Charge screening in the Thomas-Fermi-von Weiszäcker model

V. Ehrlacher Joint work with Eric Cancès

Ecole des Ponts & INRIA, Paris, France.

Model for a periodic crystal with a local defect

Impurity with relaxation of the host crystal

- Thomas-Fermi model: Lieb-Simon 1977
- reduced Hartree-Fock model: Cancès-Deleurence-Lewin 2008
- Thomas-Fermi-von Weiszäcker (TFW) ?

- 2 Presentation of the model
- 3 Justification by thermodynamic limit
- 4 Comparison with other cases

1 Introduction

- 2 Presentation of the model
- 3 Justification by thermodynamic limit
- ④ Comparison with other cases

Orbital-free DFT: the energy functional is an explicit functional of the electronic density

Approximations of the electronic ground state energy and density are obtained by solving

$$\inf\left\{\mathcal{E}_{\rho^{\mathrm{nuc}}}(\rho), \quad \rho \geq 0, \quad \int_{\mathbb{R}^3} \rho = \mathsf{N}, \quad \sqrt{\rho} \in H^1(\mathbb{R}^3)\right\}$$

Thomas-Fermi-von Weizsäcker model

$$\begin{split} \mathcal{E}_{\rho^{\mathrm{nuc}}}^{\mathrm{TFW}}(\rho) &= C_{\mathrm{W}} \int_{\mathbb{R}^{3}} |\nabla \sqrt{\rho}|^{2} + C_{\mathrm{TF}} \int_{\mathbb{R}^{3}} \rho^{5/3} \qquad (\text{kinetic energy}) \\ &+ \frac{1}{2} D\left(\rho - \rho^{\mathrm{nuc}}, \rho - \rho^{\mathrm{nuc}}\right) \qquad (\text{Coulomb energy}) \end{split}$$

Coulomb space and Coulomb energy functional

$$\mathcal{C} := \{ \rho \mid D(\rho, \rho) < \infty \}$$

$$\forall \rho_1, \rho_2 \in L^{6/5}(\mathbb{R}^3), \ D(\rho_1, \rho_2) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\rho_1(x) \, \rho_2(y)}{|x - y|} \, dx \, dy$$

TFW model for perfect crystals

 $\rho^{\rm nuc} \longrightarrow \rho^{\rm nuc}_{\rm per}$

Periodic lattice: \mathcal{R} (example: cubic lattice $\mathcal{R} = a\mathbb{Z}^3$) Unit cell: Γ (example for the cubic lattice $\mathcal{R} = a\mathbb{Z}^3$: $\Gamma = [-a/2, a/2)^3$)

Bulk limit for the perfect crystal

$$\begin{cases} \rho_L^{\text{nuc}} = \sum_{\mathbf{R} \in \mathbb{Z}^3 \cap \Lambda_L} z \delta(\cdot - \mathbf{R}) \\ zL^3 \text{ electrons} \end{cases} \longrightarrow \rho_L^0 \text{ the (unique) ground state density} \end{cases}$$

Theorem (Catto-Le Bris-Lions, Springer 1998)

$$\rho_L^{0} \xrightarrow[L \to \infty]{\text{in some sense}} \rho_{\text{per}}^{0}$$

$$0 < a \leq u_{\mathrm{per}}^0(x) \leq b < +\infty \quad \forall x \in \mathbb{R}^3$$

V. Ehrlacher (CERMICS)

Case of a local defect in a perfect crystal

 $\mathsf{Defect} = \mathsf{quasi-molecule} \ \mathsf{embedded} \ \mathsf{in} \ \mathsf{the} \ \mathsf{host} \ \mathsf{crystal}$

$$ho^{ ext{nuc}}(\mathbf{r}) =
ho^{ ext{nuc}}_{ ext{per}}(\mathbf{r}) + m(\mathbf{r}), \
ho^0(\mathbf{r}) =
ho^0_{ ext{per}}(\mathbf{r}) +
ho_m(\mathbf{r}), \ \sqrt{
ho^0(\mathbf{r})} = u^0_{ ext{per}}(\mathbf{r}) + v_m(\mathbf{r})$$

Charge of the defect: $Q = \int_{\mathbb{R}^3} \rho_m^0$ with $\rho_m^0 = m - \rho_m = m - (2u_{\text{per}}^0 v_m + v_m^2)$

