Approximating Graphic TSP by Matchings

Tobias Mömke ${ }^{1}$ and Ola Svensson ${ }^{2}$

${ }^{1}$ KTH Royal Institute of Technology Sweden

${ }^{2}$ EPFL

Switzerland
November 29, 2011

Traveling Salesman Problem

Given

- n cities
- distance $d(u, v)$ between cities u and v

Find shortest tour that visits each city once

- Stockholm

Amsterdam
Paris
Lausanne

Traveling Salesman Problem

Given

- n cities
- distance $d(u, v)$ between cities u and v

Find shortest tour that visits each city once

Paris
Lausanne

Traveling Salesman Problem

Given

- n cities
- distance $d(u, v)$ between cities u and v

Find shortest tour that visits each city once

Classic Problem both in Practice and Theory

1800's

William Rowan Hamilton and Thomas Penyngton Kirkman studied related mathematical problems.

Kirkman

Classic Problem both in Practice and Theory

1800's

\cdots
1950's

49 cities
G. Dantzig, R. Fulkerson, and S. Johnson publish a method for solving the TSP and solve a 49-city instance to optimality.

Classic Problem both in Practice and Theory

http://www.tsp.gatech.edu

Classic Problem both in Practice and Theory

Classic Problem both in Practice and Theory

Classic Problem both in Practice and Theory

Applegate, Bixby, Chvtal, Cook, and Helsgaun (2004) found the optimal tour of 24,978 cities in Sweden.

http://www.tsp.gatech.edu

Classic Problem both in Practice and Theory

Applegate, Bixby, Chvtal, Cook, and Helsgaun (2004) found the optimal tour of 24,978 cities in Sweden.

Warning: Only 9 million people in Sweden so 360 people in average per "city".

http://www.tsp.gatech.edu

Classic Problem both in Practice and Theory

1800's	1950's	70's	80's	90's	00's
	49 cities	120 cities	2392	13509	78

Classic Problem both in Practice and Theory

Christofides
1.5-approximation algorithm for metric distances.

Held-Karp

- Heuristic for calculating a lower bound on a tour.
- Coincides with the value of a linear program known as

Held-Karp or Subtour Elimination relaxation.

Classic Problem both in Practice and Theory

S. Arora and J. S. B. Mitchell independently PTAS for Eucledian TSP.

Classic Problem both in Practice and Theory

S. Arora and J. S. B. Mitchell independently PTAS for Eucledian TSP.
C. H. Papadimitriou and S. Vempala

NP-hard to approximate metric within 220/219.

Classic Problem both in Practice and Theory

Major open problem to understand approximability of metric TSP

- NP-hard to approximate better than 220/219.
- Christofides' 1.5-approximation algorithm still best.
- Held-Karp relaxation conjectured to have integrality gap of $4 / 3$.

Graphic TSP (graph-TSP)

Given unweighted undirected graph $G=(V, E)$

Find shortest tour with respect to distances

$$
d(u, v)=\text { shortest path between } u \text { and } v .
$$

Graphic TSP (graph-TSP)

Given unweighted undirected graph $G=(V, E)$

Find shortest tour with respect to distances

$$
d(u, v)=\text { shortest path between } u \text { and } v .
$$

Graphic TSP (graph-TSP)

Given unweighted undirected graph $G=(V, E)$

Find shortest tour with respect to distances

$$
d(u, v)=\text { shortest path between } u \text { and } v .
$$

Graphic TSP (graph-TSP)

Given unweighted undirected graph $G=(V, E)$

Find shortest tour with respect to distances

$$
d(u, v)=\text { shortest path between } u \text { and } v .
$$

Graphic TSP (graph-TSP)

Given unweighted undirected graph $G=(V, E)$

Find shortest tour with respect to distances

$$
d(u, v)=\text { shortest path between } u \text { and } v .
$$

Graphic TSP (graph-TSP)

Given unweighted undirected graph $G=(V, E)$

Find shortest tour with respect to distances

$$
d(u, v)=\text { shortest path between } u \text { and } v .
$$

Graphic TSP (graph-TSP)

Given unweighted undirected graph $G=(V, E)$

Find shortest tour with respect to distances

$$
d(u, v)=\text { shortest path between } u \text { and } v .
$$

Graphic TSP (graph-TSP)

