Mean-preserving stochastic renormalization of differential equations

Sergey Lototsky
Department of Mathematics
University of Southern California

Collaborators: Sivaditya Kaligotla, Remis
Mikulevicius, Boris Rozovskiı, Dora Seleši, Xiaoliang Wan

Renormalization

Objective: To make sense of things that don't make sense.
Some examples:

$$
\begin{aligned}
& u_{t}=\Delta u+u \dot{W}(t, x), d>1 ; \\
& u_{t}=u_{x x}+(u \cdot \nabla) u+\dot{W}(t, x), d>1 ; \\
& \nabla \cdot((1+\dot{W}(x)) \nabla u)=0 ; \\
& u_{t}=(1+\dot{W}(t, x)) u_{x x} .
\end{aligned}
$$

The plan:

- Re-thinking multiplication and stochastic integration;
- Re-thinking integrability;
- Dealing with the consequences.

The mean value of stochastic equation

Sometimes it is preserved:
if $\dot{x}=a x, d X=a X d t+\sigma(X) d w(t)$, and $\mathbb{E} X(0)=x(0)$
then $\mathbb{E} X(t)=x(t)$.
Most of the time, it is not.
This is especially problematic for SPDEs:
$u_{t}=\Delta u+(u \cdot \nabla) u+\dot{W}$.

A toy example

The equation: $v=1+v \xi, \xi \sim \mathcal{N}(0,1) . v=\frac{1}{1-\xi}=\sum_{k \geq 0} \xi^{k} ; \mathbb{E} v \neq 1$. Hermite polynomials: $e^{z \xi-\left(z^{2} / 2\right)}=\sum_{k \geq 0} \frac{z^{k}}{k!} \mathrm{H}_{k}(\xi)$

How about $u=\sum_{k \geq 0} \mathrm{H}_{k}(\xi)$? At least $\mathbb{E} u=1$.
The problem: $\xi \mathrm{H}_{k}(\xi) \neq \mathrm{H}_{k+1}(\xi)$.
The solution: $\xi \diamond \mathrm{H}_{k}(\xi):=\mathrm{H}_{k+1}(\xi)$.
The renormalized equation: $u=1+u \diamond \xi ; u=\sum_{k \geq 0} \mathrm{H}_{k}(\xi)=(1-\xi)^{\diamond(-1)}$.
More generally: $f(\xi)=\sum_{k \geq 0} f_{k} \xi^{k} ; f^{\diamond}(\xi)=\sum_{k \geq 0} f_{k} \mathrm{H}_{k}(\xi)$.
Mean-preserving: $\mathbb{E} f^{\diamond}(\xi)=f_{0}=f(0)=f(\mathbb{E} \xi)$.

Hida-Kondratiev spaces

Motivation 1: $\mathbb{E}\left(\sum_{k \geq 0} \mathrm{H}_{k}(\xi)\right)^{2}=\sum_{k \geq 0} k!$.
Motivation 2: $\varphi_{z}(\xi)=e^{\diamond(z \xi)}=\sum_{k \geq 0} \frac{z^{k}}{k!} \mathrm{H}_{k}(\xi)$.
The construction: $f(\xi) \in L_{2}(\xi) \Longleftrightarrow f=\sum_{k \geq 0} f_{k} \mathrm{H}_{k}(\xi), \sum_{k \geq 0} f_{k}^{2} k!<\infty$. $f(\xi) \in(\mathcal{S})_{\rho, \ell} \Longleftrightarrow f=\sum_{k \geq 0} f_{k} \mathrm{H}_{k}(\xi), \sum_{k \geq 0} f_{k}^{2}(k!)^{1+\rho} 2^{\ell k}<\infty$.

- $\rho \geq 0:(\mathcal{S})_{\rho}=\bigcap_{\ell}(\mathcal{S})_{\rho, \ell},(\mathcal{S})_{-\rho}=\bigcup_{\ell}(\mathcal{S})_{-\rho, \ell} ; \mathbb{E} f:=f_{0}$
- $\rho \leq 1 \Longleftrightarrow \varphi_{z} \in(\mathcal{S})_{\rho}$.
- $f \in(\mathcal{S})_{-\rho}, \psi \in(\mathcal{S})_{\rho} \Longrightarrow\langle f, \psi\rangle=\sum_{k} f_{k} \psi_{k} \in \mathbb{R}$.
- S transform: $f \in(\mathcal{S})_{-\rho} \Leftrightarrow \widetilde{f}(z)=\left\langle f, \varphi_{z}\right\rangle$ is analytic; entire if $\rho<1$.