Goal: find a model to directly compute the function $v_m(\mathbf{r})$

Nuclear charge distribution $m(\mathbf{r})$ of the quasi-molecule

Introduction

Justification by thermodynamic limit

Formal argument for crystals with defects

Same argument as in (E. Cancès, A. Deleurence and M. Lewin, 2008). Test density ρ , $\sqrt{\rho} = u_{per}^0 + v \ge 0$

$$\mathcal{E}^{\mathrm{TFW}}_{\rho^{\mathrm{nuc}}_{\mathrm{per}}+m}((u^0_{\mathrm{per}}+v)^2) - \mathcal{E}^{\mathrm{TFW}}_{\rho^{\mathrm{nuc}}_{\mathrm{per}}}((u^0_{\mathrm{per}})^2) = \mathcal{E}^m(v) - \int_{\mathbb{R}^3} m V^0_{\mathrm{per}}$$

and

$$\begin{split} \mathcal{E}^{m}(v) &:= \langle H_{\rm per}^{0}v, v \rangle_{H^{-1}(\mathbb{R}^{3}), H^{1}(\mathbb{R}^{3})} \\ &+ \frac{1}{2}D\left(2u_{\rm per}^{0}v + v^{2} - m, 2u_{\rm per}^{0}v + v^{2} - m\right) \\ &+ C_{\rm TF}\int_{\mathbb{R}^{3}}\left(|u_{\rm per}^{0} + v|^{10/3} - |u_{\rm per}^{0}|^{10/3} - \frac{5}{3}|u_{\rm per}^{0}|^{4/3}(2u_{\rm per}^{0}v + v^{2})\right) \end{split}$$

Variational model for local defects

Tentative variational model for local defects (justified by thermodynamic limit arguments)

$$I^{m} = \inf \left\{ \mathcal{E}^{m}(v), \ v \in \mathcal{Q}_{+} \right\}$$
(1)

$$\mathcal{Q}_+:=ig\{ v\in L^2(\mathbb{R}^3)\mid
abla v\in (L^2(\mathbb{R}^3))^3, \; v\geq -u_{ ext{per}}^0, \; u_{ ext{per}}^0v\in \mathcal{C}ig\}$$

where \mathcal{C} denotes the Coulomb space. The set \mathcal{Q}_+ is a closed convex subset of the Hilbert space $\mathcal{Q} := \left\{ v \in L^2(\mathbb{R}^3) \mid \nabla v \in (L^2(\mathbb{R}^3))^3, \ u_{\mathrm{per}}^0 v \in \mathcal{C} \right\}$

Theorem (E. Cancès-V.E., 2010). Let $m \in C$. Then,

1. Well-posedness of the problem

Problem (1) has a unique minimizer v_m , and there exists a positive constant $C_0 > 0$ such that

$$\forall m \in \mathcal{C}, \quad \|v_m\|_{\mathcal{Q}} \leq C_0 \left(\|m\|_{\mathcal{C}} + \|m\|_{\mathcal{C}}^2\right).$$

2. Local defects are always neutral

Let $\rho_m^0 = m - (2u_{\rm per}^0 v_m + v_m^2)$ (total density of charge of the defect) and $\Phi_m^0 = \rho_m^0 \star |\cdot|^{-1}$ (Coulomb potential generated by ρ_m^0). It holds

$$\begin{array}{ll} v_m \in H^2(\mathbb{R}^3) & \Rightarrow & v_m(\mathbf{r}) \longrightarrow_{|\mathbf{r}| \to \infty} 0 \\ \Phi^0_m \in L^2(\mathbb{R}^3) & \Rightarrow & \Phi^0_m \text{ cannot decay as } \frac{Q}{|\mathbf{r}|} \text{ with } Q \neq 0 \\ \lim_{\epsilon \to 0} \frac{1}{|B_\epsilon|} \int_{B_\epsilon} |\widehat{\rho^0_m}(\mathbf{k})| \, d\mathbf{k} = 0 & \Rightarrow & Q = \int_{\mathbb{R}^3} \rho^0_m(\mathbf{r}) \, d\mathbf{r} = 0 & \text{ if } \rho^0_m \in L^1(\mathbb{R}^3) \end{array}$$

- 3. Any minimizing sequence for (1) converges to v_m in Q
- 4. For any $q \in \mathbb{R}$, there exists a minimizing sequence $(v_{m,q}^k)_{k \in \mathbb{N}}$ for (1) consisting of functions of $\mathcal{Q}_+ \cap L^1(\mathbb{R}^3)$ such that

$$\forall k \in \mathbb{N}, \quad \int_{\mathbb{R}^3} \left(2u_{\mathrm{per}}^0 v_{m,q}^k + |v_{m,q}^k|^2 \right) = \int_{\mathbb{R}^3} \left(|u_{\mathrm{per}}^0 + v_{m,q}^k|^2 - |u_{\mathrm{per}}^0|^2 \right) = q$$

Special case of a homogeneous host crystal

Theorem (E. Cancès-V.E., 2010). Consider the case when $\forall x \in \mathbb{R}^3$, $\rho_{\text{per}}^{\text{nuc}}(x) = \rho_{\text{per}}^0(x) = \alpha^2$ and $u_{\text{per}}^0(x) = \alpha$ (homogeneous host crystal)

