Approximating Graphic TSP by Matchings

Tobias Mömke¹ and Ola Svensson²

¹KTH Royal Institute of Technology Sweden

> ²EPFL Switzerland

November 29, 2011

Traveling Salesman Problem

Given

- *n* cities
- distance d(u, v) between cities u and v

Find shortest tour that visits each city once

Traveling Salesman Problem

Given

- *n* cities
- distance d(u, v) between cities u and v

Find shortest tour that visits each city once

Traveling Salesman Problem

Given

- *n* cities
- distance d(u, v) between cities u and v

Find shortest tour that visits each city once

William Rowan Hamilton and Thomas Penyngton Kirkman studied related mathematical problems.

Hamilton

Kirkman

G. Dantzig, R. Fulkerson, and S. Johnson publish a method for solving the TSP and solve a 49-city instance to optimality.

Applegate, Bixby, Chvtal, Cook, and Helsgaun (2004) found the optimal tour of 24,978 cities in Sweden.

Warning: Only 9 million people in Sweden so 360 people in average per "city".

Classic Problem both in Practice and Theory 1800's 1950's 70's 80's 90's 00's 49 cities 120 cities 2392 13509 24978

Christofides

1.5-approximation algorithm for metric distances.

Held-Karp

- Heuristic for calculating a lower bound on a tour.
- Coincides with the value of a linear program known as

Held-Karp or Subtour Elimination relaxation.

S. Arora and J. S. B. Mitchell independently

PTAS for Eucledian TSP.

S. Arora and J. S. B. Mitchell independently

PTAS for Eucledian TSP.

C. H. Papadimitriou and S. Vempala

NP-hard to approximate metric within 220/219.

Major open problem to understand approximability of metric TSP

- NP-hard to approximate better than 220/219.
- Christofides' **1.5-approximation algorithm** still best.
- Held-Karp relaxation conjectured to have integrality gap of 4/3.

Given unweighted undirected graph G = (V, E)

Find shortest tour with respect to distances

Given unweighted undirected graph G = (V, E)

Find shortest tour with respect to distances

Given unweighted undirected graph G = (V, E)

Find shortest tour with respect to distances

Given unweighted undirected graph G = (V, E)

Find shortest tour with respect to distances

Given unweighted undirected graph G = (V, E)

Find shortest tour with respect to distances

Given unweighted undirected graph G = (V, E)

Find shortest tour with respect to distances

Given unweighted undirected graph G = (V, E)

Find shortest tour with respect to distances

Given unweighted undirected graph G = (V, E)

Find shortest tour with respect to distances

Given unweighted undirected graph G = (V, E)

Find spanning Eulerian multigraph with minimum #edges

Important Special Case

- Natural problem to find smallest Eulerian subgraph
 - studied for more than 2 decades.
- Easier to study than general metrics but hopefully shed light on them
 - Still APX-hard
 - Worst instances known for Held-Karp are graphic
 - Until recently, Christofides best approximation algorithm

Major open problem to understand approximability of metric TSP

- NP-hard to approximate better than 220/219.
- Christofides' 1.5-approximation algorithm still best.
- Held-Karp relaxation conjectured to have integrality gap of 4/3.

Gamarnik, Lewenstein & Sviridenko

1.487-approximation algorithm for cubic 3-edge connected graphs.

Boyd, Sitters, van der Star & Stougie

- 4/3-approximation algorithm for cubic graphs
- \bullet 7/5-approximation algorithm for subcubic graphs

Boyd, Sitters, van der Star & Stougie

- 4/3-approximation algorithm for cubic graphs
- \bullet 7/5-approximation algorithm for subcubic graphs

Conjecture

Subcubic 2-vertex connected graphs have a tour of length at most 4n/3-2/3

Oveis Gharan, Saberi & Singh

 $(1.5 - \epsilon)$ -approximation algorithm for graph-TSP.