Wick product $f \diamond g:(f \diamond g)_{k}=\sum_{i=0}^{k} f_{k-i} g_{i} \Longleftrightarrow \widetilde{f \diamond g}(z)=\widetilde{f}(z) \widetilde{g}(z)$ $\mathbb{E} f \diamond g=(\mathbb{E} f)(\mathbb{E} g)$

Examples

1. The original: $u=1+u \diamond \xi$;
$\widetilde{u}(z)=1+\widetilde{u}(z) z, \widetilde{u}(z)=1 /(1-z)$.
$u \in(\mathcal{S})_{-1}$.
2. One more: $u^{\diamond 2}-u+\xi=0$.
$(\widetilde{u}(z))^{2}-\widetilde{u}(z)+z=0$.
$u^{(1)}=1+\sum_{k \geq 1} C_{k-1} \mathrm{H}_{k}(\xi), u^{(0)}=-\sum_{k \geq 1} C_{k-1} \mathrm{H}_{k}(\xi)$, both $u \in(\mathcal{S})_{-1}$.

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} \leq 4^{n}
$$

Note: $v^{2}-v+\xi=0, v=\left(1 \pm \sqrt{1-4 \xi^{2}}\right) / 2$, does not look good.

But...

$v^{2}-2 v-\xi^{2}=0$ is perfectly fine: $v=1 \pm \sqrt{1+\xi^{2}}$
Meanwhile, solutions of the renormalized equation $u^{\diamond 2}-2 u-\mathrm{H}_{2}(\xi)=0$ still live in $(\mathcal{S})_{-1}$:
$(\widetilde{u}(z))^{2}-2 \widetilde{u}(z)-z^{2}=0 ;$
$\widetilde{u}(z)=1 \pm \sqrt{1+z^{2}}$, so $\widetilde{u}(z)$ is not an entire function.

A generalized Gaussian chaos space

It is $(\mathbb{F}, \boldsymbol{\xi}, H, \mathrm{Q})$, where

- $\mathbb{F}=(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space;
- $\boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \ldots\right)$ are iid $\mathcal{N}(0,1), \mathcal{F}$ is generated by $\boldsymbol{\xi}$;
- H is a separable Hilbert space;
- Q is an unbounded, self-adjoint positive-definite operator on H such that Q has a pure point spectrum: $\mathrm{Qh}_{k}=q_{k} \mathfrak{h}_{k}, k \geq 1$, $\left\{\mathfrak{h}_{k}, k \geq 1\right\}-$ CONS in $H ; \sum_{k \geq 1} \frac{1}{q_{k}^{\gamma}}<\infty, \quad \gamma>0$.
Basic White noise: $\Omega=\mathcal{S}^{\prime}(\mathbb{R})$, $H=L_{2}(\mathbb{R})$,

$$
\mathrm{Q}=-\Delta+x^{2}+1, q_{k}=2 k .
$$

More generally: Have \mathbb{F}; the equation determines $\mathfrak{q}=\left\{q_{k}, k \geq 1\right\}$.

Gaussian Chaos Expansion

Noise: $\dot{W}=\boldsymbol{\xi}=\left\{\xi_{k}, k \geq 1\right\}$, iid $\mathcal{N}(0,1)$. Chaos space: $L_{2}(\Omega ; V)$
Index set: $\mathcal{J}=\left\{\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots\right): \alpha_{k} \in\{0,1,2, \ldots\}, \sum_{k} \alpha_{k}<\infty\right\}$
Notations: $(0)=(0,0,0 \ldots)$,
$|\boldsymbol{\alpha}|=\sum_{k} \alpha_{k}, \alpha!=\prod_{k} \alpha_{k}!, \boldsymbol{\beta}<\boldsymbol{\alpha} \Leftrightarrow \beta_{k} \leq \alpha_{k}, \boldsymbol{\beta} \neq \boldsymbol{\alpha}$.
$\mathrm{H}_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2} / 2}, \quad \mathfrak{q}^{\alpha}=\prod_{k} q_{k}^{\alpha_{k}}$.
Basis elements: $\xi_{\boldsymbol{\alpha}}=\frac{1}{\sqrt{\boldsymbol{\alpha}!}} \prod_{k} \mathrm{H}_{\alpha_{k}}\left(\xi_{k}\right)$
Chaos expansion: $v=\sum_{\boldsymbol{\alpha} \in \mathcal{J}} v_{\boldsymbol{\alpha}} \xi_{\boldsymbol{\alpha}}$,

$$
\text { Weighted chaos spaces: } \sum_{\alpha \in \mathcal{J}} r_{\alpha}\left\|v_{\alpha}\right\|_{V}^{2}<\infty
$$