Given unweighted undirected graph $G=(V, E)$

Find shortest tour with respect to distances

$$
d(u, v)=\text { shortest path between } u \text { and } v .
$$

$$
\text { \#edges }=4 n / 3-1
$$

Graphic TSP (graph-TSP)

Given unweighted undirected graph $G=(V, E)$

Find spanning Eulerian multigraph with minimum \#edges

$\#$ edges $=4 n / 3-1$

Important Special Case

- Natural problem to find smallest Eulerian subgraph
- studied for more than 2 decades.
- Easier to study than general metrics but hopefully shed light on them
- Still APX-hard
- Worst instances known for Held-Karp are graphic
- Until recently, Christofides best approximation algorithm

Recent Advancements on graph-TSP

2000

Major open problem to understand approximability of metric TSP

- NP-hard to approximate better than 220/219.
- Christofides' 1.5-approximation algorithm still best.
- Held-Karp relaxation conjectured to have integrality gap of $4 / 3$.

Recent Advancements on graph-TSP

$2000 \quad 2005$

Gamarnik, Lewenstein \& Sviridenko

1.487-approximation algorithm for cubic 3-edge connected graphs.

Recent Advancements on graph-TSP

2000 2005
 2010

Boyd, Sitters, van der Star \& Stougie

- 4/3-approximation algorithm for cubic graphs
- 7/5-approximation algorithm for subcubic graphs

Recent Advancements on graph-TSP

2000
 2005

Boyd, Sitters, van der Star \& Stougie

- 4/3-approximation algorithm for cubic graphs
- 7/5-approximation algorithm for subcubic graphs

Conjecture

Subcubic 2 -vertex connected graphs have a tour of length at most 4n/3-2/3

Recent Advancements on graph-TSP

2000
 2005
 2010

Oveis Gharan, Saberi \& Singh

$(1.5-\epsilon)$-approximation algorithm for graph-TSP.

- First improvement on Christofides
- Similar to Christofides but instead of starting with a MST they sample one from the solution of the Held-Karp relaxation
- Analysis involved and requires several novel ideas

Our Results

Theorem
A 1.461-approximation algorithm for graph-TSP.

Our Results

Theorem
 A 1.461-approximation algorithm for graph-TSP.

Based on techniques used by Frederickson \& Ja'Ja' 82 and Monmam, Munson \& Pulleyblank' 90

+ novel use of matchings: instead of only adding edges to make a graph Eulerian we allow for removal of certain edges

Our Results

Theorem

A 1.461-approximation algorithm for graph-TSP.

Based on techniques used by Frederickson \& Ja'Ja' 82 and Monmam, Munson \& Pulleyblank' 90

+ novel use of matchings: instead of only adding edges to make a graph Eulerian we allow for removal of certain edges

Theorem

- Subcubic 2-VC graphs have a tour of length at most 4n/3-2/3
- A 4/3-approximation algorithm for subcubic/claw-free graphs (matching the integrality gap)

Christofides' Approach Our Approach

Christofides' Approach
 (1) Find MST $T=(V, E)$.

 Our Approach(1) Find 2-VC subgraph $G=(V, E)$.

Christofides' Approach

(1) Find MST $T=(V, E)$.
(2) Find Minimum Matching M of odd degree vertices.

Our Approach

(1) Find 2-VC subgraph $G=(V, E)$.

Christofides' Approach

(1) Find MST $T=(V, E)$.
(2) Find Minimum Matching M of odd degree vertices.

Our Approach

(1) Find 2-VC subgraph $G=(V, E)$.
(2) Sample perfect matching $M \subseteq E$ on the support.

Christofides' Approach

(1) Find MST $T=(V, E)$.
(2) Find Minimum Matching M of odd degree vertices.
(3) Return $E \cup M$.

Our Approach

(1) Find 2-VC subgraph $G=(V, E)$.
(2) Sample perfect matching $M \subseteq E$ on the support.

Christofides' Approach

(1) Find MST $T=(V, E)$.
(2) Find Minimum Matching M of odd degree vertices.
(3) Return $E \cup M$.

$$
\text { Value }=9
$$

Our Approach

(1) Find 2-VC subgraph $G=(V, E)$.
(2) Sample perfect matching $M \subseteq E$ on the support.
(3) Return $\left(E \cup M_{\bar{R}}\right) \backslash M_{R}$

Outline of Remaining Part

Theorem
Subcubic 2-VC graphs have a tour of length at most $4 n / 3-2 / 3$

- Held-Karp Relaxation
- Comments on General Case

Eulerian subgraph of 2-VC graph

Frederickson \& Ja'Ja'82 and Monma, Munson \& Pulleyblank'90

Thm: A 2-VC (cubic) graph $G=(V, E)$ has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.

