}-u\right\|_{H^{1}}(+),\left\|u_{h, k}-u\right\|_{L^{2}}(\times)$ and $\left|\lambda_{h, k}-\lambda\right|(*)$ for the \mathbb{P}_{1} ($k=1$, left) and $\mathbb{P}_{2}(k=2$, right) approximations as a function of h in log scales

Eigenvalue problems of the form

$$
-\operatorname{div}(A \nabla u)+V u+f\left(|u|^{2}\right) u=\lambda u
$$

are dealt with in E.Cancès., R. Chakir and Y. M., Numerical analysis of nonlinear eigenvalue problems, JSC 2009

Eigenvalue problems of the form

$$
-\operatorname{div}(A \nabla u)+V u+f\left(|u|^{2}\right) u=\lambda u
$$

are dealt with in E.Cancès., R. Chakir and Y. M., Numerical analysis of nonlinear eigenvalue problems, JSC 2009

These estimates where improved accuracy is established on the lower order norms are at the basis of a new method on two grids where the nonlinear eigenvalue problem is solved on a coarse mesh and a linear eigenvalue or even a linear problem with right hand side is solved on a fine mesh and optimal results are obtained (both theoretically and numerically)
R. Chakir's thesis

Two grid method

On a coarse mesh

Non linear eigenvalue problem on a coarse grid X_{H}

Two grid method

On a coarse mesh

Non linear eigenvalue problem on a coarse grid X_{H}

$$
a\left(u_{H}, v\right)+\int_{\Omega} f\left(u_{H}^{2}\right) u_{H} v=\lambda_{H} \int_{\Omega} u_{H} v, \quad \forall v \in X_{H}
$$

Two grid method

On a coarse mesh

Non linear eigenvalue problem on a coarse grid X_{H}

$$
a\left(u_{H}, v\right)+\int_{\Omega} f\left(u_{H}^{2}\right) u_{H} v=\lambda_{H} \int_{\Omega} u_{H} v, \quad \forall v \in X_{H}
$$

On a fine mesh

Two grid method

On a coarse mesh

Non linear eigenvalue problem on a coarse grid X_{H}

$$
a\left(u_{H}, v\right)+\int_{\Omega} f\left(u_{H}^{2}\right) u_{H} v=\lambda_{H} \int_{\Omega} u_{H} v, \quad \forall v \in X_{H}
$$

On a fine mesh

Problem 1	Problem 2	Problem 3
Linear eigenvalue problem on a fine space X_{h}	Linear right hand side problem on a fine space X_{h}	Linear right hand side problem on a fine space X_{h}
$a\left(u_{h}^{H}, v\right)+\int_{\Omega} f\left(u_{H}^{2}\right) u_{h}^{H} v$	$a\left(\tilde{u}_{h}^{H}, v\right)+\int_{\Omega} f\left(u_{H}^{2}\right) \tilde{u}_{h}^{H} v$	$a\left(\bar{u}_{h}^{H}, v\right)=-\int_{\Omega} f\left(u_{H}^{2}\right) u_{H} v$
$=\lambda_{h}^{H} \int_{\Omega} u_{h}^{H} v \quad \forall v \in X_{h}$	$=\lambda_{H} \int_{\Omega} u_{H} v \quad \forall v \in X_{h}$	$+\lambda_{H} \int_{\Omega} u_{H} v \quad \forall v \in X_{h}$.

Numerical simulations

Numerical simulations

$$
\left\|u-u_{h}\right\|_{H^{1}\left(\Omega_{1}\right)}=0.00647426
$$

| T_{n} | Méthode à 2 Grilles | | | $\left\\|u-u_{H_{n}}\right\\|_{H^{1}\left(\Omega_{1}\right)}$ | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | $\left\\|u-u_{H_{n} h}\right\\|_{H^{1}\left(\Omega_{1}\right)}$ | $\left\\|u-\tilde{u}_{H_{n} h}\right\\|_{H^{1}\left(\Omega_{1}\right)}$ | $\left\\|u-\bar{u}_{H_{n} h}\right\\|_{H^{1}\left(\Omega_{1}\right)}$ | |
| 0 | 0.00647816 | 0.00658694 | 0.00660524 | 0.118264 |
| 1 | 0.00647449 | 0.00648174 | 0.00648297 | 0.0594255 |
| 2 | 0.00647426 | 0.00647474 | 0.00647482 | 0.0296258 |
| 3 | 0.00647426 | 0.00647428 | 0.00647429 | 0.0144717 |

$$
\left|\lambda-\lambda_{h}\right|=4.25 \times 10^{-5}
$$

T_{n}	Méthode à 2 Grilles			$\left\|\lambda-\lambda_{H_{n}}\right\|$					
	$\\| \lambda-\lambda_{H_{n} h} H^{1}\left(\Omega_{1}\right)$	$\left\\|\lambda-\tilde{\lambda}_{H_{n} h}\right\\|_{H^{1}\left(\Omega_{1}\right)}$	$\left\\|\lambda-\bar{\lambda}_{H_{n} h}\right\\|_{H^{1}\left(\Omega_{1}\right)}$						
0	3.46×10^{-5}	8.411×10^{-5}	9.69×10^{-5}	1.41×10^{-2}					
1	4.05×10^{-5}	5.29×10^{-5}	5.61×10^{-5}	3.58×10^{-3}					
2	4.20×10^{-5}	4.50×10^{-5}	4.59×10^{-5}	8.91×10^{-4}					
3	4.24×10^{-5}	4.30×10^{-5}	4.33×10^{-5}	2.13×10^{-4}					