Generalized expectation: $\mathbb{E} v=v_{(0)}$

Hida-Kondratiev spaces

V - another Hilbert space. For $\rho \in[0,1]$ and $\ell \geq 0$,

- the space $(\mathcal{S})_{\rho, \ell}(V)$ is the collection of $\Phi \in \mathbb{L}_{2}(\xi ; V)$ such that $\|\Phi\|_{\rho, \ell ; V}^{2}=\sum_{\boldsymbol{\alpha} \in \mathcal{J}}(\boldsymbol{\alpha}!)^{\rho} \boldsymbol{q}^{\ell \boldsymbol{\alpha}}\left\|\Phi_{\boldsymbol{\alpha}}\right\|_{V}^{2}<\infty ;$
- the space $(\mathcal{S})_{-\rho,-\ell}(V)$ is the closure of $\mathbb{L}_{2}(\boldsymbol{\xi} ; V)$ with respect to the norm $\|\Phi\|_{-\rho,-\ell ; V}^{2}=\sum_{\boldsymbol{\alpha} \in \mathcal{J}}(\boldsymbol{\alpha}!)^{-\rho} \mathfrak{q}^{-\ell \boldsymbol{\alpha}}\left\|\Phi_{\boldsymbol{\alpha}}\right\|_{V}^{2}$;
- the space $(\mathcal{S})_{\rho}(V)$ is the projective limit (intersection endowed with a special topology) of the spaces $(\mathcal{S})_{\rho, \ell}(V)$, as ℓ varies over all integers;
- the space $(\mathcal{S})_{-\rho}(V)$ is the inductive limit (union endowed with a special topology) of the spaces $(\mathcal{S})_{-\rho,-\ell}(V)$, as ℓ varies over all integers.

References: Hida et al. $(\rho=0)$; Kuo $(0<\rho<1)$; Holden et al. ($\rho=1$)

S-transform

- $\langle\Psi, \eta\rangle=\sum_{\alpha \in \mathcal{J}} \Psi_{\alpha} \eta_{\boldsymbol{\alpha}} \in V, \quad \Psi \in(\mathcal{S})_{-\rho}(V), \eta \in(\mathcal{S})_{\rho}(\mathbb{C})$.
- $\mathcal{E}(\boldsymbol{z})=\sum_{\boldsymbol{\alpha} \in \mathcal{J}} \frac{z^{\alpha}}{\sqrt{\alpha!}} \xi_{\boldsymbol{\alpha}}, \boldsymbol{z}=\left(z_{1}, z_{2}, \ldots\right) \in \ell_{2}(\mathbb{C})$.
- $|\boldsymbol{\alpha}|!\leq C \mathfrak{q}^{\gamma \alpha} \boldsymbol{\alpha}$!
- $0 \leq \rho \leq 1 \Leftrightarrow \mathcal{E}(\boldsymbol{z}) \in(\mathcal{S})_{\rho}(\mathbb{C})$
- S-transform: $\widetilde{\Phi}(\boldsymbol{z})=\langle\Phi, \mathcal{E}(\boldsymbol{z})\rangle=\sum_{\boldsymbol{\alpha} \in \mathcal{J}} \frac{\Phi_{\alpha}}{\sqrt{\alpha!}} \boldsymbol{z}^{\alpha}$.
- (Simplified) characterization theorems (making everything intrinsic) (a) If $0 \leq \rho<1$ and $\Phi \in(\mathcal{S})_{-\rho}(V)$, then $\widetilde{\Phi}(z \boldsymbol{p}+\boldsymbol{q})$ is entire $(\boldsymbol{p}, \boldsymbol{q}$ real).
(b) If $\Phi \in(\mathcal{S})_{-1}(V)$, then $\widetilde{\Phi}(\boldsymbol{z})$ is analytic "at the origin".

Wick product $\Phi \diamond \Psi: \widetilde{\Phi \diamond \Psi}(z)=\widetilde{\Phi}(z) \widetilde{\Psi}(z) ; \mathbb{E} \Phi \diamond \Psi=(\mathbb{E} \Phi)(\mathbb{E} \Psi)$

$$
(\Phi \diamond \Psi)_{\boldsymbol{\alpha}}=\sum_{\boldsymbol{\beta}} \sqrt{\binom{\alpha}{\boldsymbol{\beta}}} \Psi_{\alpha-\boldsymbol{\beta}} \Phi_{\boldsymbol{\beta}}
$$

