An Introduction to Lift-And-Project Systems

Konstantinos Georgiou Dept. of Combinatorics and Optimization University of Waterloo

Lift-And-Project in a Nutshell

High level: Derive systematically a hierarchy of tighter & tighter LP (SDP) relaxations.

The Realm of Lift-and-Project Systems

Algorithmic aspects

- Level-n tightening gives Integral hull.
- Level-r tightening optimizable in time $n^{O(r)}$.

The Lovász-Schrijver (LS) LP system

Our toy example

Stable Set Relaxation on input G=(V,E) $\min \sum_{i \in V} x_i$ $x_i + x_j \le 1, \forall ij \in E$ $x_i \in [0,1]$

Level-1 derivation rule:

$$(x_i + x_j)x_k \le x_k$$
$$(x_i + x_j)(1 - x_k) \le 1 - x_k$$
$$x_k \le x_k^2$$

Any conical combination of the above

New linear constraints

Definition: Level-1 LS tightening

Original relaxation

+ new linear constraints

The LS System in Action

The LS System – Subsequent Tightenings

New linear constraints

Definition: The level-r tightening is the relaxation we obtain by applying the derivation rule on the level-(r-1) relaxation.

The LS System (Derivation Rule Made Formal)

Our toy example

Stable Set **Cone K** on input G=(V,E)

$$x_{i} + x_{j} \leq x_{0}, \forall ij \in E$$
$$x_{i} \in [0, x_{0}]$$
$$x = (x_{0}, x_{1}, \dots, x_{n}) \in \Re^{\binom{V}{1}}$$

Level-1 derivation rule: $(x_i + x_j)x_k \le x_k$ $(x_i + x_j)(1 - x_k) \le 1 - x_k$ $x_k \le x_k^2$ Any conical combination of the above New linear constraints

Constraints on the lifted space Introduce $\mathcal{Y} \in \mathfrak{R}^{1 + \binom{V}{1} + \binom{V}{2}}$ with $\mathcal{Y}_{\{i,k\}}$ simulating $x_i x_k$ {2} {1} \oslash $\{n\}$ $\begin{array}{c} \begin{array}{c} 1 \\ y_{\{1\}} \\ y_{\{2\}} \\ y_{\{1\}} \\ y_{\{1\}} \\ y_{\{1\}} \\ y_{\{1,2\}} \\ \vdots \\ \vdots \\ y_{\{2\}} \\ y_{\{1,2\}} \\ y_{\{2\}} \\ \vdots \\ y_{\{2,n\}} \\ y_{\{2,n\}} \\ y_{\{2,n\}} \\ \vdots \\ y_{\{n\}} \\ y_{\{1,n\}} \\ y_{\{2,n\}} \\ y_{\{2,n\}} \\ y_{\{n\}} \\ y_{\{2,n\}} \\ y_{\{n\}} \\ y_{\{n\}$ $M^{(y)}$ = $x = Me_0 = \operatorname{diag}(M) \in K$ $(x_i + x_j)x_2 \leq x_0x_2 \approx y_{\{i,2\}} + y_{\{j,2\}} \leq y_{\{2\}} \Leftrightarrow Me_2 \in K$ $(x_{i} + x_{i})(x_{0} - x_{2}) \leq x_{0}(x_{0} - x_{2}) \approx M(e_{0} - e_{2}) \in K$

A Remarkable Yet Simple Implication

$$Me_0 = \operatorname{diag}(M) \in K$$
$$Mi_{jj} := y_{\{i,j\}} \qquad Me_k \in K$$
$$M(e_0 - e_k) \in K$$

$$x \in N(K) \Leftrightarrow \exists y \in \Re^{1 + \binom{n}{1} + \binom{n}{2}} : M^{(y)}$$

satisfying the above

Remarkable Implication:

If $x \in N(K)$ then for every index t, x can be written as convex combination of vectors in K that are integral on t

Towards Proof of Convergence

Remarkable Implication: If $x \in N(K)$ then for every index t, x can be written as convex combination of vectors in the cone K, integral on t

Proof: (t={2})

$$x = \begin{pmatrix} 1 \\ y_{\{1\}} \\ y_{\{2\}} \\ \vdots \\ y_{\{2\}} \\ \vdots \\ y_{\{k\}} \\ \vdots \\ y_{\{k\}} \\ \vdots \\ y_{\{n\}} \end{pmatrix} = \begin{pmatrix} y_{\{2\}} \\ y_{\{1,2\}} \\ y_{\{1\}} - y_{\{1,2\}} \\ 0 \\ \vdots \\ y_{\{1\}} - y_{\{1,2\}} \\ 0 \\ \vdots \\ y_{\{2\}} - y_{\{k,2\}} \\ \vdots \\ y_{\{2\}} - y_{\{k,2\}} \\ \vdots \\ y_{\{n\}} - y_{\{n,2\}} \end{pmatrix}$$

$$\mathcal{O} \{1\} \{2\} \cdots \{n\}$$

$$\begin{pmatrix} 1 & y_{\{1\}} & y_{\{2\}} & \cdots & y_{\{n\}} \\ y_{\{1\}} & y_{\{1\}} & y_{\{1,2\}} & \cdots & y_{\{1,n\}} \\ y_{\{2\}} & y_{\{1,2\}} & y_{\{2,n\}} & \cdots & y_{\{2,n\}} \\ \vdots & \vdots & \vdots & \vdots \\ y_{\{n\}} & y_{\{1,n\}} & y_{\{2,n\}} & \cdots & y_{\{n\}} \end{pmatrix} \{2\}$$

$$x = Me_{2} + M(e_{0} - e_{2})$$

= $y_{\{2\}} \Big| \frac{1}{y_{\{2\}}} Me_{2} \Big| + (1 - y_{\{2\}}) \Big| \frac{1}{1 - y_{\{2\}}} M(e_{0} - e_{2}) \Big|$