Numerical simulations fine mesh $=T_{4}$

$$
\left\|u-u_{h}\right\|_{H^{1}\left(\Omega_{1}\right)}=0.00647426
$$

| T_{n} | Méthode à 2 Grilles | | | $\left\\|u-u_{H_{n}}\right\\|_{H^{1}\left(\Omega_{1}\right)}$ | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | $\left\\|u-u_{H_{n} h}\right\\|_{H^{1}\left(\Omega_{1}\right)}$ | $\left\\|u-\tilde{u}_{H_{n} h}\right\\|_{H^{1}\left(\Omega_{1}\right)}$ | $\left\\|u-\bar{u}_{H_{n} h}\right\\|_{H^{1}\left(\Omega_{1}\right)}$ | |
| 0 | 0.00647816 | 0.00658694 | 0.00660524 | 0.118264 |
| 1 | 0.00647449 | 0.00648174 | 0.00648297 | 0.0594255 |
| 2 | 0.00647426 | 0.00647474 | 0.00647482 | 0.0296258 |
| 3 | 0.00647426 | 0.00647428 | 0.00647429 | 0.0144717 |

$$
\left|\lambda-\lambda_{h}\right|=4.25 \times 10^{-5}
$$

T_{n}	Méthode à 2 Grilles			$\left\|\lambda-\lambda_{H_{n}}\right\|$					
	$\\| \lambda-\lambda_{H_{n} h} H^{1}\left(\Omega_{1}\right)$	$\left\\|\lambda-\tilde{\lambda}_{H_{n} h}\right\\|_{H^{1}\left(\Omega_{1}\right)}$	$\left\\|\lambda-\bar{\lambda}_{H_{n} h}\right\\|_{H^{1}\left(\Omega_{1}\right)}$						
0	3.46×10^{-5}	8.411×10^{-5}	9.69×10^{-5}	1.41×10^{-2}					
1	4.05×10^{-5}	5.29×10^{-5}	5.61×10^{-5}	3.58×10^{-3}					
2	4.20×10^{-5}	4.50×10^{-5}	4.59×10^{-5}	8.91×10^{-4}					
3	4.24×10^{-5}	4.30×10^{-5}	4.33×10^{-5}	2.13×10^{-4}					

Numerical simulations

Table: Comparison between the CPU times for the Two Grids Method. reference time 121.46 sec

T_{n}	Méthode à 2 Grilles		
	Problème 1	Problème 2	Problème 3
0	14.64 s	7.57 s	7.17 s
1	15.61 s	8.65 s	8.22 s
2	21.08 s	12.78 s	12.27 s
3	39.36 s	34.25 s	33.68 s

2 - Planewave discretization of the periodic GP equation

We now consider the minimization problem

$$
\begin{equation*}
I=\inf \left\{E(v), v \in H_{\#}^{1}(\Omega), \int_{\Omega}|v|^{2}=1\right\} \tag{5}
\end{equation*}
$$

where $\Omega=(0,2 \pi)^{d}(d=1,2$ or 3$)$ and where

$$
E(v)=\int_{\Omega}|\nabla v|^{2}+\int_{\Omega} V|v|^{2}+\frac{1}{2} \int_{\Omega}|v|^{4},
$$

V being a $2 \pi \mathbb{Z}^{d}$-periodic continuous function

Planewave basis sets
For $k \in \mathbb{Z}^{d}$, we denote by

$$
e_{k}(x)=\frac{e^{i k \cdot x}}{(2 \pi)^{d / 2}} \quad V_{N}=\left\{\sum_{|k| \leq N} c_{k} e_{k} \mid c_{-k}=c_{k}^{*}\right\}
$$

Spectral approximation

Let u_{N} be a minimizer of

$$
I_{N}=\inf \left\{E\left(v_{N}\right), v \in V_{N}, \int_{\Omega}\left|v_{N}\right|^{2}=1\right\} \quad \text { s.t. }\left(u_{N}, u\right)_{L^{2}} \geq 0
$$

Theorem (Cancès, Chakir, Y.M. 2009) Assume that $V \in H_{\#}^{\sigma}(\Omega)$ for some $\sigma>d / 2$. Then $\left(u_{N}\right)_{N \in \mathbb{N}}$ converges to u in $H_{\#}^{\sigma+2}(\Omega)$ and there exists $0<c \leq C<\infty$ such that for all $N \in \mathbb{N}$,

$$
\begin{aligned}
\left\|u_{N}-u\right\|_{H_{\#}^{s}} & \leq \frac{C}{N^{\sigma+2-s}} \quad \text { for all }-\sigma \leq s<\sigma+2 \\
c\left\|u_{N}-u\right\|_{H_{\#}^{1}}^{2} & \leq E\left(u_{N}\right)-E(u) \leq C\left\|u_{N}-u\right\|_{H_{\#}^{1}}^{2} \\
\left|\lambda_{N}-\lambda\right| & \leq \frac{C}{N^{2(\sigma+1)}}
\end{aligned}
$$