For each $m \in \mathcal{C}$, the unique solution v_m to (1) reads

$$v_m = g \star m + \widetilde{r}_2(m)$$

where $\tilde{r}_2(m) \in L^1(\mathbb{R}^3)$ with $\|\tilde{r}_2(m)\|_{L^1(\mathbb{R}^3)} \leq C_0(\|m\|_{\mathcal{C}}^2 + \|m\|_{\mathcal{C}}^8)$ and where $g \in L^1(\mathbb{R}^3)$ is characterized by its Fourier transform

$$\widehat{g}(k) = rac{1}{(2\pi)^{3/2}} \, rac{4\pilpha}{|k|^4 + rac{20}{9}lpha^{4/3}|k|^2 + 8\pilpha^2}$$

For each $m \in L^1(\mathbb{R}^3) \cap C$, it holds $v_m \in L^1(\mathbb{R}^3) \cap L^2(\mathbb{R}^3)$ and

$$\int_{\mathbb{R}^3} \rho_m^0 = \int_{\mathbb{R}^3} (m - (2u_{\rm per}^0 v_m + v_m^2)) = 0$$

Thermodynamic limit

Defect problem in a supercell of size L^3 Theorem (E. Cancès-V.E., 2010).

1. Thermodynamic limit with a charge constraint

For $q \in \mathbb{R}$, let $v_{m,q,L}$ be the solution of the defect problem in a supercell of size L^3 (denoted Γ_L) with the constraint

$$\int_{\Gamma_L} \left(m - \left(2u_{\text{per}}^0 v_{m,q,L} + v_{m,q,L}^2 \right) \right) = q$$

Then $(v_{m,q,L})_{L \in \mathbb{N}^*}$ converges to v_m , the unique solution of (1).

2. Thermodynamic limit without a charge constraint

Let $v_{m,L}$ be the solution of the defect problem in a supercell of size L^3 (denoted Γ_L) witout any charge constraint. Then $(v_{m,q,L})_{L \in \mathbb{N}^*}$ converges to v_m , the unique solution of (1) and

$$\int_{\Gamma_L} \left(m - \left(2 u_{\mathrm{per}}^0 v_{m,q,L} + v_{m,q,L}^2 \right) \right) \underset{L \to \infty}{\longrightarrow} 0.$$

Introduction

- 2 Presentation of the model
- 3 Justification by thermodynamic limit
- 4 Comparison with other cases

TFW: case of atoms and molecules

(J.P. Solovej, 1990)

TFW theory for a molecule: K nuclei at positions $R_1, \dots, R_K \in \mathbb{R}^3$ and with nuclear charges $z_1, \dots, z_K \ge 0$.

$$\rho^{\mathrm{nuc}} = \sum_{k=1}^{K} z_k \delta_{R_k}, \quad Z = \sum_{k=1}^{K} z_k.$$

$$I(z_1, \cdots, z_K; N) = \inf \left\{ \mathcal{E}_{\rho^{\mathrm{nuc}}}^{\mathrm{TFW}}(\rho), \ \sqrt{\rho} \in H^1(\mathbb{R}^3), \ \int_{\mathbb{R}^3} \rho \leq N \right\}$$
(2)

There exists $N_c(z_1, \dots, z_K) > Z$ such that for all $N \leq N_c(z_1, \dots, z_K)$, the variational problem (2) has a unique minizer $\rho_{(z_1, \dots, z_K;N)}$.

$$Q_c(z_1,\cdots,z_K)=Z-N_c(z_1,\cdots,z_K)<0$$

is the maximal (negative) ionization the molecule can achieve.

V. Ehrlacher (CERMICS)

$$z' = (z_1, \cdots z_L), \quad z'' = (z_{L+1}, \cdots, z_K)$$

Theorem (J.P. Solovej, 1990). There exists $Q_{\infty}(z'') < 0$ such that

$$\lim_{z'\to\infty}Q_c(z)=Q_\infty(z'').$$

V. Ehrlacher (CERMICS)

Charge screening in the Hartree model

(E. Cancès, A. Deleurence and M. Lewin, 2008) Hartree model for perfect crystal:

$$H^0_{
m per} = -rac{1}{2}\Delta + V^0_{
m per} \qquad \qquad \gamma^0_{
m per} = 1_{(-\infty,\epsilon_{
m F}]}(H^0_{
m per}) \quad ({
m orthogonal\ projector})$$

Assumption: The periodic crystal is a semiconductor.

A variational problem was proposed in order to model local defects in periodic crystals in the framework of the TFW theory (justified by thermodynamic limit arguments).

- Defects are fully screened for the TF and TFW models. Is it the case for any orbital-free DFT models?
- A-priori decay of the solution v_m ?
- Quid for the TFWD model?