Adaptive local basis for Kohn-Sham density functional theory in Discontinuous Galerkin framework

Lin Lin

Program in Applied and Computational Mathematics, Princeton University

Joint work with Weinan E, Jianfeng Lu and Lexing Ying.

Density Functional Theory: Fundamentals and Applications in Condensed Matter Physics, Banff, 2011

Outline

Introduction

Building physics into basis sets

Discontinuous Galerkin Framework

Constructing adaptive local basis function

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical examples

Future work and conclusion

Kohn-Sham Density Functional Theory

$$\begin{split} \mathcal{H}[\rho]\psi_i(x) &= \left(-\frac{1}{2}\Delta + V_{\text{ion}} + \int dx' \frac{\rho(x')}{|x - x'|} + V_{\text{xc}}[\rho]\right)\psi_i(x) = \epsilon_i\psi_i(x),\\ \rho(x) &= 2\sum_{i=1}^{N/2} |\psi_i(x)|^2, \quad \int \psi_i\psi_j = \delta_{ij}. \end{split}$$

- Single particle formalism with in principle exact accuracy.
- N is the number of electrons (2 comes from spin). V_{ion} is the ionic potential. V_{xc} is the exchange-correlation potential.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Nonlinear eigenvalue problem.

Standard flowchart

Self-consistent field iteration:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Diagonalization: Lowest N/2 eigenvalues ε_i and eigenfunctions ψ_i, ρ_{out}(x) = 2 ∑_{i=1}^{N/2} |ψ_i(x)|².
- Most time consuming step.
- Focus of this talk: $H[\rho_{in}] \rightarrow \rho_{out}$.

Computational cost of KSDFT

Typical cubic computational scaling:

Size	Time
10	1 sec
100	17 min
1000	11.6 day

$\mathcal{O}(nN^3)$ cost:

- diagonalization cost: N³.
- discretization cost: the number of basis functions per atom (n), n is typically 500 ~ 5000.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Diagonalization: $\mathcal{O}(nN^3)$ for all systems.
- Selected inversion: O(N) for quasi-1D system, O(N^{1.5}) for quasi-2D system, and O(N²) for 3D bulk system.

$$ho = ext{diag} \; rac{2}{1 + e^{eta(H-\mu)}} pprox ext{diag} \; \sum_{i=1}^{P} rac{\omega_i}{z_i I - H}$$

- Diagonalization: $\mathcal{O}(nN^3)$ for all systems.
- Selected inversion: O(n³N) for quasi-1D system, O(n³N^{1.5}) for quasi-2D system, and O(n³N²) for 3D bulk system.

$$ho = ext{diag} \; rac{2}{1 + e^{eta(H-\mu)}} pprox ext{diag} \; \sum_{i=1}^{P} rac{\omega_i}{z_i I - H}$$

(日) (日) (日) (日) (日) (日) (日)

- Diagonalization: $\mathcal{O}(nN^3)$ for all systems.
- Selected inversion: O(n³N) for quasi-1D system, O(n³N^{1.5}) for quasi-2D system, and O(n³N²) for 3D bulk system.

$$ho = ext{diag} \; rac{2}{1 + e^{eta(H-\mu)}} pprox ext{diag} \; \sum_{i=1}^{P} rac{\omega_i}{z_i I - H}$$

п	1D Crossover	2D Crossover	3D Crossover
	$N \sim n$	$N\sim n^{1.33}$	$N\sim n^2$
20	20	54	400
50	50	184	2,500
500	500	3,887	250,000
1000	1000	9,772	1,000,000

- Diagonalization: $\mathcal{O}(nN^3)$ for all systems.
- Selected inversion: O(n³N) for quasi-1D system, O(n³N^{1.5}) for quasi-2D system, and O(n³N²) for 3D bulk system.

$$ho = ext{diag} \; rac{2}{1 + e^{eta(H-\mu)}} pprox ext{diag} \; \sum_{i=1}^{P} rac{\omega_i}{z_i I - H}$$

п	1D Crossover	2D Crossover	3D Crossover
	$N \sim n$	$N\sim n^{1.33}$	$N\sim n^2$
20	20	54	400
50	50	184	2,500
500	500	3,887	250,000
1000	1000	9,772	1,000,000

 Goal today: Reduce the number of basis functions per atom.