- First improvement on Christofides

- Similar to Christofides but instead of starting with a MST they sample one from the solution of the Held-Karp relaxation
- Analysis involved and requires several novel ideas

Our Results

Theorem

A 1.461-approximation algorithm for graph-TSP.

Our Results

Theorem

A **1.461**-approximation algorithm for graph-TSP.

Based on techniques used by Frederickson & Ja'Ja'82 and Monmam, Munson & Pulleyblank'90

+ **novel use of matchings:** instead of only adding edges to make a graph Eulerian we allow for **removal of certain edges**

Our Results

Theorem

A **1.461**-approximation algorithm for graph-TSP.

Based on techniques used by Frederickson & Ja'Ja'82 and Monmam, Munson & Pulleyblank'90

+ **novel use of matchings:** instead of only adding edges to make a graph Eulerian we allow for **removal of certain edges**

Theorem

- $\bullet\,$ Subcubic 2-VC graphs have a tour of length at most 4n/3-2/3
- A **4**/**3**-approximation algorithm for subcubic/claw-free graphs (matching the integrality gap)

Christofides' Approach	Our Approach

Ola Svensson (EPFL)

Approximating Graphic TSP by Matchings

- 1 Find MST T = (V, E).
- Find Minimum Matching *M* of odd degree vertices.

- Find MST T = (V, E).
- Find Minimum Matching *M* of odd degree vertices.

- Find 2-VC subgraph G = (V, E).
- Sample perfect matching $M \subseteq E$ on the support.

- Find MST T = (V, E).
- Find Minimum Matching *M* of odd degree vertices.
- 3 Return $E \cup M$.

- Find 2-VC subgraph G = (V, E).
- Sample perfect matching $M \subseteq E$ on the support.

- Find MST T = (V, E).
- Find Minimum Matching *M* of odd degree vertices.
- 3 Return $E \cup M$.

- Find 2-VC subgraph G = (V, E).
- Sample perfect matching $M \subseteq E$ on the support.
- 3 Return $(E \cup M_{\bar{R}}) \setminus M_R$

Outline of Remaining Part

Theorem

Subcubic 2-VC graphs have a tour of length at most 4n/3 - 2/3

Held-Karp Relaxation

• Comments on General Case

Frederickson & Ja'Ja'82 and Monma, Munson & Pulleyblank'90

Thm: A 2-VC (cubic) graph G = (V, E) has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.

Frederickson & Ja'Ja'82 and Monma, Munson & Pulleyblank'90

Thm: A 2-VC (cubic) graph G = (V, E) has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.

() Sample perfect matching M so that each edge is taken with probability 1/3

Frederickson & Ja'Ja'82 and Monma, Munson & Pulleyblank'90

Thm: A 2-VC (cubic) graph G = (V, E) has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.

() Sample perfect matching M so that each edge is taken with probability 1/3

13 / 34

Frederickson & Ja'Ja'82 and Monma, Munson & Pulleyblank'90

Thm: A 2-VC (cubic) graph G = (V, E) has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.

- **(**) Sample perfect matching M so that each edge is taken with probability 1/3
- 2 Return graph with edge set $E \cup M$

Frederickson & Ja'Ja'82 and Monma, Munson & Pulleyblank'90

Thm: A 2-VC (cubic) graph G = (V, E) has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.

() Sample perfect matching M so that each edge is taken with probability 1/3

2 Return graph with edge set $E \cup M$

Frederickson & Ja'Ja'82 and Monma, Munson & Pulleyblank'90

Thm: A 2-VC (cubic) graph G = (V, E) has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.

- Sample perfect matching M so that each edge is taken with probability 1/3
- 2 Return graph with edge set $E \cup M$

Frederickson & Ja'Ja'82 and Monma, Munson & Pulleyblank'90

Thm: A 2-VC (cubic) graph G = (V, E) has a tour of size at most $\frac{4}{3}|\mathbf{E}|$.