Numerical simulations
$d=1, V(x)=\sin (|x-\pi| / 2)\left(V \in H_{\#}^{3 / 2-\varepsilon}(0,2 \pi)\right)$

Numerical errors $\left\|u_{N}-u\right\|_{H_{\#}^{1}}(+),\left\|u_{N}-u\right\|_{L_{\#}^{2}}(\times),\left\|u_{N}-u\right\|_{H_{\#}^{-1}}(*)$, $\left|\lambda_{N}-\lambda\right|(\circ)$, as functions of $2 N+1$ (the dimension of \widetilde{X}_{N}) in log scales

Pseudospectral approximation
Let $u_{N, N_{g}}$ be a minimizer of

$$
I_{N, N_{g}}=\inf \left\{E_{N_{g}}\left(v_{N}\right), v \in V_{N}, \int_{\Omega}\left|v_{N}\right|^{2}=1\right\} \quad \text { s.t. }\left(u_{N, N_{g}}, u\right)_{L^{2}} \geq 0
$$

where $N_{g} \in \mathbb{N} \backslash\{0\}$ (odd for simplicity), $N_{g} \geq 4 N+1$ and

$$
E_{N_{g}}\left(v_{N}\right)=\int_{\Omega}\left|\nabla v_{N}\right|^{2}+\int_{\Omega} \mathcal{I}_{N_{g}}(V)\left|v_{N}\right|^{2}+\frac{1}{2} \int_{\Omega}\left|v_{N}\right|^{4}
$$

$\mathcal{I}_{N_{g}}$ denoting the interpolation projector on

$$
W_{N_{g}}=\left\{\left.e_{k}| | k\right|_{\infty} \leq\left(N_{g}-1\right) / 2\right\}
$$

The mean field matrix of the above minimization problem is

$$
\left[H_{\left|v_{N}\right|^{2}}\right]_{k l}=|k|^{2} \delta_{k l}+\widehat{V}_{k-1}^{\mathrm{FFT}, N_{g}}+{\widehat{\left|v_{N}\right|^{2}}}_{k-1}^{\mathrm{FFT}, N_{g}}
$$

Pseudospectral error
If $\left|\widehat{V}_{k}\right| \leq C|k|^{-s}$ with $s>d$, then $V \in H_{\#}^{s-d / 2-\varepsilon}(\Omega)$ and

$$
\begin{aligned}
\left\|u_{N, N_{g}}-u_{N}\right\|_{H_{\#}^{1}} \leq C N^{d / 2} N_{g}^{-s} & \left\|u_{N}-u\right\|_{H_{\#}^{1}} \leq C N^{-(s-d / 2+1-\varepsilon)} \\
\left\|u_{N, N_{g}}-u_{N}\right\|_{L_{\#}^{2}} \leq C N^{d / 2} N_{g}^{-s} & \left\|u_{N}-u\right\|_{L_{\#}^{2}} \leq C N^{-(s-d / 2+2-\varepsilon)} \\
\left|\lambda_{N, N_{g}}-\lambda_{N}\right| \leq C N^{d / 2} N_{g}^{-s} & \left|\lambda_{N}-\lambda\right| \leq C N^{-2(s-d / 2+1-\varepsilon)}
\end{aligned}
$$

The optimal choice for N_{g} therefore is
$N_{g} \sim N^{1+1 / s-\varepsilon} \quad$ if the criterion is the H^{1} norm (or the energy)
$N_{g} \sim N^{1+2 / s-\varepsilon} \quad$ if the criterion is the L^{2} norm
$N_{g} \sim N^{2-d /(2 s)+2 / s-\varepsilon}$ if the criterion is the eigenvalue

Numerical simulations

$$
d=1, V(x)=\sin (|x-\pi| / 2)\left(s=2 \text { and } V \in H_{\#}^{3 / 2-\varepsilon}(0,2 \pi)\right)
$$

$$
N_{g} \sim N^{3 / 2-\varepsilon}
$$

$N_{g} \sim N^{2-\varepsilon}$

$N_{g} \sim N^{11 / 4-\varepsilon}$

Numerical errors $\left\|u_{N, N_{g}}-u\right\|_{H_{\#}^{1}}$ (left), $\left\|u_{N, N_{g}}-u\right\|_{L_{\#}^{2}}$ (middle) and $\left|\lambda_{N, N_{g}}-\lambda\right|$ (right), as functions of $2 N+1$ (the dimension of V_{N}), for $N_{g}=128$ (red), $N_{g}=256$ (green), $N_{g}=512$ (cyan), $N_{g}=1024$ (gold), $N_{g}=2048$ (magenta), $N_{g}=4096$ (pink), $N_{g}=8192$ (black), $N_{g}=16384$ (blue), $N_{g}=32768$ (light blue)

Numerical simulations

$$
d=1, V(x)=\sin (|x-\pi| / 2)\left(s=2 \text { and } V \in H_{\#}^{3 / 2-\varepsilon}(0,2 \pi)\right)
$$

Two grids method - Numerical simulations fine mesh $=N=100$

$$
\begin{gathered}
\left\|u-u_{N}\right\|_{H^{1}}=1.310^{-6} \\
\left\|u-u_{N}\right\|_{L^{2}}=1.110^{-8} \\
\left|\lambda-\lambda_{N}\right|=8.10^{-12}
\end{gathered}
$$

