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Kohn-Sham Density Functional Theory

H[ρ]ψi (x) =

(
−

1
2

∆ + Vion +

∫
dx ′

ρ(x ′)
|x − x ′|

+ Vxc[ρ]

)
ψi (x) = εiψi (x),

ρ(x) = 2
N/2∑
i=1

|ψi (x)|2,
∫
ψiψj = δij .

I Single particle formalism with in principle exact accuracy.
I N is the number of electrons (2 comes from spin). Vion is

the ionic potential. Vxc is the exchange-correlation
potential.

I Nonlinear eigenvalue problem.



Standard flowchart

Self-consistent field iteration:

I Diagonalization: Lowest N/2 eigenvalues εi and
eigenfunctions ψi , ρout(x) = 2

∑N/2
i=1 |ψi(x)|2.

I Most time consuming step.
I Focus of this talk: H[ρin]→ ρout.



Computational cost of KSDFT

Typical cubic computational scaling:
Size Time
10 1 sec

100 17 min
1000 11.6 day

O(nN3) cost:
I diagonalization cost: N3.
I discretization cost: the number of basis functions per atom

(n), n is typically 500 ∼ 5000.



Importance of discretization cost

I Diagonalization: O(nN3) for all systems.
I Selected inversion: O(N) for quasi-1D system, O(N1.5)

for quasi-2D system, and O(N2) for 3D bulk system.

ρ = diag
2

1 + eβ(H−µ)
≈ diag

P∑
i=1

ωi

zi I − H

I Goal today: Reduce the number of basis functions per
atom.
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Building atomic physics into basis functions I

I Rapid but “inert” oscillation near the nucleus.
I Smooth oscillation in the interstitial bonding region.

0

2

4

6

8

0

2

4

6

8

0.01

0.02

0.03

0.04

0.05

y(au)

x(au)

ρ



Building atomic physics into basis functions II

Atomic orbital as basis functions:
I Gaussian type orbitals (GTO)
I Numerical atomic orbital (NAO) [Blum et al. 2009]

Mixed (enriched) basis functions:
I Augmented plane-wave (APW) [Slater, 1937]
I Linear augmented-plane-wave (LAPW) [Andersen, 1975]
I Projector augmented-wave (PAW) [Blöchl, 1994]
I Enriched finite element [Sukumar and Pask, 2009]



Difficulty of atomic orbitals

Lack of environmental effect

Atomic orbital as basis functions:
I Fine tunning of the parameters for different chemical

elements, exchange-correlation functional and even
different environment.

I Overcomplete and incomplete basis sets.
Mixed (enriched) basis functions:

I Fine tunning.
I Relatively large number of basis functions per atom.
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Building environmental effect into basis functions

Construct the local basis functions on the fly by solving a small
part of the system.

Questions:
I How to obtain basis function?
I How to patch basis functions together?

Our answer:
I Local solve to obtain discontinuous basis function.
I Discontinuous Galerkin framework to patch basis functions

together.
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Introduction
Discontinuous Galerkin:

I Finite element method with discontinuous basis functions.
I Penalty on the inter-element jump to enforce inter-element

continuity.
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APW, LAPW etc. already discontinuous.
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History more than four decades

Early work on using penalty to impose boundary condition:
I [Lions, 1968], [Aubin, 1970],[Babuška, 1973], [Nitsche,

1971]
Interior penalty for elliptic and parabolic problems:

I [Babuška and Zlámal, 1973] Penalty to impose C1

continuity for fourth-order problem.
I [Douglas and Dupont, 1976]: elliptic and parabolic.
I [Arnold, 1982] interior penalty formulation.
I [Arnold, Brezzi, Cockburn et al 2002] unified analysis.

Hyperbolic equation:
I [Cockburn and Shu, 1991], [Cockburn and Shu, 1998]

Runge-Kutta DG.
I [Cockburn, Karniakdakis and Shu, 2000]: Review



Setup

Let T be a collection of uniform rectangular partitions of Ω

T = {E1,E2, · · · ,EM},

and S be the collection of surfaces corresponds to T .
Inner products

〈v ,w〉E =

∫
E

v∗(x)w(x) dx ,

〈v ,w〉S =

∫
S

v∗(x) ·w(x) ds(x),

〈v ,w〉T =
M∑

i=1

〈v ,w〉Ei
,

〈v ,w〉S =
∑
S∈S

〈v ,w〉S .