Outline

Introduction

Building physics into basis sets

Discontinuous Galerkin Framework

Constructing adaptive local basis function

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical examples

Future work and conclusion

Building atomic physics into basis functions I

- Rapid but "inert" oscillation near the nucleus.
- Smooth oscillation in the interstitial bonding region.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Building atomic physics into basis functions II

Atomic orbital as basis functions:

- Gaussian type orbitals (GTO)
- Numerical atomic orbital (NAO) [Blum et al. 2009]

Mixed (enriched) basis functions:

- Augmented plane-wave (APW) [Slater, 1937]
- Linear augmented-plane-wave (LAPW) [Andersen, 1975]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Projector augmented-wave (PAW) [Blöchl, 1994]
- Enriched finite element [Sukumar and Pask, 2009]

Difficulty of atomic orbitals

Lack of environmental effect

Difficulty of atomic orbitals

Lack of environmental effect

Atomic orbital as basis functions:

Fine tunning of the parameters for different chemical elements, exchange-correlation functional and even different environment.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Overcomplete and incomplete basis sets.

Difficulty of atomic orbitals

Lack of environmental effect

Atomic orbital as basis functions:

- Fine tunning of the parameters for different chemical elements, exchange-correlation functional and even different environment.
- Overcomplete and incomplete basis sets.

Mixed (enriched) basis functions:

- Fine tunning.
- Relatively large number of basis functions per atom.

(日) (日) (日) (日) (日) (日) (日)

Building environmental effect into basis functions

Construct the local basis functions on the fly by solving a small part of the system.

Questions:

- How to obtain basis function?
- How to patch basis functions together?

Our answer:

- Local solve to obtain discontinuous basis function.
- Discontinuous Galerkin framework to patch basis functions together.

Outline

Introduction

Building physics into basis sets

Discontinuous Galerkin Framework

Constructing adaptive local basis function

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical examples

Future work and conclusion

Introduction

Discontinuous Galerkin:

- Finite element method with discontinuous basis functions.
- Penalty on the inter-element jump to enforce inter-element continuity.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction

Discontinuous Galerkin:

- Finite element method with discontinuous basis functions.
- Penalty on the inter-element jump to enforce inter-element continuity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

APW, LAPW etc. already discontinuous.

History more than four decades

Early work on using penalty to impose boundary condition:

 [Lions, 1968], [Aubin, 1970], [Babuška, 1973], [Nitsche, 1971]

Interior penalty for elliptic and parabolic problems:

- [Babuška and Zlámal, 1973] Penalty to impose C¹ continuity for fourth-order problem.
- [Douglas and Dupont, 1976]: elliptic and parabolic.
- ► [Arnold, 1982] interior penalty formulation.
- ▶ [Arnold, Brezzi, Cockburn et al 2002] unified analysis.

Hyperbolic equation:

- [Cockburn and Shu, 1991], [Cockburn and Shu, 1998] Runge-Kutta DG.
- [Cockburn, Karniakdakis and Shu, 2000]: Review

Setup

Let ${\mathcal T}$ be a collection of uniform rectangular partitions of Ω

$$\mathcal{T} = \{E_1, E_2, \cdots, E_M\},\$$

and ${\mathcal S}$ be the collection of surfaces corresponds to ${\mathcal T}.$ Inner products

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle_{\boldsymbol{E}} = \int_{\boldsymbol{E}} \boldsymbol{v}^{*}(\boldsymbol{x}) \boldsymbol{w}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}, \\ \langle \boldsymbol{v}, \boldsymbol{w} \rangle_{\boldsymbol{S}} = \int_{\boldsymbol{S}} \boldsymbol{v}^{*}(\boldsymbol{x}) \cdot \boldsymbol{w}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{s}(\boldsymbol{x}), \\ \langle \boldsymbol{v}, \boldsymbol{w} \rangle_{\boldsymbol{T}} = \sum_{i=1}^{M} \langle \boldsymbol{v}, \boldsymbol{w} \rangle_{E_{i}}, \\ \langle \boldsymbol{v}, \boldsymbol{w} \rangle_{\boldsymbol{S}} = \sum_{\boldsymbol{S} \in \boldsymbol{S}} \langle \boldsymbol{v}, \boldsymbol{w} \rangle_{\boldsymbol{S}}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Kohn-Sham energy functional