$N g$	$\left\\|u-u_{N_{f}}^{N_{g}}\right\\|_{H^{1}\left(\Omega_{1}\right)}$	$\left\\|u-u_{N_{f}}^{N_{g}}\right\\|_{L^{2}\left(\Omega_{1}\right)}$	$\left\|\lambda-\lambda_{N_{f}}^{N_{g}}\right\|$
5	5.608×10^{-4}	9.032×10^{-6}	4.932×10^{-7}
10	1.673×10^{-5}	2.530×10^{-7}	9.006×10^{-9}
20	1.429×10^{-6}	1.280×10^{-8}	2.598×10^{-10}
30	1.337×10^{-6}	1.085×10^{-8}	3.897×10^{-11}
40	1.336×10^{-6}	1.083×10^{-8}	2.140×10^{-11}
50	1.336×10^{-6}	1.083×10^{-8}	1.143×10^{-11}
60	1.336×10^{-6}	1.083×10^{-8}	9.342×10^{-12}
70	1.336×10^{-6}	1.083×10^{-8}	1.043×10^{-11}
80	1.336×10^{-6}	1.083×10^{-8}	1.083×10^{-11}
90	1.336×10^{-6}	1.083×10^{-8}	3.40×10^{-12}

3 - Planewave discretization of the periodic TFW model

The periodic Thomas-Fermi-von Weizsäcker (TFW) model

$$
\begin{equation*}
I^{\mathrm{TFW}}=\inf \left\{\mathcal{E}^{\mathrm{TFW}}(\rho), \rho \in \mathfrak{R}_{\mathcal{N}}\right\}, \tag{6}
\end{equation*}
$$

Set of admissible densities

$$
\mathfrak{R}_{\mathcal{N}}=\left\{\rho \geq 0 \mid \sqrt{\rho} \in H_{\#}^{1}\left((0, L)^{3}\right), \int_{(0, L)^{3}} \rho=\mathcal{N}\right\}
$$

TFW energy functional
$\mathcal{E}^{\mathrm{TFW}}(\rho)=\frac{C_{\mathrm{W}}}{2} \int_{(0, L)^{3}}|\nabla \sqrt{\rho}|^{2}+C_{\mathrm{TF}} \int_{(0, L)^{3}} \rho^{5 / 3}+\int_{(0, L)^{3}} \rho V^{\mathrm{ion}}+\frac{1}{2} D_{L}(\rho, \rho)$
where

$$
D_{L}\left(\rho, \rho^{\prime}\right):=4 \pi \sum_{k \in \frac{2 \pi}{L} \mathbb{Z}^{3} \backslash\{0\}} \frac{\widehat{\rho}_{k}^{*} \widehat{\rho}_{k}^{\prime}}{|k|^{2}}
$$

Reformulation of TFW model in terms of $v=\sqrt{\rho}$

$$
\begin{equation*}
I^{\mathrm{TFW}}=\inf \left\{E^{\mathrm{TFW}}(v), v \in H_{\#}^{1}\left((0, L)^{3}\right), \int_{(0, L)^{3}}|v|^{2}=\mathcal{N}\right\} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& E^{\mathrm{TFW}}(v)= \\
& \frac{C_{\mathrm{W}}}{2} \int_{(0, L)^{3}}|\nabla v|^{2}+C_{\mathrm{TF}} \int_{(0, L)^{3}}|v|^{10 / 3}+\int_{(0, L)^{3}} V^{\text {ion }}|v|^{2}+\frac{1}{2} D_{L}\left(|v|^{2},|v|^{2}\right)
\end{aligned}
$$

Mathematical properties of the periodic TFW model

Under the following assumption

$$
\begin{equation*}
\exists m>3, C \geq 0 \text { s.t. } \forall k \in \mathcal{R}^{*},\left|\widehat{V}_{k}^{\text {ion }}\right| \leq C|k|^{-m} \tag{8}
\end{equation*}
$$

(1) (6) has a unique minimizer ρ^{0}, and the minimizers of (7) are u and $-u$ where $u=\sqrt{\rho^{0}}$
(2) u is positive everywhere in $(0, L)^{3}$ and satisfies the Euler equation

$$
-\frac{C_{\mathrm{W}}}{2} \Delta u+\left(\frac{5}{3} C_{\mathrm{TF}} u^{4 / 3}+V^{\text {ion }}+V_{u^{2}}^{\text {Coulomb }}\right) u=\lambda u
$$

for some $\lambda \in \mathbb{R}$
(3) the function u is in $H_{\#}^{m+1 / 2-\varepsilon}\left((0, L)^{3}\right)$ (and therefore in $\left.C_{\#}^{2}\left((0, L)^{3}\right)\right)$

