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Forward Problem

Darcy Law. p pressure, k permeability.

Let D ⊂ R
d be a bounded open set.

Define X = L∞(D) and V = H1
0(D).

Let k ∈ X with essinfx∈Dk(x) > 0 and f ∈ V ∗.

Consider the (weak) elliptic PDE
∫

D
k(x)∇p(x)∇v(x) dx =

∫

D
f (x)v(x) dx , ∀v ∈ V .

Unique solution p by Lax-Milgram.
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Observation Operator

Assume that k = K (u) for K : U ⊆ ℓp → K .

Define G : U → V by G(u) = p.

Let O : V → R
K denote K linear functionals on V .

Define G : X → R
K by G = O ◦ G.

We call G the OBSERVATION OPERATOR.
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Inverse Problem

FIND u GIVEN y = G(u) + η.

Only DENSITY ρ of random variable η is known.

PRIOR measure µ0 on u.

would like BAYES THEOREM in infinite dimensions.

This would give the POSTERIOR measure µy on u|y :

dµy

dµ0
(u) ∝ ρ

(

y − G(u)
)

.
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Log-Normal Prior

{ϕj}j≥1 an orthonormal sequence in L2(D).

{λj}j≥1 a positive ℓ2 sequence of real numbers.

{uj}j≥1 independent random variables with uj ∼ N (0, λ2
j ).

k(x) = exp
(

∑∞
j=1 ujϕj(x)

)

.

Defines a measure µ0 on U = ℓ2, and push forward onto X .
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Uniform Prior

{ϕj}j≥1 normalized sequence in X with ‖ψj‖X = λj .

{λj}j≥1 a positive ℓ1 sequence of real numbers.

{uj}j≥1 independent random variables with uj ∼ U(−1,1).

k(x) = a(x) +
∑∞

j=1 ujϕj(x)

essinfx∈Da(x) >
∑∞

j=1 |λj |.

Defines a measure µ0 on U = [−1,1]N ⊂ ℓ∞, and push
forward onto X .
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Concrete Setting

Study concrete case y = G(u) + η, η ∼ N (0, Γ).

Define Φ(u) = 1
2‖Γ

− 1
2 (G(u) − y)‖2.

BAYES THEOREM gives

dµy

dµ0
(u) ∝ exp

(

−Φ(u)
)

.

UNCERTAINTY QUANTIFICATION consists of evaluating
E
µy
ψ(u) for certain ψ : U → S.

We consider ψ(u) = p and S = V or ψ(u) = p ⊗ p and
S = L(V ,V ).
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Well-Posed Inverse Problem

Cotter, Dashti, Robinson, Stuart 2009.

Theorem

For both priors:
• the posterior µy is absolutely continuous with respect to the
prior measure µ0 with density proportional to exp

(

−Φ(u)
)

;
• posterior expectation of ψ is then

E
µy
ψ(u) =

1
Z
E
µ0 exp

(

−Φ(u)
)

ψ(u)

Z = E
µ0 exp

(

−Φ(u)
)

;

• there is C = C(r) > 0 such that, for all y1, y2 with
max{‖y1‖, ‖y2‖} ≤ r ,

‖Eµy1
ψ(u)−E

µy2
ψ(u)‖ ≤ C

(

E
µ‖ψ(u)‖2+E

ν‖ψ(u)‖2
)

1
2
‖y1−y2‖.
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Karhunen-Loeve Approximation

Let D = [0,1]d and ϕk = exp(2πik · x). Fourier basis.

Let λk =
(

4π2|k|2
)−s/2

. decay of standard deviations.

Let PN : U = ℓ2 → {uk, |k| ≤ N}.

Let UN = PNU and ♯ = |UN | ≍ Nd
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Measure on R♯

CN : UN → UN with CN = diag(λk) and µN
0 = N (0,CN).

Let µy ,N denote the measure on UN

dµy ,N

dµN
0

∝ exp
(

−Φ(PNu)〉
)

.

In coordinates have Lebesgue density

exp
(

−Φ(PNu)−
1
2
〈u, (CN)−1u〉

)

on R
♯, amenable to MCMC.

New MCMC: number of steps K independent of ♯(N).
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Approximation Theorem

Dashti and Stuart 2010.