The variational problem

$$E_{\text{eff}}(\{\psi_i\}) = \frac{1}{2} \sum_{i=1}^{N} \int |\nabla \psi_i(x)|^2 \, \mathrm{d}x + \int V_{\text{eff}}(x) \rho(x) \, \mathrm{d}x + \sum_{\ell} \gamma_{\ell} \sum_{i=1}^{N} |\langle b_{\ell}, \psi_i \rangle$$

with orthonormality constraints $\langle \psi_i, \psi_j \rangle = \delta_{ij}$. The effective one-body potential $V_{\rm eff}$

$$V_{\mathrm{eff}}[
ho](x) = V_{\mathrm{ext}}(x) + \int rac{
ho(y)}{|x-y|} \,\mathrm{d}y + \epsilon'_{\mathrm{xc}}[
ho(x)].$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

DG energy functional: interior penalty formulation

$$\begin{split} \mathcal{E}_{\mathrm{DG}}(\{\psi_i\}) &= \frac{1}{2} \sum_{i=1}^{N} \langle \nabla \psi_i, \nabla \psi_i \rangle_{\mathcal{T}} + \langle V_{\mathrm{eff}}, \rho \rangle_{\mathcal{T}} + \sum_{\ell} \gamma_{\ell} \sum_{i=1}^{N} |\langle b_{\ell}, \psi_i \rangle_{\mathcal{T}}|^2 \\ &- \sum_{i=1}^{N} \langle \{\{\nabla \psi_i\}\}, [\![\psi_i]\!] \rangle_{\mathcal{S}} + \frac{\alpha}{h} \sum_{i=1}^{N} \langle [\![\psi_i]\!], [\![\psi_i]\!] \rangle_{\mathcal{S}} \,. \end{split}$$

 $\{\!\{\,\cdot\,\}\!\}$ and $[\![\,\cdot\,]\!]$ are average and jump operators across surfaces.

$$\{\{q\}\} = \frac{1}{2}(q_1 + q_2)$$
 on *S*.
 $[[u]] = u_1n_1 + u_2n_2$ on *S*.

- S: shared by elements K_1 and K_2 .
- n₁ and n₂ as unit normal vectors on S pointing exterior to K₁ and K₂.

(日) (日) (日) (日) (日) (日) (日)

Galerkin I

For each element E_k choose a set of basis functions $\{\varphi_{k,j}\}_{j=1}^{J_k}$, and extend $\varphi_{k,j}$ to the whole computational domain Ω by setting it to be 0 on the complement of E_k .

$$\mathcal{V} = \operatorname{span}\{\varphi_{k,j}, E_k \in \mathcal{T}, j = 1, \cdots, J_k\}.$$

Minimize for $\{\psi_i\} \subset \mathcal{V}$ in the approximation space \mathcal{V} leads to the eigenvalue problem for any $v \in \mathcal{V}$

$$\frac{1}{2} \langle \nabla \mathbf{v}, \nabla \psi_i \rangle_{\mathcal{T}} - \frac{1}{2} \langle [[\mathbf{v}]], \{\{\nabla \psi_i\}\} \rangle_{\mathcal{S}} - \frac{1}{2} \langle \{\{\nabla \mathbf{v}\}\}, [[\psi_i]] \rangle_{\mathcal{S}} + \frac{\alpha}{h} \langle [[\mathbf{v}]], [[\psi_i]] \rangle_{\mathcal{S}} + \langle \mathbf{v}, \mathbf{V}_{\text{eff}} \psi_i \rangle_{\mathcal{T}} + \sum_{\ell} \gamma_{\ell} \langle \mathbf{v}, \mathbf{b}_{\ell} \rangle_{\mathcal{T}} \langle \mathbf{b}_{\ell}, \psi_i \rangle_{\mathcal{T}} \\
= \lambda_i \langle \mathbf{v}, \psi_i \rangle_{\mathcal{T}}.$$