Kohn-Sham energy functional

The variational problem

Eeff({ψi}) =
1
2

N∑
i=1

∫
|∇ψi(x)|2 dx+

∫
Veff(x)ρ(x) dx+

∑
`

γ`

N∑
i=1

|〈b`, ψi〉|2,

with orthonormality constraints 〈ψi , ψj〉 = δij . The effective
one-body potential Veff

Veff[ρ](x) = Vext(x) +

∫
ρ(y)

|x − y |
dy + ε′xc[ρ(x)].



DG energy functional: interior penalty formulation

EDG({ψi}) =
1
2

N∑
i=1

〈∇ψi ,∇ψi〉T +〈Veff, ρ〉T +
∑
`

γ`

N∑
i=1

|〈b`, ψi〉T |
2

−
N∑

i=1

〈{{
∇ψi

}}
,
[[
ψi
]]〉
S +

α

h

N∑
i=1

〈[[
ψi
]]
,
[[
ψi
]]〉
S .

{{
·
}}

and
[[
·
]]

are average and jump operators across
surfaces. {{

q
}}

= 1
2(q1 + q2) on S.[[

u
]]

= u1n1 + u2n2 on S.

I S: shared by elements K1 and K2.
I n1 and n2 as unit normal vectors on S pointing exterior to

K1 and K2.



Galerkin I

For each element Ek choose a set of basis functions {ϕk ,j}Jk
j=1,

and extend ϕk ,j to the whole computational domain Ω by setting
it to be 0 on the complement of Ek .

V = span{ϕk ,j , Ek ∈ T , j = 1, · · · , Jk}.

Minimize for {ψi} ⊂ V in the approximation space V leads to
the eigenvalue problem for any v ∈ V

1
2
〈∇v ,∇ψi〉T −

1
2
〈[[

v
]]
,
{{
∇ψi

}}〉
S −

1
2
〈{{
∇v
}}
,
[[
ψi
]]〉
S +

α

h
〈[[

v
]]
,
[[
ψi
]]〉
S + 〈v ,Veffψi〉T +

∑
`

γ` 〈v ,b`〉T 〈b`, ψi〉T

= λi 〈v , ψi〉T .



Galerkin II

Setting v = ϕk ′,j ′ and denoting

ψi =
∑
k∈T

Jk∑
j=1

ci;k ,jϕk ,j ,

gives the following linear system

∑
k ,j

(
1
2
〈
∇ϕk ′,j ′ ,∇ϕk ,j

〉
T −

1
2
〈[[
ϕk ′,j ′

]]
,
{{
∇ϕk ,j

}}〉
S

−1
2
〈{{
∇ϕk ′,j ′

}}
,
[[
ϕk ,j
]]〉
S+

α

h
〈[[
ϕk ′,j ′

]]
,
[[
ϕk ,j
]]〉
S+
〈
ϕk ′,j ′ ,Veffϕk ,j

〉
T

+
∑
`

γ`
〈
ϕk ′,j ′ ,b`

〉
T
〈
b`, ϕk ,j

〉
T

)
ci;k ,j = λi

∑
k ,j

〈
ϕk ′,j ′ , ϕk ,j

〉
ci;k ,j .



Eigenvalue problem

Aci = λiBci .

We can actually choose B = I. Then we have standard
eigenvalue problem

Aci = λici .

The electron density is given by

ρ̃ =
N∑

i=1

∑
k

(

Jk∑
j=1

ci;k ,jϕk ,j)
2.
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Setup of local problem

I Buffer region associated with Ek : Qk ⊃ Ek .
I Restrict the effective Hamiltonian on Qk by assuming the

periodic boundary condition on ∂Qk and obtain Heff,Qk .
I Take the first several eigenfunctions of Heff,Qk called {ϕk ,j},

j = 1, · · · , Jk and restrict them on Ek .

Red: Ek ; Red+Blue: Qk



Standard eigenvalue problem

Recall that

Aci = λiBci , B =

B1
. . .

BM

 , {Bk}jj ′ =
〈
ϕk ′,j ′ , ϕk ,j

〉
.

