
Approximating Graphic TSP by Matchings

Tobias Mömke1 and Ola Svensson2

1KTH Royal Institute of Technology
Sweden

2EPFL
Switzerland

October 19, 2011

Ola Svensson (EPFL) Approximating Graphic TSP by Matchings October 19, 2011 1 / 34

Ola Svensson
Text Box
November 29, 2011



© comersis.com

Stockholm

Amsterdam

Lausanne
Paris

Beirut

Tel Aviv

Teheran

Traveling Salesman Problem
Given

n cities

distance d(u, v) between cities u and v

Find shortest tour that visits each city once

Ola Svensson (EPFL) Approximating Graphic TSP by Matchings October 19, 2011 2 / 34



© comersis.com

Stockholm

Amsterdam

Lausanne
Paris

Beirut

Tel Aviv

Teheran

1437 km

Traveling Salesman Problem
Given

n cities

distance d(u, v) between cities u and v

Find shortest tour that visits each city once

Ola Svensson (EPFL) Approximating Graphic TSP by Matchings October 19, 2011 3 / 34



© comersis.com

Stockholm

Amsterdam

Lausanne
Paris

Beirut

Tel Aviv

Teheran

1437 km

506 km

538 km

2710 km

203 km

1154 km

6237 km

12785 km

Traveling Salesman Problem
Given

n cities

distance d(u, v) between cities u and v

Find shortest tour that visits each city once

Ola Svensson (EPFL) Approximating Graphic TSP by Matchings October 19, 2011 4 / 34



Classic Problem both in Practice and Theory

1800’s

William Rowan Hamilton and Thomas Penyngton Kirkman
studied related mathematical problems.

Hamilton Kirkman

http://www.tsp.gatech.edu
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Classic Problem both in Practice and Theory

1800’s 1950’s

49 cities

G. Dantzig, R. Fulkerson, and S. Johnson publish a method
for solving the TSP and solve a 49-city instance to optimality.

http://www.tsp.gatech.edu
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Classic Problem both in Practice and Theory

1800’s 70’s1950’s

49 cities 120 cities

Groetschel (1977) found the optimal
tour of 120 cities from what was
then West Germany.

http://www.tsp.gatech.edu
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Classic Problem both in Practice and Theory

1800’s 80’s70’s1950’s

49 cities 120 cities 2392

http://www.tsp.gatech.edu
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Classic Problem both in Practice and Theory

1800’s 80’s 90’s70’s1950’s

49 cities 120 cities 2392 13509

http://www.tsp.gatech.edu
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Classic Problem both in Practice and Theory

1800’s 80’s 00’s90’s70’s1950’s

49 cities 120 cities 2392 13509 24978

Applegate, Bixby, Chvtal, Cook, and
Helsgaun (2004) found the optimal
tour of 24,978 cities in Sweden.

Warning: Only 9 million people in
Sweden so 360 people in average per
“city”.

http://www.tsp.gatech.edu
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Classic Problem both in Practice and Theory

1800’s 80’s 00’s90’s70’s1950’s

49 cities 120 cities 2392 13509 24978

Christofides

1.5-approximation algorithm for metric distances.

Held-Karp

Heuristic for calculating a lower bound on a tour.

Coincides with the value of a linear program known as

Held-Karp or Subtour Elimination relaxation.
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Classic Problem both in Practice and Theory

1800’s 80’s 00’s90’s70’s1950’s

49 cities 120 cities 2392 13509 24978

S. Arora and J. S. B. Mitchell independently

PTAS for Eucledian TSP.
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Classic Problem both in Practice and Theory

1800’s 80’s 00’s90’s70’s1950’s

49 cities 120 cities 2392 13509 24978

S. Arora and J. S. B. Mitchell independently

PTAS for Eucledian TSP.

C. H. Papadimitriou and S. Vempala

NP-hard to approximate metric within 220/219.
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Classic Problem both in Practice and Theory

1800’s 80’s 00’s90’s70’s1950’s

49 cities 120 cities 2392 13509 24978

Major open problem to understand approximability of metric TSP

NP-hard to approximate better than 220/219.

Christofides’ 1.5-approximation algorithm still best.