• Sample perfect matching M so that each edge is taken with probability 1/3

② Return graph with edge set $E \cup M$

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph
- Same algorithm as before but return $(E \cup M_T) \setminus M_{\overline{T}}$

Ola Svensson (EPFL)

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph
- Same algorithm as before but return $(E \cup M_T) \setminus M_{\overline{T}}$

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph
- Same algorithm as before but return $(E \cup M_T) \setminus M_{\overline{T}}$

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph
- Same algorithm as before but return $(E \cup M_T) \setminus M_{\overline{T}}$

- Removing an edge from the matching will still result in even degree vertices
- If it stays connected we will again have a spanning Eulerian graph
- Same algorithm as before but return $(E \cup M_T) \setminus M_{\overline{T}}$

• Use structure of perfect matching to increase the set R of removable edges

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching
 - Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching
 - Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching
 - Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching
 - Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching
 - Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching
 - Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching
 - Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

- Use structure of perfect matching to increase the set R of removable edges
- Define a "removable pairing"
 - > Pair of edges: only one edge in each pair can occur in a matching
 - Graph obtained by removing removable edges such that at most one edge in each pair is removed is connected

• Same algorithm as before but return $(E \cup M_{\bar{R}}) \setminus M_R$.

• Same algorithm as before but return $(E \cup M_{\bar{R}}) \setminus M_R$.

Using Matchings to Remove Edges (Second Idea)

• Same algorithm as before but return $(E \cup M_{\bar{R}}) \setminus M_R$.

Using Matchings to Remove Edges (Second Idea)

• Same algorithm as before but return $(E \cup M_{\bar{R}}) \setminus M_R$.

Using Matchings to Remove Edges (Second Idea)

• Same algorithm as before but return $(E \cup M_{\bar{R}}) \setminus M_R$.

Outline of Remaining Part

Theorem

Subcubic 2-VC graphs have a tour of length at most 4n/3 - 2/3

Held-Karp Relaxation

• Comments on General Case

General Statement of What We Proved

Theorem

A 2-VC graph G = (V, E) with a removable pairing (R, P) has a tour of length at most $\frac{4}{3}|E| - \frac{2}{3}|R|$.

• Defining R large enough led to tight bound 4n/3 - 2/3 for subcubic graphs.

18 / 34

General Statement of What We Proved

Theorem

A 2-VC graph G = (V, E) with a removable pairing (R, P) has a tour of length at most $\frac{4}{3}|E| - \frac{2}{3}|R|$.

• Defining R large enough led to tight bound 4n/3 - 2/3 for subcubic graphs.

Problem with general graphs:

It find a large enough removable pairing is more involved

Held-Karp Relaxation (Definition)

- A variable x_e for each edge $e \in E$
 - intuiton: value 1 if e in tour and 0 otherwise

Held-Karp Relaxation (Definition)

- A variable x_e for each edge $e \in E$
 - intuiton: value 1 if e in tour and 0 otherwise

Held-Karp Relaxation (Definition)

• A variable x_e for each edge $e \in E$

intuiton: value 1 if e in tour and 0 otherwise

Held-Karp Relaxation (Useful Structure)

minimize
$$\sum_{e \in E} x_e$$

 $\sum_{e \in \delta(S)} x_e \ge 2 \quad \forall \emptyset \neq S \subset V$
 $x \ge 0$

- W.I.o.g. the graph is 2-VC
 - otherwise decompose instance

Held-Karp Relaxation (Useful Structure)

minimize
$$\sum_{e \in E} x_e$$

 $\sum_{e \in \delta(S)} x_e \ge 2 \quad \forall \emptyset \neq S \subset V$
 $x \ge 0$

- W.I.o.g. the graph is 2-VC
 - otherwise decompose instance
- The support $\{e: x_e > 0\}$ of an extreme point has size at most 2n 1
 - we can concentrate on very sparse graphs