Eulerian subgraph of 2-VC graph

Frederickson \& Ja'Ja'82 and Monma, Munson \& Pulleyblank'90

Thm: A 2-VC (cubic) graph $G=(V, E)$ has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.
(1) Sample perfect matching M so that each edge is taken with probability $1 / 3$

Eulerian subgraph of 2-VC graph

Frederickson \& Ja'Ja'82 and Monma, Munson \& Pulleyblank'90

Thm: A 2-VC (cubic) graph $G=(V, E)$ has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.
(1) Sample perfect matching M so that each edge is taken with probability $1 / 3$

Eulerian subgraph of 2-VC graph

Frederickson \& Ja'Ja'82 and Monma, Munson \& Pulleyblank'90

Thm: A 2-VC (cubic) graph $G=(V, E)$ has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.
(1) Sample perfect matching M so that each edge is taken with probability $1 / 3$
(2) Return graph with edge set $E \cup M$

Eulerian subgraph of 2-VC graph

Frederickson \& Ja'Ja'82 and Monma, Munson \& Pulleyblank'90
Thm: A 2-VC (cubic) graph $G=(V, E)$ has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.
(1) Sample perfect matching M so that each edge is taken with probability $1 / 3$
(2) Return graph with edge set $E \cup M$

Output: $E \cup M$

Eulerian subgraph of $2-\mathrm{VC}$ graph

Frederickson \& Ja'Ja'82 and Monma, Munson \& Pulleyblank'90

Thm: A 2-VC (cubic) graph $G=(V, E)$ has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.
(1) Sample perfect matching M so that each edge is taken with probability $1 / 3$
(2) Return graph with edge set $E \cup M$

Output: $E \cup M$

Output: $E \cup M$

Eulerian subgraph of 2-VC graph

Frederickson \& Ja'Ja'82 and Monma, Munson \& Pulleyblank'90

Thm: A 2-VC (cubic) graph $G=(V, E)$ has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.
(1) Sample perfect matching M so that each edge is taken with probability $1 / 3$
(2) Return graph with edge set $E \cup M$

Using Matchings to Remove Edges (First Idea)

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph

Using Matchings to Remove Edges (First Idea)

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph

Using Matchings to Remove Edges (First Idea)

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph
- Same algorithm as before but return $\left(E \cup M_{T}\right) \backslash M_{\bar{T}}$

Using Matchings to Remove Edges (First Idea)

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph
- Same algorithm as before but return $\left(E \cup M_{T}\right) \backslash M_{\bar{T}}$

$\left(E \cup M_{T}\right) \backslash M_{\bar{T}}$

Using Matchings to Remove Edges (First Idea)

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph
- Same algorithm as before but return $\left(E \cup M_{T}\right) \backslash M_{\bar{T}}$

Using Matchings to Remove Edges (First Idea)

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph
- Same algorithm as before but return $\left(E \cup M_{T}\right) \backslash M_{\bar{T}}$

Using Matchings to Remove Edges (First Idea)

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph
- Same algorithm as before but return $\left(E \cup M_{T}\right) \backslash M_{\bar{T}}$

A 2-VC subcubic graph $G=(V, E)$ has a tour of size at most $\frac{2}{3}|\mathbf{E}|+\frac{2}{3}(\mathbf{n}-\mathbf{1})$.

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching
- Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching
- Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching
- Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching
- Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching
- Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching
- Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching
- Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

Using Matchings to Remove Edges (Second Idea)

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
- Pair of edges: only one edge in each pair can occur in a matching
- Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

Using Matchings to Remove Edges (Second Idea)

- Same algorithm as before but return $\left(E \cup M_{\bar{R}}\right) \backslash M_{R}$.

Using Matchings to Remove Edges (Second Idea)

- Same algorithm as before but return $\left(E \cup M_{\bar{R}}\right) \backslash M_{R}$.