Held-Karp relaxation conjectured to have integrality gap of 4/3.
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Graphic TSP (graph-TSP)

Given unweighted undirected graph G = (V ,E )

Find shortest tour with respect to distances

d(u, v) = shortest path between u and v .
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Graphic TSP (graph-TSP)

Given unweighted undirected graph G = (V ,E )

Find shortest tour with respect to distances

d(u, v) = shortest path between u and v .

Length = 4n/3−1

1 1 1
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Graphic TSP (graph-TSP)

Given unweighted undirected graph G = (V ,E )

Find shortest tour with respect to distances

d(u, v) = shortest path between u and v .

Length = 4n/3−1

1 1 1

4

#edges = 4n/3−1
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Graphic TSP (graph-TSP)

Given unweighted undirected graph G = (V ,E )

Find spanning Eulerian multigraph with minimum #edges

Length = 4n/3−1

1 1 1

4

#edges = 4n/3−1
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Important Special Case

Natural problem to find smallest Eulerian subgraph

I studied for more than 2 decades.

Easier to study than general metrics but hopefully shed light on them

I Still APX-hard

I Worst instances known for Held-Karp are graphic

I Until recently, Christofides best approximation algorithm
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Recent Advancements on graph-TSP

2000

Major open problem to understand approximability of metric TSP

NP-hard to approximate better than 220/219.

Christofides’ 1.5-approximation algorithm still best.

Held-Karp relaxation conjectured to have integrality gap of 4/3.
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Recent Advancements on graph-TSP

20052000

Gamarnik, Lewenstein & Sviridenko

1.487-approximation algorithm for cubic 3-edge connected graphs.
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Recent Advancements on graph-TSP

201020052000

Boyd, Sitters, van der Star & Stougie

4/3-approximation algorithm for cubic graphs

7/5-approximation algorithm for subcubic graphs

Conjecture

Subcubic 2-vertex connected graphs have a tour of length at
most 4n/3− 2/3
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Recent Advancements on graph-TSP

201020052000

Oveis Gharan, Saberi & Singh

(1.5− ε)-approximation algorithm for graph-TSP.

- First improvement on Christofides

- Similar to Christofides but instead of starting with a MST they
sample one from the solution of the Held-Karp relaxation

- Analysis involved and requires several novel ideas
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Our Results

Theorem

A 1.461-approximation algorithm for graph-TSP.

Based on techniques used by Frederickson & Ja’Ja’82 and Monmam, Munson & Pulleyblank’90

+ novel use of matchings: instead of only adding edges to make a graph

Eulerian we allow for removal of certain edges

Theorem

Subcubic 2-VC graphs have a tour of length at most 4n/3− 2/3

A 4/3-approximation algorithm for subcubic/claw-free graphs
(matching the integrality gap)
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Christofides’ Approach

1 Find MST T = (V ,E ).

2 Find Minimum Matching M of
odd degree vertices.

3 Return E ∪M.

Our Approach

1 Find 2-VC subgraph G = (V ,E ).

2 Sample perfect matching M ⊆ E
on the support.

3 Return (E ∪MR̄) \MR
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Christofides’ Approach

1 Find MST T = (V ,E ).

2 Find Minimum Matching M of
odd degree vertices.

3 Return E ∪M.

2

2 V alue = 9

Our Approach

1 Find 2-VC subgraph G = (V ,E ).

2 Sample perfect matching M ⊆ E
on the support.

3 Return (E ∪MR̄) \MR

V alue = 8
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Outline of Remaining Part

Theorem

Subcubic 2-VC graphs have a tour of length at most 4n/3− 2/3

Held-Karp Relaxation

Comments on General Case
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Eulerian subgraph of 2-VC graph
Frederickson & Ja’Ja’82 and Monma, Munson & Pulleyblank’90

Thm: A 2-VC (cubic) graph G = (V ,E ) has a tour of size at most 4
3 |E|.