1 Solve linear program to obtain x^* .

- **1** Solve linear program to obtain x^* .
- Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^{*}

- **1** Solve linear program to obtain x^* .
- Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^{*}

- **1** Solve linear program to obtain x^* .
- Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^{*}

- **1** Solve linear program to obtain x^* .
- Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^{*}

- **1** Solve linear program to obtain x^* .
- Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^{*}

- **1** Solve linear program to obtain x^* .
- Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^{*}

- **1** Solve linear program to obtain x^* .
- Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^{*}

- **1** Solve linear program to obtain x^* .
- 0 Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^*
- Steen a 2-VC graph of minimum cost

- **1** Solve linear program to obtain x^* .
- 0 Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^*
- Steen a 2-VC graph of minimum cost

- **1** Solve linear program to obtain x^* .
- 0 Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^*
- Extend DFS tree to a 2-VC graph of minimum cost

Linear constraints ensuring we pick enough red edges

- **1** Solve linear program to obtain x^* .
- 0 Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^*
- Extend DFS tree to a 2-VC graph of minimum cost

Linear constraints ensuring we pick enough red edges

60

- **1** Solve linear program to obtain x^* .
- 0 Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^*
- Extend DFS tree to a 2-VC graph of minimum cost

60

- **1** Solve linear program to obtain x^* .
- 0 Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^*
- Steen a 2-VC graph of minimum cost

Ola Svensson (EPFL)

Approximating Graphic TSP by Matchings

- **1** Solve linear program to obtain x^* .
- Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^{*}
- Extend DFS tree to a 2-VC graph of minimum cost
- Sample perfect matching and remove/add edges as before

Approximating Graphic TSP by Matchings

- **1** Solve linear program to obtain x^* .
- Build DFS tree by in every step choosing the heaviest possible edge with respect to x_e^{*}
- Extend DFS tree to a 2-VC graph of minimum cost
- Sample perfect matching and remove/add edges as before

 $\mathbb{E}[\#$ edges in tour] = $4n/3 - 2/3 + 2/3 \cdot c(\text{Extension})$

Approximating Graphic TSP by Matchings

$$\begin{array}{c} \label{eq:alpha} \hline \label{eq:alpha} & \\ \min inimize \ \sum_{e \in E} x_e \\ & \\ \sum_{e \in \delta(S)} x_e \geq 2 \qquad \forall \emptyset \neq S \subset V \\ & \\ & x \geq 0 \end{array}$$

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

• Simplifying assumption: cost of Held-Karp solution x^* is n.

Since

$$\sum_{\mathbf{e}\in\mathsf{E}} x^*_{\mathbf{e}} = \frac{\sum_{\mathbf{v}\in\mathsf{V}} x^*(\delta(\mathbf{v}))}{2} \qquad \text{and} \qquad x^*(\delta(\mathbf{v})) \geq 2$$

 $\mathbf{x}^*(\delta(\mathbf{v})) = 2$

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

• Any extremepoint corresponds to 2-VC graph (extended from the DFS)

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution
- Let the red edges have the same fractional values as from Held-Karp
 - This defines a fractional solution

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution
- Let the red edges have the same fractional values as from Held-Karp
 - This defines a fractional solution

The cost of fractional solution

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution
- Let the red edges have the same fractional values as from Held-Karp

24 / 34

This defines a fractional solution

• Selection of DFS $\Rightarrow x_t \ge x_{e_i}$

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution
- Let the red edges have the same fractional values as from Held-Karp
 - This defines a fractional solution

The cost of fractional solution

- Selection of DFS $\Rightarrow x_t \ge x_{e_i}$
- If cost is high, i.e., ∑x_{ei} − 1 ≫ 0
 ⇒ many red edges

- Any extremepoint corresponds to 2-VC graph (extended from the DFS)
- Bound cost by analyzing fractional solution
- Let the red edges have the same fractional values as from Held-Karp
 - This defines a fractional solution