Using Matchings to Remove Edges (Second Idea)

- Same algorithm as before but return $\left(E \cup M_{\bar{R}}\right) \backslash M_{R}$.

Using Matchings to Remove Edges (Second Idea)

- Same algorithm as before but return $\left(E \cup M_{\bar{R}}\right) \backslash M_{R}$.

Using Matchings to Remove Edges (Second Idea)

- Same algorithm as before but return $\left(E \cup M_{\bar{R}}\right) \backslash M_{R}$.

Theorem

A 2-VC subcubic graph $G=(V, E)$ has a tour of size at most $\frac{4}{3} \mathbf{n}-\frac{2}{3}$.

Outline of Remaining Part

Theorem
Subcubic 2-VC graphs have a tour of length at most $4 n / 3-2 / 3$

- Held-Karp Relaxation
- Comments on General Case

General Statement of What We Proved

Theorem
A 2-VC graph $G=(V, E)$ with a removable pairing (R, P) has a tour of length at most $\frac{4}{3}|E|-\frac{2}{3}|R|$.

- Defining R large enough led to tight bound $4 n / 3-2 / 3$ for subcubic graphs.

General Statement of What We Proved

Theorem

A 2-VC graph $G=(V, E)$ with a removable pairing (R, P) has a tour of length at most $\frac{4}{3}|E|-\frac{2}{3}|R|$.

- Defining R large enough led to tight bound $4 n / 3-2 / 3$ for subcubic graphs. Problem with general graphs:
(1) To find a large enough removable pairing is more involved

Held-Karp Relaxation (Definition)

- A variable x_{e} for each edge $e \in E$
- intuiton: value 1 if e in tour and 0 otherwise

Held-Karp Relaxation (Definition)

- A variable x_{e} for each edge $e \in E$
- intuiton: value 1 if e in tour and 0 otherwise

$$
\operatorname{minimize} \sum_{e \in E} x_{e}
$$

Held-Karp Relaxation (Definition)

- A variable x_{e} for each edge $e \in E$
- intuiton: value 1 if e in tour and 0 otherwise

$$
\operatorname{minimize} \sum_{e \in E} x_{e}
$$

$$
\sum_{e \in \delta(S)} x_{e} \geq 2 \quad \forall \emptyset \neq S \subset V
$$

$$
x \geq 0
$$

Held-Karp Relaxation (Useful Structure)

$$
\begin{aligned}
\operatorname{minimize} & \sum_{e \in E} x_{e} \\
\sum_{e \in \delta(S)} x_{e} & \geq 2 \quad \forall \emptyset \neq S \subset V \\
x & \geq 0
\end{aligned}
$$

- W.I.o.g. the graph is 2-VC
- otherwise decompose instance

Held-Karp Relaxation (Useful Structure)

$$
\begin{aligned}
& \operatorname{minimize} \sum_{e \in E} x_{e} \\
& \sum_{e \in \delta(S)} x_{e} \geq 2 \quad \forall \emptyset \neq S \subset V \\
& x \geq 0
\end{aligned}
$$

- W.l.o.g. the graph is 2-VC
- otherwise decompose instance
- The support $\left\{e: x_{e}>0\right\}$ of an extreme point has size at most $2 n-1$
- we can concentrate on very sparse graphs

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}
(3) Extend DFS tree to a 2-VC graph of minimum cost

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}
(3) Extend DFS tree to a 2-VC graph of minimum cost

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}
(3) Extend DFS tree to a 2-VC graph of minimum cost

Linear constraints ensuring we pick enough red edges

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}
(3) Extend DFS tree to a 2-VC graph of minimum cost

Linear constraints ensuring we pick enough red edges

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}
(3) Extend DFS tree to a $2-\mathrm{VC}$ graph of minimum cost

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}
(3) Extend DFS tree to a 2-VC graph of minimum cost

This is an integral linear program!

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}
(3) Extend DFS tree to a $2-\mathrm{VC}$ graph of minimum cost
(9) Sample perfect matching and remove/add edges as before

This is an integral linear program!

Finding a Removable Pairing for General Graphs

(1) Solve linear program to obtain x^{*}.
(2) Build DFS tree by in every step choosing the heaviest possible edge with respect to x_{e}^{*}
(3) Extend DFS tree to a 2-VC graph of minimum cost
(9) Sample perfect matching and remove/add edges as before

$$
\mathbb{E}[\# \text { edges in tour }]=4 n / 3-2 / 3+\mathbf{2} / \mathbf{3} \cdot \mathbf{c}(\text { Extension })
$$

This is an integral linear program!