Galerkin II

Setting $v = \varphi_{k',j'}$ and denoting

$$\psi_i = \sum_{k \in \mathcal{T}} \sum_{j=1}^{J_k} c_{i;k,j} \varphi_{k,j},$$

gives the following linear system

$$\begin{split} &\sum_{k,j} \left(\frac{1}{2} \left\langle \nabla \varphi_{k',j'}, \nabla \varphi_{k,j} \right\rangle_{\mathcal{T}} - \frac{1}{2} \left\langle \left[\left[\varphi_{k',j'} \right] \right], \left\{ \left\{ \nabla \varphi_{k,j} \right\} \right\} \right\rangle_{\mathcal{S}} \right. \\ &\left. - \frac{1}{2} \left\langle \left\{ \left\{ \nabla \varphi_{k',j'} \right\} \right\}, \left[\left[\varphi_{k,j} \right] \right] \right\rangle_{\mathcal{S}} + \frac{\alpha}{\hbar} \left\langle \left[\left[\varphi_{k',j'} \right] \right], \left[\left[\varphi_{k,j} \right] \right] \right\rangle_{\mathcal{S}} + \left\langle \varphi_{k',j'}, V_{\text{eff}} \varphi_{k,j} \right\rangle_{\mathcal{T}} \right. \\ &\left. + \sum_{\ell} \gamma_{\ell} \left\langle \varphi_{k',j'}, \mathbf{b}_{\ell} \right\rangle_{\mathcal{T}} \left\langle \mathbf{b}_{\ell}, \varphi_{k,j} \right\rangle_{\mathcal{T}} \right) \mathbf{c}_{i;k,j} = \lambda_{i} \sum_{k,j} \left\langle \varphi_{k',j'}, \varphi_{k,j} \right\rangle \mathbf{c}_{i;k,j}. \end{split}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Eigenvalue problem

$$Ac_i = \lambda_i Bc_i.$$

We can actually choose B = I. Then we have standard eigenvalue problem

$$Ac_i = \lambda_i c_i.$$

The electron density is given by

$$\widetilde{\rho} = \sum_{i=1}^{N} \sum_{k} (\sum_{j=1}^{J_k} c_{i;k,j} \varphi_{k,j})^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

Introduction

Building physics into basis sets

Discontinuous Galerkin Framework

Constructing adaptive local basis function

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Numerical examples

Future work and conclusion

Setup of local problem

- Buffer region associated with E_k : $Q_k \supset E_k$.
- ► Restrict the effective Hamiltonian on Q_k by assuming the periodic boundary condition on ∂Q_k and obtain H_{eff,Q_k}.
- ► Take the first several eigenfunctions of H_{eff,Qk} called {\varphi_k,j}, j = 1, ..., J_k and restrict them on E_k.

Red: E_k ; Red+Blue: Q_k

Standard eigenvalue problem

Recall that

$$Ac_i = \lambda_i Bc_i, \quad B = \begin{pmatrix} B_1 & & \\ & \ddots & \\ & & B_M \end{pmatrix}, \quad \{B_k\}_{jj'} = \langle \varphi_{k',j'}, \varphi_{k,j} \rangle.$$

SVD filtering to obtain an orthonormal basis set and to avoid numerical degeneracy:

- 1. For each k, form matrix $M_k = (\varphi_{k,1}, \phi_{k,2}, \cdots, \phi_{k,J_k});$
- 2. Calculate SVD decomposition $UDV^* = M_k$;
- 3. For a threshold δ , find \widetilde{J}_k such that $|\lambda_{k,\widetilde{J}_k}| > \delta$ and $|\lambda_{k,\widetilde{J}_k+1}| < \delta$. Take $\widetilde{\varphi}_{k,j}$ be the *j*-th column of *U*.

4. Set $J_k \leftarrow \widetilde{J}_k$ and $\varphi_{k,j} \leftarrow \widetilde{\varphi}_{k,j}$ for $j = 1, \cdots, \widetilde{J}_k$.