\diamond around us

- $\xi \diamond \eta=\xi \eta$ for non-random ξ and/or η
- If W is a standard BM and $\eta\left(t_{i}\right)$ is $\mathcal{F}_{t_{i}}^{W}$-measurable, then $\eta\left(t_{i}\right)\left(W\left(t_{i+1}-W\left(t_{i}\right)\right)=\eta\left(t_{i}\right) \diamond\left(W\left(t_{i+1}-W\left(t_{i}\right)\right)\right.\right.$
so $\int_{0}^{T} \eta(t) \diamond d W(t)=\int_{0}^{T} \eta(t) d W(t)$ for adapted η.
- For BM, (Usual product, Itô calculus) \Leftrightarrow (Wick product, usual calculus).
- \diamond as the divergence operator (Itô-Skorokhod-Wick integral)

More: Holden, Øksendal, Ubøe, Zhang (1996).

A comparison

$\mathrm{H}_{m}(x) \mathrm{H}_{n}(x)=x^{m+n}+($ lower order terms $)$

$$
=\mathrm{H}_{m+n}(x)+\text { (lower order terms) }
$$

that is,

$$
\xi \eta=\xi \diamond \eta+(\text { "lower order terms" })
$$

Our basic example.
(a) $u=1+u \diamond \xi, u=\sum_{k} u_{k} \mathrm{H}_{k}(\xi)$:
$\xi \diamond \mathrm{H}_{k}(\xi)=\mathrm{H}_{k+1}(\xi)$
$u_{0}=1, u_{k}=u_{k-1}$
(b) $v=1+v \xi, v=\sum_{k} v_{k} \mathrm{H}_{k}(\xi)$:
$\xi \mathrm{H}_{k}(\xi)=\mathrm{H}_{k+1}(\xi)-k \mathrm{H}_{k-1}(\xi)$
$v_{0}=1+v_{1}, v_{k}=v_{k-1}+(k+1) v_{k+1}$

(Our) Renormalization

- Is a special multiplication of random objects
- Does not affect deterministic equation
- Is related to Wick multiplication and stochastic integration
- Can increase the class of admissible equations
- Can force the solution to become a generalized random element
- Leads to a probabilistically strong solution
- Leads to unusual uniqueness results
- Extensions to non-Gaussian noise: pending
- Notations: $\diamond,::$ as in $: \xi^{2}:=\xi^{\diamond 2}=\mathrm{H}_{2}(\xi), \boldsymbol{\delta}, \mathcal{R}$.

The general result

Deterministic equation:
$\dot{U}=\mathrm{A} u+F+\mathcal{P}\left(\mathrm{B}_{1} U, \ldots, \mathrm{~B}_{n} U\right), U(0)=U_{0}, \mathcal{P}$ is a polynomial.
Renormalization:
$\dot{u}=\mathrm{A} u+f+\mathcal{R} \mathcal{P}\left(\mathrm{B}_{1} u, \ldots, \mathrm{~B}_{n} u\right)+\mathcal{R}(\mathbf{L} u \dot{\boldsymbol{W}}), u(0)=u_{0}$, with linear operators $\mathrm{A}, \mathrm{B}_{i}, \mathrm{~L}$,
random initial condition $u_{0}, \mathbb{E} \dot{W}=0$.
If $\mathbb{E} f=F$ and $\mathbb{E} u_{0}=U_{0}$, then $\mathbb{E} u(t)=U(t)$.
Zero uniqueness of U implies uniqueness of zero-mean u Moreover, under suitable conditions, $\mathbb{E}\|u\|^{2} \asymp \sum_{\boldsymbol{\alpha}} q^{\boldsymbol{\alpha}}|\boldsymbol{\alpha}|$! Here $\boldsymbol{\alpha}=\left(\alpha_{k}, k \geq 1\right), \sum_{k} \alpha_{k}<\infty, q^{\boldsymbol{\alpha}}=\prod_{k \geq 1} q_{k}^{\alpha_{k}}$.

Some examples

$$
\begin{aligned}
& u_{t}=\Delta u+u \dot{W}(t, x), d>1 \\
& u_{t}=\Delta u+(u \diamond \nabla) u+\nabla u \dot{W}(t, x), d>1 \\
& \nabla \cdot((1+\dot{W}(x)) \diamond \nabla u)=f(x) \\
& \nabla \cdot\left(\left(1+e^{\diamond \dot{W}(x)}\right) \diamond \nabla u\right)=f(x) \\
& u_{t}=(1+\dot{W}(t, x)) u_{x x}
\end{aligned}
$$

Equations driven by fractional noise.