Overview of Algorithm for General Graphs

Overview of Algorithm for General Graphs

2
minimize $\sum_{e \in E} x_{e}$
$\sum_{e \in \delta(S)} x_{e} \geq 2 \quad \forall \emptyset \neq S \subset V$
$x \geq 0$

Overview of Algorithm for General Graphs

2
minimize $\sum_{e \in E} x_{e}$
$\sum_{e \in \delta(S)} x_{e} \geq 2 \quad \forall \emptyset \neq S \subset V$
$x \geq 0$

Overview of Algorithm for General Graphs

2
$\operatorname{minimize} \sum_{e \in E} x_{e}$
$\sum_{e \in \delta(S)} x_{e} \geq 2 \quad \forall \emptyset \neq S \subset V$
$x \geq 0$

Overview of Algorithm for General Graphs

2
$\operatorname{minimize} \sum_{e \in E} x_{e}$
$\sum_{e \in \delta(S)} x_{e} \geq 2 \quad \forall \emptyset \neq S \subset V$
$x \geq 0$

Overview of Algorithm for General Graphs

Cost $=\begin{aligned} & \frac{4 n}{3}-\frac{2}{3}+ \\ & \frac{2}{3} \cdot \mathbf{c}(\text { extension })\end{aligned}$

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

- Simplifying assumption: cost of Held-Karp solution x^{*} is n.
- Since

$$
\sum_{\mathbf{e} \in \mathbf{E}} \mathbf{x}_{\mathbf{e}}^{*}=\frac{\sum_{\mathbf{v} \in \mathbf{V}} \mathbf{x}^{*}(\delta(\mathbf{v}))}{\mathbf{2}} \quad \text { and } \quad \mathbf{x}^{*}(\delta(\mathbf{v})) \geq \mathbf{2}
$$

$$
\mathbf{x}^{*}(\delta(\mathbf{v}))=2
$$

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution
- Let the red edges have the same fractional values as from Held-Karp

This defines a fractional solution

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution
- Let the red edges have the same fractional values as from Held-Karp

This defines a fractional solution

The cost of fractional solution

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution
- Let the red edges have the same fractional values as from Held-Karp

This defines a fractional solution

The cost of fractional solution

- Selection of DFS $\Rightarrow x_{t} \geq x_{e_{i}}$

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution
- Let the red edges have the same fractional values as from Held-Karp

This defines a fractional solution

The cost of fractional solution

- Selection of DFS $\Rightarrow x_{t} \geq x_{e_{i}}$
- If cost is high, i.e., $\sum x_{e_{i}}-1 \gg 0$ \Rightarrow many red edges

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution
- Let the red edges have the same fractional values as from Held-Karp

This defines a fractional solution

The cost of fractional solution

Analyzing the Cost of Extending DFS to 2-VC Graph (COT)

- Cost is $\sum x_{e_{i}}-1$

Analyzing the Cost of Extending DFS to 2-VC Graph

- Cost is $\sum x_{e_{i}}-1$ and $\sum x_{e_{i}} \leq x^{*}(\delta(v))-x_{t}$

Analyzing the Cost of Extending DFS to 2-VC Graph (COT)

$$
\begin{aligned}
& \text { - Cost is } \sum x_{e_{i}}-1 \text { and } \sum x_{e_{i}} \leq x^{*}(\delta(v))-x_{t} \\
& \quad \Rightarrow x_{t} \leq 1-\text { Cost } \quad \text { and } \sum x_{e_{i}}=\operatorname{Cost}+1
\end{aligned}
$$

Analyzing the Cost of Extending DFS to 2-VC Graph (CO2)

Analyzing the Cost of Extending DFS to 2-VC Graph

- Cost is $\sum x_{e_{i}}-1$ and $\sum x_{e_{i}} \leq x^{*}(\delta(v))-x_{t}$

$$
\Rightarrow x_{t} \leq 1-\operatorname{Cost} \quad \text { and } \quad \sum x_{e_{i}}=\operatorname{Cost}+1
$$