Theorem

Let ψ(u) = p and S = V or ψ(u) = p ⊗ p and S = L(V ,V ).
Assume that s > d

2 and let t < s − d
2 . There is C > 0 such that,

‖Eµy
ψ(u)− E

µy,N
ψ(PNu)‖S ≤ CN−t .

This error must be traded against MCMC error M− 1
2 .
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True Diffusion Coefficient
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True Pressure
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MCMC Sampling

MOVIE

(Stuart and White 2011, in prepartion)
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Polynomial Chaos

Legendre polynomials
∫ 1
−1(Lk (t))2 dt

2 = 1, k = 0,1,2, . . . .

F = {ν ∈ Z
N : |ν|1 <∞}.

Such multiindices have compact support.

Lν(z) =
∏

j∈N Lνj (zj), z ∈ C
N, ν ∈ F .

{Lν : ν ∈ F} is orthonormal basis for L2
(

U, µ0(du)
)

.

If Θ ∈ L2
(

U, µ0(du);S
)

then Θ(u) =
∑

ν∈F θνLν(u).
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Approximating Posterior Expectations

We consider ψ(u) = p and S = V or ψ(u) = p ⊗ p and
S = L(V ,V ).

Recall that posterior expectation of
ψ requires calculation of two integrals in infinite dimensions:

E
µy
ψ(u) =

1
Z
E
µ0 exp

(

−Φ(u)
)

ψ(u)

Z = E
µ0 exp

(

−Φ(u)
)

;

Both Θ1(u) := exp
(

−Φ(u)
)

and Θ2(u) := exp
(

−Φ(u)
)

ψ(u)
are in L2

(

U, µ0(du)
)

.

Suggests approximating integrals by
ΘM(u) =

∑

ν∈ΛM
θνLν(u) for some index set ΛM ⊂ F of

cardinality M.
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Approximation Theorem

Let Eµy,M
ψ(u) denote the resulting approximation.

Schwab and Stuart 2011

Theorem

Let ψ(u) = p and S = V or ψ(u) = p ⊗ p and S = L(V ,V ).
Assume that, for some σ ∈ (0,1],

∑∞
j=1 λ

σ
j <∞. There is an

index set ΛN of cardinality M such that,

‖Eµy
ψ(u)− E

µy,M
ψ(PMu)‖S ≤ CM

1
2−

1
σ .

If σ < 1 then this rate beats M− 1
2 from MCMC.

Challenge is to realize this approximation so that cost/per
unit error trade-off beats MCMC.
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BAYESIAN approach to inverse problems allows for a
natural approach to quantify uncertainty in the presence of
data.

KARHUNEN-LOEVE truncation leads to tractable MCMC
methods with quantifiable error.

POLYNOMIAL CHAOS representation of the posterior
density affords the possibility of beating MCMC cost/unit
error.
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Two Main Papers

“ Uncertainty quantification and weak approximation of an
elliptic inverse problem”, M. Dashti and A.M. Stuart,
submitted 2010. http://arxiv.org/abs/1102.0143

“Sparse deterministic approximation of Bayesian inverse
problems”, Ch. Schwab and A.M. Stuart, submitted 2011.
http://arxiv.org/abs/1103.4522
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Other Related Papers

All papers can be found at:

http://www.warwick.ac.uk/∼masdr/

16c “Inverse Problems: A Bayesian Perspective”, A.M. Stuart,
Acta Numerica 19(2010).

80 “Bayesian inverse problems for functions and applications
to fluid mechanics”, S.L. Cotter, M. Dashti, J.C. Robinson,
A.M. Stuart, Inverse Problems, 25(2009), 115008.

81 “Approximation of Bayesian inverse problems for PDEs”,
S.L. Cotter, M. Dashti and A.M. Stuart, SIAM J. Num. Anal,
48(2010), 322–345.

68 “A Bayesian approach to data assimilation”, A. Apte, M.
Hairer. A.M. Stuart, J. Voss, PhysicaD, 230(2007), 50–64.


	ELLIPTIC INVERSE PROBLEM
	PRIOR MEASURE
	BAYESIAN FRAMEWORK
	MCMC APPROXIMATION
	EXAMPLE
	SPARSE APPROXIMATION
	CONCLUSIONS
	REFERENCES