A more detailed example: Burgers equation

Equation: $u_{t}+u \diamond u_{x}=u_{x x}, x \in \mathbb{R}, u(0, x)=\xi \phi(x)$.
Solution: $u(t, x)=\sum_{n \geq 0} u_{n}(t, x) \mathrm{H}_{n}(\xi)$.

Propagator:

$$
\begin{aligned}
& \left(u_{n}\right)_{t}+\sum_{k=0}^{n} u_{k}\left(u_{n-k}\right)_{x}=\left(u_{n}\right)_{x x}, u_{n}(0, x)=\phi(x) I_{(n=1)} \\
& \boldsymbol{n}=\mathbf{0}:\left(u_{0}\right)_{t}+u_{0}\left(u_{0}\right)_{x}=\left(u_{0}\right)_{x x}, u_{0}(0, x)=0, \text { so } u_{0} \equiv 0 ; \\
& \boldsymbol{n}=\mathbf{1}:\left(u_{1}\right)_{t}=\left(u_{1}\right)_{x x}-\left(u_{0} u_{1}\right)_{x}, u_{1}(0, x)=\phi(x) ; \\
& \boldsymbol{n}>\mathbf{1}:\left(u_{n}\right)_{t}=\left(u_{n}\right)_{x x}-\left(u_{0} u_{n}\right)_{x}-\sum_{k=1}^{n-1} u_{k}\left(u_{n-k}\right)_{x}, u_{n}(0, x)=0 . \\
& \left\|u_{k}(t, \cdot)\left(u_{n-k}(t, \cdot)\right)_{x}\right\|_{0} \leq\left(\sup _{x}\left|u_{k}(t, x)\right|\right)\left\|\left(u_{n-k}(t, \cdot)\right)_{x}\right\|_{0} \\
& \leq K_{0}\left\|u_{k}(t, \cdot)\right\|_{1}\left\|u_{n-k}(t, \cdot)\right\|_{1} .
\end{aligned}
$$

Conclusion: Can run an induction.

Estimates Of The Norms

Define: $L_{n}^{2}=\int_{0}^{T}\left\|u_{n}(t, \cdot)\right\|_{2}^{2} d t+\sup _{t \in[0, T]}\left\|u_{n}(t, \cdot)\right\|_{1}^{2}$
Then:

$$
L_{n} \leq K(T, \phi) \sum_{k=1}^{n-1} L_{k} L_{n-k}
$$

Note: ((Very) Well Known) Catalan numbers $C_{n}, n \geq 0$, satisfy

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1 ; \quad C_{n} \sim \frac{4^{n}}{\sqrt{\pi} n^{3 / 2}}
$$

Conclusion: $\quad L_{n} \leq A^{n} C_{n-1} \leq q^{n}$.

One more comparison

Equation $v_{t}+v v_{x}=v_{x x}$ with initial condition $v(0, x)=\xi \phi(x)$ has a closed-form solution by Hopf-Cole transform; $\mathbb{E}|v(t, x)|^{2}<\infty$.
On the other hand, if $v(t, x)=\sum_{k \geq 1} v_{k}(t, x) \mathrm{H}_{k}(\xi)$, then

$$
\left(v_{k}\right)_{t}=\left(v_{k}\right)_{x x}-\sum_{m \geq 0} \sum_{\ell=0}^{k} \sqrt{\frac{(\ell+m)!(k+m-\ell)!}{\ell!(k-\ell)!m!}} v_{\ell+m}\left(v_{k+m-\ell}\right)_{x}
$$

In particular,
$\left(v_{0}\right)_{t}=\left(v_{0}\right)_{x x}-v_{0}\left(v_{0}\right)_{x}-\sum_{m \geq 1} \sqrt{m!} v_{m}\left(v_{m}\right)_{x}$.
Now, recall: if $u_{t}+u \diamond u_{x}=u_{x x}$ and $u(0, x)=\xi \phi(x)$, then $(k \geq 2)$
$\left(u_{k}\right)_{t}=\left(u_{k}\right)_{x x}-\sum_{\ell=0}^{k} u_{\ell}\left(u_{k-\ell}\right)_{x}=\left(u_{k}\right)_{x x}-\left(u_{0} u_{k}\right)_{x}-\sum_{\ell=1}^{k-1} u_{\ell}\left(u_{k-\ell}\right)_{x}$.
Can show that $u(t, x) \notin(\mathcal{S})_{-\rho}$ for every $\rho<1$.

The equation $u_{t}+u u_{x}=u_{x x}$

Harry Bateman (1882-1946): British-American (1915, Monthly Weather Review)

Johannes Martinus Burgers (1895-1981): Dutch (1920-1940)

Conclusions

- Could be a new class of useful models
- Could be just a mathematical curiosity