The cost of fractional solution

- Selection of DFS $\Rightarrow x_t \ge x_{e_i}$
- If cost is high, i.e., ∑x_{ei} − 1 ≫ 0
 ⇒ many red edges
- But only 2n 1 (n 1) red edges in total \Rightarrow Not many vertices of high cost

• Maximum cost per red edge (at most *n* many)

• Maximum cost per red edge (at most *n* many)

- Cost of tour: $4n/3 + 2/3 \cdot 1/6n = (4/3 + 1/9)n$
- Cost of tour: $4n/3 + 2/3 \cdot 0.17n \approx 1.45n$

Final Result

Theorem

A 1.461-approximation algorithm for graph-TSP.

Final Result

Theorem

A 1.461-approximation algorithm for graph-TSP.

Final Result

Theorem A 1.461-approximation algorithm for graph-TSP.

Summary

- Novel use of matchings
 - allow us to remove edges leading to decreased cost
- Bridgeless subcubic graphs have a tour of size 4n/3 2/3
 - Tight analysis of Held-Karp for these graphs
- 1.461-approximation algorithm for graph-TSP
 - 13/9 analysis by Mucha'11

Summary

- Novel use of matchings
 - allow us to remove edges leading to decreased cost
- Bridgeless subcubic graphs have a tour of size 4n/3 2/3
 - Tight analysis of Held-Karp for these graphs
- 1.461-approximation algorithm for graph-TSP
 - 13/9 analysis by Mucha'11
- Generalizes to the TSP path problem on graphic metrices
 - ▶ 1.586-approximation improving on 5/3-approximation by Hoogeveen'91
 - Tight analysis for subcubic graphs

General Metrics

No progress for TSP yet but two recent papers

A Proof of the Boyd-Carr Conjecture (Schalekamp, Williamson, and Anke van Zuylen)

Tight analysis of cost of 2-matching vs Held-Karp Relaxation

Improving Christofides' Algorithm for the s-t Path TSP (An, Kleinberg, Shmoys)

1.62-approximation for general metrics improving upon 1.67-approximation

Conjectured Hardest Extreme Points

Schalekamp, Williamson, and Anke van Zuylen

Conjectured Hardest Extreme Points

Schalekamp, Williamson, and Anke van Zuylen

Conjectured Hardest Extreme Points

Schalekamp, Williamson, and Anke van Zuylen

Theorem

Half-integral solutions of graph-TSP have integrality gap $\leq 4/3$

• Shortest path metric on G(V, E) where distance of $\{u, v\} \in E$ is f(u) + f(v)

for some $f: V \mapsto \mathbb{R}^+$

• Shortest path metric on G(V, E) where distance of $\{u, v\} \in E$ is f(u) + f(v)

for some $f: V \mapsto \mathbb{R}^+$

• Shortest path metric on G(V, E) where distance of $\{u, v\} \in E$ is f(u) + f(v)

for some $f: V \mapsto \mathbb{R}^+$

• Shortest path metric on G(V, E) where distance of $\{u, v\} \in E$ is f(u) + f(v)

for some $f: V \mapsto \mathbb{R}^+$

• Shortest path metric on G(V, E) where distance of $\{u, v\} \in E$ is f(u) + f(v)

for some $f: V \mapsto \mathbb{R}^+$

• Shortest path metric on G(V, E) where distance of $\{u, v\} \in E$ is f(u) + f(v)

for some $f: V \mapsto \mathbb{R}^+$

graph-TSP if f is constant

Open Problems

- Find better removable pairing and analysis
 - If LP = n is there always a 2 VC subgraph of degree at most 3?
- Removable pairings straight forward to generalize to any metric
 - However, finding a large enough one remains open
- One idea is to sample an extremepoint, for example:
 - Sample two spanning trees with marginals x_e such that all edges are removable ⇒ 4/3-approximation algorithm.

Thank You!