The PW discretization of the TFW model is obtained by choosing
(1) an energy cut-off $E_{c}>0$ or, equivalently, a finite dimensional Fourier space $V_{N_{c}}$, the integer N_{c} being related to E_{c} through the relation $N_{c}:=\left[\sqrt{2 E_{c}} L / 2 \pi\right] ;$
(2) a cartesian grid $\mathcal{G}_{N_{g}}$ with step size L / N_{g} where $N_{g} \in \mathbb{N}^{*}$ is such that $N_{g} \geq 4 N_{c}+1$,
and by considering the finite dimensional minimization problem

$$
\begin{equation*}
I_{N_{c}, N_{g}}^{\mathrm{TFW}}=\inf \left\{E_{N_{g}}^{\mathrm{TFW}}\left(v_{N_{c}}\right), v_{N_{c}} \in V_{N_{c}}, \int_{\Gamma}\left|v_{N_{c}}\right|^{2}=\mathcal{N}\right\}, \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
E_{N_{g}}^{\mathrm{TFW}}\left(v_{N_{c}}\right)= & \left.\frac{C_{\mathrm{W}}}{2} \int_{\Gamma}\left|\nabla v_{N_{c}}\right|^{2}+C_{\mathrm{TF}} \int_{\Gamma} \mathcal{I}_{N_{g}}\left(\left|v_{N_{c}}\right|^{10 / 3}\right)+\int_{\Gamma} \mathcal{I}_{N_{g}}\left(V^{\mathrm{ion}}\right) \right\rvert\, v_{N_{c}} \\
& +\frac{1}{2} D_{\Gamma}\left(\left|v_{N_{c}}\right|^{2},\left|v_{N_{c}}\right|^{2}\right),
\end{aligned}
$$

$\mathcal{I}_{N_{g}}$ denoting the Fourier interpolation operator

Spectral approximation of the TFW model

Theorem (Cancès, Chakir, Y.M. 2009) For $N_{c} \in \mathbb{N}$, we denote by $u_{N_{c}}$ a minimizer to

$$
\begin{equation*}
I_{N_{c}}^{\mathrm{TFW}}=\inf \left\{E^{\mathrm{TFW}}\left(v_{N_{c}}\right), v_{N_{c}} \in V_{N_{c}}, \int_{\Gamma}\left|v_{N_{c}}\right|^{2}=\mathcal{N}\right\} . \tag{10}
\end{equation*}
$$

such that $\left(u_{N_{c}}, u\right)_{L_{\#}^{2}} \geq 0$. Then for N_{c} large enough, $u_{N_{c}}$ is unique, and for each $\varepsilon>0$, the following estimates hold true

$$
\begin{align*}
\left\|u_{N_{c}}-u\right\|_{H_{\#}^{s}} & \leq C_{s} N_{c}^{-(m-s+1 / 2-\varepsilon)} \tag{11}\\
\left|\lambda_{N_{c}}-\lambda\right| & \leq C N_{c}^{-(2 m-1-\varepsilon)} \tag{12}\\
\gamma\left\|u_{N_{c}}-u\right\|_{H_{\#}^{1}}^{2} \leq I_{N_{c}}^{\mathrm{TFW}}-I^{\mathrm{TFW}} & \leq C\left\|u_{N_{c}}-u\right\|_{H_{\#}^{1}}^{2} \tag{13}
\end{align*}
$$

for all $-m+3 / 2<s<m+1 / 2$ and for some constants $\gamma>0, C \geq 0$ and $C_{s} \geq 0$ independent of N_{c}

Pseudospectral approximation of the TFW model

Theorem (Cancès, Chakir, Y.M. 2009) For $N_{c} \in \mathbb{N}$ and $N_{g} \geq 4 N_{c}+1$, we denote by $u_{N_{c}}$ a minimizer to

$$
\begin{equation*}
I_{N_{c}, N_{g}}^{\mathrm{TFW}}=\inf \left\{E_{N_{g}}^{\mathrm{TFW}}\left(v_{N_{c}}\right), v_{N_{c}} \in V_{N_{c}}, \int_{\Gamma}\left|v_{N_{c}}\right|^{2}=\mathcal{N}\right\}, \tag{14}
\end{equation*}
$$

such that $\left(u_{N_{c}, N_{g}}, u\right)_{L_{\#}^{2}} \geq 0$. Then for N_{c} large enough, $u_{N_{c}, N_{g}}$ is unique, and the following estimates hold true

$$
\begin{align*}
\left\|u_{N_{c}, N_{g}}-u_{N_{c}}\right\|_{H_{\#}^{s}} & \leq C_{s} N_{c}^{3 / 2+(s-1)_{+}} N_{g}^{-m}, \tag{15}\\
\left|\lambda_{N_{c}, N_{g}}-\lambda_{N_{c}}\right| & \leq C N_{c}^{3 / 2} N_{g}^{-m} \tag{16}\\
\left|I_{N_{c}, N_{g}}^{\mathrm{TFW}}-I_{N_{c}}^{\mathrm{TFW}}\right| & \leq C N_{c}^{3 / 2} N_{g}^{-m}, \tag{17}
\end{align*}
$$

for all $-m+3 / 2<s<m+1 / 2$ and for some constants $\gamma>0, C \geq 0$ and $C_{s} \geq 0$ independent of N_{c} and N_{g}

4 - Planewave discretization of the Kohn-Sham model

We'll be back after this advertisement

MathSinA. MathematicS In Action

A new journal with the objective to promote the interactions between Mathematics and other sciences, by publishing papers written by at least two authors: a mathematician and a specialist in another scientific community (biology, economy, computer science, physics, etc.).