1 Sample perfect matching M so that each edge is taken with probability 1/3

2 Return graph with edge set E ∪M

Input
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Using Matchings to Remove Edges (First Idea)

Removing an edge from the matching will still result in even degree vertices

If it stays connected we will again have a spanning Eulerian graph

Same algorithm as before but return (E ∪MT ) \MT̄

Input
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Using Matchings to Remove Edges (First Idea)

Removing an edge from the matching will still result in even degree vertices

If it stays connected we will again have a spanning Eulerian graph

Same algorithm as before but return (E ∪MT ) \MT̄

A 2-VC subcubic graph G = (V ,E ) has a tour of size at most 2
3 |E|+ 2

3 (n− 1).

Input (E∪ (E∪ (E∪MT )\MT̄ MT )\MT̄ MT )\MT̄
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Using Matchings to Remove Edges (Second Idea)

Use structure of perfect matching to increase the set R of removable edges

Define a “removable pairing”

I Pair of edges: only one edge in each pair can occur in a matching

I Graph obtained by removing removable edges such that at most one
edge in each pair is removed is connected
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Using Matchings to Remove Edges (Second Idea)

Use structure of perfect matching to increase the set R of removable edges

Define a “removable pairing”

I Pair of edges: only one edge in each pair can occur in a matching

I Graph obtained by removing removable edges such that at most one
edge in each pair is removed is connected

R contains all back-edges and
paired tree-edges

If G has degree at most 3 then
size of R is at least 2b− 1
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Using Matchings to Remove Edges (Second Idea)

Same algorithm as before but return (E ∪MR̄) \MR .

Theorem

A 2-VC subcubic graph G = (V ,E ) has a tour of size at most 4
3n− 2

3 .

Input
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Outline of Remaining Part

Theorem

Subcubic 2-VC graphs have a tour of length at most 4n/3− 2/3

Held-Karp Relaxation

Comments on General Case
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General Statement of What We Proved

Theorem

A 2-VC graph G = (V ,E ) with a removable pairing (R,P) has a tour of length
at most 4

3 |E | − 2
3 |R|.

Defining R large enough led to tight bound 4n/3− 2/3 for subcubic graphs.

Problem with general graphs:

1 To find a large enough removable pairing is more involved

vs
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Held-Karp Relaxation (Definition)
A variable xe for each edge e ∈ E

I intuiton: value 1 if e in tour and 0 otherwise

minimize
∑

e∈E
xe

∑

e∈δ(S)

xe ≥ 2 ∀∅ 6= S ⊂ V

x ≥ 0

S
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Held-Karp Relaxation (Useful Structure)

minimize
∑

e∈E

xe

∑

e∈δ(S)

xe ≥ 2 ∀∅ 6= S ⊂ V

x ≥ 0

W.l.o.g. the graph is 2-VC

I otherwise decompose instance

The support {e : xe > 0} of an extreme point has size at most 2n − 1

I we can concentrate on very sparse graphs
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Finding a Removable Pairing for General Graphs

1 Solve linear program to obtain x∗.

2 Build DFS tree by in every step choosing the heaviest possible edge with
respect to x∗e

3 Extend DFS tree to a 2-VC graph of minimum cost

4 Sample perfect matching and remove/add edges as before

E[#edges in tour] = 4n/3− 2/3 + 2/3 · c(Extension)

This is an integral linear program!
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Finding a Removable Pairing for General Graphs

1 Solve linear program to obtain x∗.

2 Build DFS tree by in every step choosing the heaviest possible edge with
respect to x∗e

3 Extend DFS tree to a 2-VC graph of minimum cost

4 Sample perfect matching and remove/add edges as before

E[#edges in tour] = 4n/3− 2/3 + 2/3 · c(Extension)

Linear constraints ensuring we
pick enough red edges

Cost of a vertex:
sum of red edges −1

This is an integral linear program!
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Overview of Algorithm for General Graphs

1
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Overview of Algorithm for General Graphs

1

minimize
∑

e∈E
xe

∑

e∈δ(S)
xe ≥ 2 ∀∅ 6= S ⊂ V

x ≥ 0

2
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Overview of Algorithm for General Graphs

1

minimize
∑

e∈E
xe

∑

e∈δ(S)
xe ≥ 2 ∀∅ 6= S ⊂ V

x ≥ 0

2

3 4 5

Cost =
4n
3 − 2

3+

2
3 · c(extension)
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Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

Simplifying assumption: cost of Held-Karp solution x∗ is n.