- Selection of DFS $\Rightarrow x_{e_{i}} \leq x_{t} \leq 1$ - Cost
- number of red edges to vertex at least

$$
\left\lceil\frac{\operatorname{Cos} t+1}{1-\operatorname{Cost}}\right\rceil
$$

Analyzing the Cost of Extending DFS to 2-VC Graph (2/2)

- Maximum cost per red edge (at most n many)

Analyzing the Cost of Extending DFS to 2-VC Graph (2/2)

- Maximum cost per red edge (at most n many)

- Cost of tour: $4 n / 3+2 / 3 \cdot 1 / 6 n=(4 / 3+1 / 9) n$
- Cost of tour: $4 n / 3+2 / 3 \cdot 0.17 n \approx 1.45 n$

Final Result

Theorem
A 1.461-approximation algorithm for graph-TSP.

Final Result

Theorem
A 1.461-approximation algorithm for graph-TSP.

Final Result

Theorem
A 1.461-approximation algorithm for graph-TSP.

Summary

- Novel use of matchings
- allow us to remove edges leading to decreased cost
- Bridgeless subcubic graphs have a tour of size $4 n / 3-2 / 3$
- Tight analysis of Held-Karp for these graphs
- 1.461-approximation algorithm for graph-TSP
- 13/9 analysis by Mucha'11

Summary

- Novel use of matchings
- allow us to remove edges leading to decreased cost
- Bridgeless subcubic graphs have a tour of size $4 n / 3-2 / 3$
- Tight analysis of Held-Karp for these graphs
- 1.461-approximation algorithm for graph-TSP
- 13/9 analysis by Mucha'11
- Generalizes to the TSP path problem on graphic metrices
- 1.586-approximation improving on 5/3-approximation by Hoogeveen'91
- Tight analysis for subcubic graphs

General Metrics

No progress for TSP yet but two recent papers

A Proof of the Boyd-Carr Conjecture (Schalekamp, Williamson, and Anke van Zuylen)
Tight analysis of cost of 2-matching vs Held-Karp Relaxation

Improving Christofides' Algorithm for the s-t Path TSP (An, Kleinberg, Shmoys)

1.62-approximation for general metrics improving upon 1.67-approximation

Conjectured Hardest Extreme Points

Schalekamp, Williamson, and Anke van Zuylen

Conjectured Hardest Extreme Points

Schalekamp, Williamson, and Anke van Zuylen

Conjectured Hardest Extreme Points

Schalekamp, Williamson, and Anke van Zuylen

Theorem
 Half-integral solutions of graph-TSP have integrality gap $\leq 4 / 3$

Somewhere in between graph-TSP and General Metrics

- Shortest path metric on $G(V, E)$ where distance of $\{u, v\} \in E$ is $f(u)+f(v)$ for some $f: V \mapsto \mathbb{R}^{+}$

Somewhere in between graph-TSP and General Metrics

- Shortest path metric on $G(V, E)$ where distance of $\{u, v\} \in E$ is $f(u)+f(v)$ for some $f: V \mapsto \mathbb{R}^{+}$

Somewhere in between graph-TSP and General Metrics

- Shortest path metric on $G(V, E)$ where distance of $\{u, v\} \in E$ is $f(u)+f(v)$ for some $f: V \mapsto \mathbb{R}^{+}$

Somewhere in between graph-TSP and General Metrics

- Shortest path metric on $G(V, E)$ where distance of $\{u, v\} \in E$ is $f(u)+f(v)$ for some $f: V \mapsto \mathbb{R}^{+}$

Somewhere in between graph-TSP and General Metrics

- Shortest path metric on $G(V, E)$ where distance of $\{u, v\} \in E$ is $f(u)+f(v)$ for some $f: V \mapsto \mathbb{R}^{+}$

Somewhere in between graph-TSP and General Metrics

- Shortest path metric on $G(V, E)$ where distance of $\{u, v\} \in E$ is $f(u)+f(v)$ for some $f: V \mapsto \mathbb{R}^{+}$

- graph-TSP if f is constant

Open Problems

- Find better removable pairing and analysis
- If $L P=n$ is there always a $2-V C$ subgraph of degree at most 3 ?
- Removable pairings straight forward to generalize to any metric
- However, finding a large enough one remains open
- One idea is to sample an extremepoint, for example:
- Sample two spanning trees with marginals x_{e} such that all edges are removable $\Rightarrow 4 / 3$-approximation algorithm.

Thank You!