Electronic and freely available

Editors-in-Chief
Yvon Maday
Denis Talay
Editorial board
Francois Baccelli John Ball
Guy Bouchitte Alexandre Chorin Stéphane Cordier Felipe Cucker Claude Le Bris Pierre-Louis Lions Sylvie Méléard George Papanicolaou
Olivier Pironneau Alfio Quarteroni Simon Tavaré Thaleia Zariphopoulou
web site: http://msia.cedram.org/

Published by the SMAI (French Applied Maths Society: http//smaiemathfr/). with the help of the CEDRAM (Center for Diffusion of Acadernic Mathernatical Journals: http://www.cedramorg/)

Continuation of our program

The Kohn-Sham model LDA model

$$
\begin{equation*}
I^{\mathrm{KS}}=\inf \left\{E^{\mathrm{KS}}(\Phi), \Phi \in \mathcal{M}\right\} \tag{18}
\end{equation*}
$$

where

$$
\mathcal{M}=\left\{\Phi=\left(\phi_{1}, \cdots, \phi_{\mathcal{N}}\right)^{T} \in\left(H_{\#}^{1}(\Gamma)\right)^{\mathcal{N}} \mid \int_{\Gamma} \phi_{i} \phi_{j}=\delta_{i j}\right\}
$$

\mathcal{N} being the number of valence electron pairs in the simulation cell, and
$E^{\mathrm{KS}}(\Phi)=\sum_{i=1}^{\mathcal{N}} \int_{\Gamma}\left|\nabla \phi_{i}\right|^{2}+\int_{\Gamma} \rho_{\Phi} V_{\text {local }}+2 \sum_{i=1}^{\mathcal{N}}\left\langle\phi_{i}\right| V_{\mathrm{nl}}\left|\phi_{i}\right\rangle+J\left(\rho_{\Phi}\right)+E_{\mathrm{xc}}^{\mathrm{LDA}}\left(\rho_{\Phi}\right)$.

The Kohn-Sham model LDA model

It is possible to prove that under appropriate assumptions, (18) has a minimizer $\Phi^{0}=\left(\phi_{1}^{0}, \cdots, \phi_{\mathcal{N}}^{0}\right)^{T}$ with density $\rho^{0}=\rho_{\phi^{0}}$. Some regularity assumptions on $V_{\text {local }}$, on $E_{\mathrm{xc}}^{\mathrm{LDA}}$ and on V_{nl} allow to state that the minimizer Φ^{0} is in $\left[H_{\#}^{3}(\Gamma)\right]^{\mathcal{N}}$, and even in $\left[H_{\#}^{m+1 / 2-\varepsilon}(\Gamma)\right]^{\mathcal{N}}$ for any $\varepsilon>0$, if at least one of the following conditions is satisfied :
$E_{\mathrm{xc}}^{\mathrm{LDA}} \in C^{[m]}([0,+\infty))$ or $\rho_{\mathrm{c}}+\rho^{0}>0$ in \mathbb{R}^{3}.
The former condition is not satisfied for usual LDA exchange-correlation functionals. On the other hand, it is satisfied for the Hartree (also called reduced Hartree-Fock) model, for which $e_{\mathrm{xc}}^{\mathrm{LDA}}=0$. The latter condition seems to be satisfied in practice, but we were not able to establish it rigourously.

Remember that the uniqueness is not at all proven... In fact, (18) has an infinity of minimizers since any unitary transform of the Kohn-Sham orbitals Φ^{0} is also a minimizer of the Kohn-Sham energy.

The Kohn-Sham model LDA model
$\forall \Phi=\left(\phi_{1}, \cdots, \phi_{\mathcal{N}}\right)^{T} \in \mathcal{M}$, we introduce the tangent space to \mathcal{M} at Φ $T_{\phi} \mathcal{M}=\left\{\left(\psi_{1}, \cdots, \psi_{\mathcal{N}}\right)^{T} \in\left(H_{\#}^{1}(\Gamma)\right)^{\mathcal{N}} \mid \int_{\Gamma} \phi_{i} \psi_{j}+\psi_{i} \phi_{j}=0\right\}$
Since the problem we are considering is a minimization problem, the second order condition further states

$$
\forall W \in T_{\Phi^{0}} \mathcal{M}, \quad a_{\Phi^{0}}(W, W) \geq 0
$$

where

$$
\begin{equation*}
a_{\Phi^{0}}(\Psi, \Upsilon)=\frac{1}{4} E^{\mathrm{KS}^{\prime \prime}}\left(\Phi^{0}\right)(\Psi, \Upsilon)-\sum_{i=1}^{N} \varepsilon_{i}^{0} \int_{\Gamma} \psi_{i} v_{i} \tag{20}
\end{equation*}
$$

It follows from the invariance property through unitary transform that

$$
a_{\Phi^{0}}(\Psi, \Psi)=0 \quad \text { for all } \Psi \in \mathcal{A} \Phi^{0}
$$

where $\mathcal{A}=\left\{A \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}} \mid A^{T}=-A\right\}$ is the space of the $\mathcal{N} \times \mathcal{N}$ antisymmetric real matrices.