Overall algorithm

- Set n = 0, take elements partition T and an initial guess of density ρ₀;
- 2. Form the effective potential $V_{\text{eff}}[\rho_n]$ and the effective Hamiltonian $H_{\text{eff}}[\rho_n]$;
- For each element *E_k* ∈ *T*, solve the restricted Hamiltonian on buffer region *Q_k*, and obtain {*φ_{k,j}*}, *j* = 1, · · · , *J_k* using SVD filtering.
- 4. Solve standard eigenvalue problem $Ac_i = \lambda_i c_i$. to obtain $c_{i;k,j}$ and get the density $\tilde{\rho}$.
- 5. Mixing step: Determine ρ_{n+1} from ρ_n and $\tilde{\rho}$;
- 6. If $\|\rho_n \tilde{\rho}\| \le \delta$, stop; otherwise, go to step (2) with $n \leftarrow n+1$.

Advantage of the current framework

- Automatic basis set reduction.
- Capture both atomic and environmental effect automatically.
- Complete basis set.
- Flexible framework due to discontinuous character: can be combined with polynomials or other existing basis functions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Building physics into basis sets

Discontinuous Galerkin Framework

Constructing adaptive local basis function

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical examples

Future work and conclusion

Setup

- Target accuracy (chemical accuracy): total energy error 10⁻³ au/atom.
- LDA. Real space local and non-local pseudopotential [Shaw, 1968].
- Buffer extra size.
- Sodium (Na) and Silicon (Si).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quasi-1D: periodic case

Left: Na with 4 unit cells. Buffer extra size 0.25 (red triangle with solid line), 0.50 (black diamond with solid line), and 0.75 (blue star with solid line). Right: Si with 4 unit cells. The legend is the same as in (a). The black dashed horizontal line refers to the target accuracy 10^{-3} au per atom.

Quasi-1D: Long supercell

Na system with increasing supercell dimension along z-direction. The buffer extra size is 0.50. 3 enrichment basis function per atom and 5 enrichment basis function per atom are represented by blue diamond with dashed line, and red triangle with solid line, respectively.

Quasi-1D: random perturbation

Disordered Na (red diamond with solid line) and Si (blue diamond with dashed line), with buffer extra size 0.50.

・ロン ・四 と ・ ヨ と ・ ヨ と

э.

Quasi-2D and 3D Bulk system

Left: Quasi-2D Na system with buffer extra sizes 0.50 (red triangle with solid line), and buffer extra size 1.00 (blue triangle with dashed line). Right: Bulk 3D Na system with buffer extra sizes 0.50 (red diamond with solid line), and buffer extra size 1.00 (blue diamond with dashed line).

Computational efficiency

- Treat the matrix A as dense matrix.
- Parallelized implementation of buffer solve.
- Parallelized implementation of DG matrix assembly.
- Use ScaLAPACK subroutine pdsyevd as parallel eigenvalue solver.

Computational time per processor comparison:

Atom#	Proc#	Global	DG
		time	time
128	64	35 s	4 s
432	216	248 s	35 s

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Outline

Introduction

Building physics into basis sets

Discontinuous Galerkin Framework

Constructing adaptive local basis function

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical examples

Future work and conclusion

Future work

Methodology:

- Improvement over periodic boundary condition in the buffer.
- All electron calculation.
- Molecular dynamics.

Code development:

- Discontinuous Galerkin framework with existing atomic orbital type basis functions.
- ► Combine with Fermi Operator Expansion methods: O(n³N) for quasi-1D system, O(n³N^{1.5}) for quasi-2D system, and O(n³N²) for 3D bulk system.
- Pseudopotentials. GGA.

Application:

Long molecules, nanotube and nanowire (quasi-1D)

・ロト・日本・日本・日本・日本

Large scale surface problem. (quasi-2D)

Conclusion

Adaptive:

- Tunning-free basis set reduction with small number of enrichment functions.
- Capture both atomic and environmental effect automatically.

Local:

- Discontinuous nature.
- Important for the block sparsity of the assembled DG matrix.

Flexible:

Flexible framework due to discontinuous character.

Fast:

Computationally more efficient due to reduced basis set.

Thanks for your attention!