Since

∑

e∈E
x∗e =

∑
v∈V x∗(δ(v))

2
and x∗(δ(v)) ≥ 2

x∗(δ(v)) = 2
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Analyzing the Cost of Extending DFS to 2-VC Graph (1/2)

Any extremepoint corresponds to 2-VC graph
(extended from the DFS)

Bound cost by analyzing fractional solution

Let the red edges have the same fractional values
as from Held-Karp

I This defines a fractional solution
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Any extremepoint corresponds to 2-VC graph
(extended from the DFS)

Bound cost by analyzing fractional solution

Let the red edges have the same fractional values
as from Held-Karp

I This defines a fractional solution

The cost of fractional solution

xe1 xe2 xek

xt

. . .

Selection of DFS ⇒ xt ≥ xei

If cost is high, i.e.,
∑

xei − 1� 0
⇒ many red edges

But only 2n − 1− (n − 1) red edges in total
⇒ Not many vertices of high cost
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Analyzing the Cost of Extending DFS to 2-VC Graph (2/2)

xe1 xe2 xek

xt

. . .

Cost is
∑

xei − 1

and
∑

xei ≤ x∗(δ(v))− xt

⇒ xt ≤ 1− Cost and
∑

xei = Cost + 1

Selection of DFS ⇒ xei ≤ xt ≤ 1− Cost

number of red edges to vertex at least

⌈
Cost + 1

1− Cost

⌉
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Analyzing the Cost of Extending DFS to 2-VC Graph (2/2)

Maximum cost per red edge (at most n many)

� � � � � � � � � � � � � � �� � � �� � � �� � � � � 	 
 � � �  � � �

Cost of tour: 4n/3 + 2/3 · 1/6n = (4/3 + 1/9)n

Cost of tour: 4n/3 + 2/3 · 0.17n ≈ 1.45n

Ola Svensson (EPFL) Approximating Graphic TSP by Matchings October 19, 2011 26 / 34



Analyzing the Cost of Extending DFS to 2-VC Graph (2/2)

Maximum cost per red edge (at most n many)

� � � � � � � � � � � � � � �� � � �� � � �� � � � � 	 
 � � �  � � �

Cost of tour: 4n/3 + 2/3 · 1/6n = (4/3 + 1/9)n

Cost of tour: 4n/3 + 2/3 · 0.17n ≈ 1.45n

Ola Svensson (EPFL) Approximating Graphic TSP by Matchings October 19, 2011 26 / 34



Final Result
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OPTLP (G)/n

Algorithm 1

Christofides

Theorem
A 1.461-approximation algorithm for graph-TSP.
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Summary

Novel use of matchings
I allow us to remove edges leading to decreased cost

Bridgeless subcubic graphs have a tour of size 4n/3− 2/3
I Tight analysis of Held-Karp for these graphs

1.461-approximation algorithm for graph-TSP
I 13/9 analysis by Mucha’11

Generalizes to the TSP path problem on graphic metrices

I 1.586-approximation improving on 5/3-approximation by Hoogeveen’91

I Tight analysis for subcubic graphs
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General Metrics
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No progress for TSP yet but two recent papers

A Proof of the Boyd-Carr Conjecture (Schalekamp, Williamson, and Anke van Zuylen)

Tight analysis of cost of 2-matching vs Held-Karp Relaxation

Improving Christofides’ Algorithm for the s-t Path TSP (An, Kleinberg, Shmoys)

1.62-approximation for general metrics improving upon 1.67-approximation
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Conjectured Hardest Extreme Points
Schalekamp, Williamson, and Anke van Zuylen

Theorem

Half-integral solutions of graph-TSP have integrality gap ≤ 4/3
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Somewhere in between graph-TSP and General Metrics

Shortest path metric on G (V ,E ) where distance of {u, v} ∈ E is f (u) + f (v)

for some f : V 7→ R+

graph-TSP if f is constant
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Open Problems

Find better removable pairing and analysis

I If LP = n is there always a 2− VC subgraph of degree at most 3?

Removable pairings straight forward to generalize to any metric

I However, finding a large enough one remains open

One idea is to sample an extremepoint, for example:

I Sample two spanning trees with marginals xe such that all edges are
removable ⇒ 4/3-approximation algorithm.
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