The Kohn-Sham model LDA model
$\forall \Phi=\left(\phi_{1}, \cdots, \phi_{\mathcal{N}}\right)^{T} \in \mathcal{M}$, we denote by

$$
\Phi^{\Perp}=\left\{\psi=\left(\psi_{1}, \cdots, \psi_{\mathcal{N}}\right)^{T} \in\left(H_{\#}^{1}(\Gamma)\right)^{\mathcal{N}} \mid \int_{\Gamma} \phi_{i} \psi_{j}=0\right\} .
$$

Let us indicate that

$$
T_{\Phi} \mathcal{M}=\mathcal{A} \Phi \oplus \Phi^{\Perp}
$$

We are lead to make the assumption (see M. Turinici Numer. Math., 2003) that $a_{\Phi 0}$ is positive definite on $\Phi^{0, \Perp}$, in which case there exists a positive constant $c_{\Phi^{0}}$ such that

$$
\begin{equation*}
\forall \Psi \in \Phi^{0, \Perp}, \quad a_{\Phi^{0}}(\Psi, \Psi) \geq c_{\Phi^{0}}\|\Psi\|_{H_{\#}^{1}}^{2} \tag{21}
\end{equation*}
$$

In the linear framework $\left(J=0\right.$ and $E_{\mathrm{xc}}^{\mathrm{LDA}}=0$ in (19)), this condition amounts to assuming that there is a gap between the lowest $\mathcal{N}^{\text {th }}$ and $(\mathcal{N}+1)^{\text {st }}$ eigenvalues of the linear self-adjoint operator $h=-\frac{1}{2} \Delta+V_{\text {local }}+V_{\text {nl }}$.

Variational approximation

Let us focus on the variational approximation

$$
\begin{equation*}
I_{N_{c}}^{\mathrm{KS}}=\inf \left\{E^{\mathrm{KS}}\left(\Phi_{N_{c}}\right), \Phi_{N_{c}} \in V_{N_{c}}^{\mathcal{N}} \cap \mathcal{M}\right\} \tag{22}
\end{equation*}
$$

One way to take the unitary invariance of the Kohn-Sham model into account is to work with density matrices. An alternative is to define for each $\Phi \in \mathcal{M}$ the set

$$
\mathcal{M}^{\Phi}:=\left\{\Psi \in \mathcal{M} \mid\|\Psi-\Phi\|_{L_{\#}^{2}}=\min _{U \in \mathcal{U}(\mathcal{N})}\|U \Psi-\Phi\|_{L_{\#}^{2}}\right\}
$$

and to use the fact that all the local minimizers of (22) are obtained by unitary transforms from the local minimizers of

$$
\begin{equation*}
I_{N_{c}}^{\mathrm{KS}}=\inf \left\{E^{\mathrm{KS}}\left(\Phi_{N_{c}}\right), \Phi_{N_{c}} \in V_{N_{c}}^{\mathcal{N}} \cap \mathcal{M}^{\Phi^{0}}\right\} \tag{23}
\end{equation*}
$$

A priori estimates
The main result is the following.

Theorem

Let Φ^{0} be a local minimizer of (18) satisfying (21). Then there exists $r^{0}>0$ and N_{c}^{0} such that for $N_{c} \geq N_{c}^{0}$, (23) has a unique local minimizer $\Phi_{N_{c}}^{0}$ in the set

$$
\left\{\Phi_{N_{c}} \in V_{N_{c}}^{\mathcal{N}} \cap \mathcal{M}^{\Phi^{0}} \mid\left\|\Phi_{N_{c}}-\Phi^{0}\right\|_{H_{\#}^{1}} \leq r^{0}\right\}
$$

If we assume either that $e_{\mathrm{xc}}^{\mathrm{LDA}} \in C^{[m]}([0,+\infty))$ or that $\rho_{\mathrm{c}}+\rho^{0}>0$ on Γ, then we have the following estimates :

$$
\begin{align*}
\left\|\Phi_{N_{c}}^{0}-\Phi^{0}\right\|_{H_{\#}^{s}} & \leq C_{s, \varepsilon} N_{c}^{-(m-s+1 / 2-\varepsilon)} \tag{24}\\
\left|\varepsilon_{i, N_{c}}^{0}-\varepsilon_{i}^{0}\right| & \leq C_{\varepsilon} N_{c}^{-(2 m-1-\varepsilon)} \tag{25}\\
\gamma\left\|\Phi_{N_{c}}^{0}-\Phi^{0}\right\|_{H_{\#}^{1}}^{2} \leq I_{N_{c}}^{\mathrm{KS}}-I^{\mathrm{KS}} & \leq C\left\|\Phi_{N_{c}}^{0}-\Phi^{0}\right\|_{H_{\#}^{1}}^{2}, \tag{26}
\end{align*}
$$