SVD filtering to obtain an orthonormal basis set and to avoid
numerical degeneracy:

1. For each k , form matrix Mk = (ϕk ,1, φk ,2, · · · , φk ,Jk );
2. Calculate SVD decomposition UDV ∗ = Mk ;
3. For a threshold δ, find J̃k such that |λk ,J̃k

| > δ and
|λk ,J̃k +1| < δ. Take ϕ̃k ,j be the j-th column of U.

4. Set Jk ← J̃k and ϕk ,j ← ϕ̃k ,j for j = 1, · · · , J̃k .



Overall algorithm

1. Set n = 0, take elements partition T and an initial guess of
density ρ0;

2. Form the effective potential Veff[ρn] and the effective
Hamiltonian Heff[ρn];

3. For each element Ek ∈ T , solve the restricted Hamiltonian
on buffer region Qk , and obtain {ϕk ,j}, j = 1, · · · , Jk using
SVD filtering.

4. Solve standard eigenvalue problem Aci = λici . to obtain
ci;k ,j and get the density ρ̃.

5. Mixing step: Determine ρn+1 from ρn and ρ̃;
6. If ‖ρn − ρ̃‖ ≤ δ, stop; otherwise, go to step (2) with

n← n + 1.



Advantage of the current framework

I Automatic basis set reduction.
I Capture both atomic and environmental effect

automatically.
I Complete basis set.
I Flexible framework due to discontinuous character: can be

combined with polynomials or other existing basis
functions.
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Setup
I Target accuracy (chemical accuracy): total energy error

10−3 au/atom.
I LDA. Real space local and non-local pseudopotential

[Shaw, 1968].
I Buffer extra size.
I Sodium (Na) and Silicon (Si).



Quasi-1D: periodic case
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Left: Na with 4 unit cells. Buffer extra size 0.25 (red triangle with solid line), 0.50 (black

diamond with solid line), and 0.75 (blue star with solid line). Right: Si with 4 unit cells.

The legend is the same as in (a). The black dashed horizontal line refers to the target

accuracy 10−3 au per atom.



Quasi-1D: Long supercell
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Na system with increasing supercell dimension along z-direction. The buffer extra size

is 0.50. 3 enrichment basis function per atom and 5 enrichment basis function per

atom are represented by blue diamond with dashed line, and red triangle with solid

line, respectively.



Quasi-1D: random perturbation
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Disordered Na (red diamond with solid line) and Si (blue diamond with dashed line),

with buffer extra size 0.50.



Quasi-2D and 3D Bulk system
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Left: Quasi-2D Na system with buffer extra sizes 0.50 (red triangle with solid line), and

buffer extra size 1.00 (blue triangle with dashed line). Right: Bulk 3D Na system with

buffer extra sizes 0.50 (red diamond with solid line), and buffer extra size 1.00 (blue

diamond with dashed line).



Computational efficiency
I Treat the matrix A as dense matrix.
I Parallelized implementation of buffer solve.
I Parallelized implementation of DG matrix assembly.
I Use ScaLAPACK subroutine pdsyevd as parallel

eigenvalue solver.
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Buffer Solve

DG Eigensolver

DG Overhead
Computational time per
processor comparison:
Atom# Proc# Global DG

time time
128 64 35 s 4 s
432 216 248 s 35 s
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Future work
Methodology:

I Improvement over periodic boundary condition in the
buffer.

I All electron calculation.
I Molecular dynamics.

Code development:
I Discontinuous Galerkin framework with existing atomic

orbital type basis functions.
I Combine with Fermi Operator Expansion methods:
O(n3N) for quasi-1D system, O(n3N1.5) for quasi-2D
system, and O(n3N2) for 3D bulk system.

I Pseudopotentials. GGA.
Application:

I Long molecules, nanotube and nanowire (quasi-1D)
I Large scale surface problem. (quasi-2D)



Conclusion
Adaptive:

I Tunning-free basis set reduction with small number of
enrichment functions.

I Capture both atomic and environmental effect
automatically.

Local:
I Discontinuous nature.
I Important for the block sparsity of the assembled DG

matrix.
Flexible:

I Flexible framework due to discontinuous character.
Fast:

I Computationally more efficient due to reduced basis set.

Thanks for your attention!
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