Numerical simulations

We have run simulation tests with the Hartree functional (i.e. with $e_{\mathrm{xc}}^{\mathrm{LDA}}=0$), for which there is no numerical integration error. In this particular case, the problems solved numerically by Abinit and (22) (analyzed in Theorem 1) are identical.
For Troullier-Martins pseudopotentials, the parameter m in Theorem 1 is equal to 5 . Therefore, we expect the following error bounds (as functions of the cut-off energy $\left.E_{c}=\frac{1}{2}\left(\frac{2 \pi N_{c}}{L}\right)^{2}\right)$

$$
\begin{align*}
\left\|\Phi_{N_{c}}^{0}-\Phi^{0}\right\|_{H_{\#}^{1}} & \leq C_{1, \varepsilon} E_{c}^{-2.25+\varepsilon} \tag{27}\\
\left\|\Phi_{N_{c}}^{0}-\Phi^{0}\right\|_{L_{\#}^{2}} & \leq C_{2, \varepsilon} E_{c}^{-2.75+\varepsilon} \tag{28}\\
\left|\varepsilon_{i, N_{c}}^{0}-\varepsilon_{i}^{0}\right| & \leq C_{3, \varepsilon} E_{c}^{-4.5+\varepsilon} \tag{29}\\
0 \leq I_{N_{c}}^{\mathrm{KS}}-I^{\mathrm{KS}} & \leq C_{4, \varepsilon} E_{\mathrm{c}}^{-4.5+\varepsilon} \tag{30}
\end{align*}
$$

Numerical simulations

Figure 1: Error on the energy as a function of E_{c} for H_{2}

Numerical simulations

Figure 3: Errors on $\left\|\Phi_{N_{c}}^{0}-\Phi^{0}\right\|_{H_{\#}^{1}}$ (left) and $\left\|\Phi_{N_{c}}^{0}-\Phi^{0}\right\|_{L_{\#}^{2}}$ (right) as functions of E_{c} for N_{2}

Two grids method - Numerical simulations - hydrogen atom fine mesh $=E=300$

$$
\begin{gathered}
\left\|u-u_{E}\right\|_{H^{1}}=3.10^{-5} \\
\left\|u-u_{E}\right\|_{L^{2}}=7.10^{-7} \\
\left|\lambda-\lambda_{E}\right|=7.10^{-10}
\end{gathered}
$$

$E c g$	$\left\\|u-u_{E c_{f}}^{E c_{g}}\right\\|_{H^{1}\left(\Omega_{1}\right)}$	$\left\\|u-u_{E c_{g}}^{E c_{g}}\right\\|_{L^{2}\left(\Omega_{1}\right)}$	$\left\|\lambda-\lambda_{E c_{g}}^{E c_{g}}\right\|$
70	3.0108×10^{-5}	7.5493×10^{-7}	7.830×10^{-7}
80	3.006×10^{-5}	7.2487×10^{-7}	3.807×10^{-7}
90	3.0105×10^{-5}	7.2042×10^{-7}	2.856×10^{-7}
100	3.0105×10^{-5}	7.1678×10^{-7}	1.615×10^{-7}
110	3.0105×10^{-5}	7.1542×10^{-7}	7.772×10^{-8}
120	3.0105×10^{-5}	7.1516×10^{-7}	6.345×10^{-8}
130	3.0105×10^{-5}	7.1507×10^{-7}	4.690×10^{-8}
140	3.0105×10^{-5}	7.1505×10^{-7}	2.779×10^{-8}
150	3.0105×10^{-5}	7.1502×10^{-7}	2.109×10^{-9}
200	3.0105×10^{-5}	7.1502×10^{-7}	4.897×10^{-10}

Conclusions and perspectives

(1) A priori error estimates for the finite element, and for the Fourier spectral and pseudospectral approximations of nonlinear eigenvalue problems of the form

$$
-\Delta u+V u+u^{3}=\lambda u
$$

have been derived
(1) A priori error estimates for the finite element, and for the Fourier spectral and pseudospectral approximations of nonlinear eigenvalue problems of the form

$$
-\Delta u+V u+u^{3}=\lambda u
$$

have been derived pay attention to the numerical integration
(1) A priori error estimates for the finite element, and for the Fourier spectral and pseudospectral approximations of nonlinear eigenvalue problems of the form

$$
-\Delta u+V u+u^{3}=\lambda u
$$

have been derived pay attention to the numerical integration
(2) The optimality of these error estimates is confirmed by numerical simulations
(1) A priori error estimates for the finite element, and for the Fourier spectral and pseudospectral approximations of nonlinear eigenvalue problems of the form

$$
-\Delta u+V u+u^{3}=\lambda u
$$

have been derived pay attention to the numerical integration
(2) The optimality of these error estimates is confirmed by numerical simulations
(3) Similar results can be obtained for orbital-free and Kohn-Sham models (numerical simulations with numerical integration are work in progress)
(1) A priori error estimates for the finite element, and for the Fourier spectral and pseudospectral approximations of nonlinear eigenvalue problems of the form

$$
-\Delta u+V u+u^{3}=\lambda u
$$

have been derived pay attention to the numerical integration
(2) The optimality of these error estimates is confirmed by numerical simulations
(3) Similar results can be obtained for orbital-free and Kohn-Sham models (numerical simulations with numerical integration are work in progress)
(1) The two grid method can be implemented leading to large speedup
(1) A priori error estimates for the finite element, and for the Fourier spectral and pseudospectral approximations of nonlinear eigenvalue problems of the form

$$
-\Delta u+V u+u^{3}=\lambda u
$$

have been derived pay attention to the numerical integration
(2) The optimality of these error estimates is confirmed by numerical simulations
(3) Similar results can be obtained for orbital-free and Kohn-Sham models (numerical simulations with numerical integration are work in progress)
(9) The two grid method can be implemented leading to large speedup .. numerical analysis has to be completed