And ... the Proof of Convergence

And ... the Proof of Convergence (more formally)

Claim: Let $x \in N^r(K)$. Then, for every **SEQUENCE** $(t_1, \overline{t_2}, ..., t_r)$ *x* can be written as convex combination of vectors in *K* that are integral in $\{t_1, t_2, ..., t_r\}$.

Corollary: The level-n relaxation gives the integral hull

Corollary: The level-r relaxation satisfies all constraints of support at most r.

Utilizing/Fooling the LS System

Combinatorial Problem	Approximation	Level
Densest-k- Subgraph [BCCFV10]	$n^{rac{1}{4}+arepsilon}$	$\frac{1}{\varepsilon}$

& who knows what else ...

Combinatorial Problem	Integrality gap	Level
Vertex Cover [STT07]	2 - <i>ε</i>	Θ (<i>n</i>)
Max-Cut [STT07]	2 - <i>ε</i>	Θ (<i>n</i>)

& many rank lower bounds

The Realm of Lift-and-Project Systems

The Lovász-Schrijver (LS+) SDP system

$$M_{ij}^{(y)} = y_{\{i,j\}} = x_i x_j$$

	${\mathcal Y}_{\varnothing}$	${\mathcal Y}_{\{1\}}$	${\mathcal Y}_{\{2\}}$	• • •	${\mathcal Y}_{\{n\}}$
	${\mathcal Y}_{\{1\}}$	${\mathcal Y}_{\{1\}}$	${\cal Y}_{\{1,2\}}$	• • •	$\mathcal{Y}_{\{1,n\}}$
$M^{(y)}$ =	${\mathcal Y}_{\{2\}}$	$\mathcal{Y}_{\{1,2\}}$	${\mathcal Y}_{\{2\}}$	•••	$\mathcal{Y}_{\{2,n\}}$
	• •	• •	• •	••••	• •
	${\cal Y}_{\{n\}}$	$\mathcal{Y}_{\{1,n\}}$	$\mathcal{Y}_{\{2,n\}}$	•••	${\mathcal Y}_{\{n\}}$

is rank T, positive semidefinite (PSD)

Algorithmic aspects of LS+

- Convergence
- Level-t utilizable in time $n^{O(t)}$
- Constant level tightenings derive celebrated relaxations, e.g. [GW95], [ARV04]

Utilizing/Fooling the LS+ System

Combinatorial Problem	Approximation	Level
Max-Cut [GW95]	1.139	1
Sparsest Cut [ARV04]	$O\left(\sqrt{\log n}\right)$	3

& who knows what else ...

Combinatorial Problem	Integrality gap	Level
Vertex Cover [STT07]	$\frac{7}{6}$	$\Theta(n)$
Vertex Cover [GMPT07]	2 - <i>ε</i>	$\Omega\left(\sqrt{\frac{\log n}{\log \log n}}\right)$
Max-k-XOR [BOGHMT06]	2 - <i>ε</i>	$\Theta(n)$
Hypegraph Vertex Cover [AAT05]	k - 1 - e	Θ (<i>n</i>)
Hypegraph Vertex Cover [Tou05]	k – ε	$\Omega\left(\log\log n\right)$
Set Cover [AAT05]	$(1 - \varepsilon) \ln n$	$\Theta(n)$
Independent Set (rand instances) [FK03]	$\Theta\left(\frac{\sqrt{n}}{2^{r/2}\log n}\right)$	r

Deriving the GW SDP for Max-Cut

The Realm of Lift-and-Project Systems

The Sherali-Adams (SA) LP system

The SA System (Derivation Rule Made Formal)

Our toy example Stable Set Cone K on input G=(V,E) $x_i + x_j \le x_0, \forall ij \in E$ $x_i \in [0, x_0]$ $x = (x_0, x_1, ..., x_n) \in \Re^{\binom{V}{1}}$

Constraints on the lifted space
Introduce
$$y \in \Re^{\sum_{i \le r+1} \binom{n}{t}}$$
 with y_A simulating $\prod_{i \in A} x_i$

$$M^{(y)} = \left(\begin{array}{c} 0 & \binom{n}{1} & \binom{n}{2} & A & \cdots \begin{pmatrix} n \\ r \end{pmatrix} \\ \hline & & & & & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{1} & \binom{n}{2} & A & \cdots \begin{pmatrix} n \\ r \end{pmatrix} \\ \hline & & & & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{1} & \binom{n}{2} & A & \cdots \begin{pmatrix} n \\ r \end{pmatrix} \\ \hline & & & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{1} & \binom{n}{2} & A & \cdots \begin{pmatrix} n \\ r \end{pmatrix} \\ \hline & & & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{1} & \binom{n}{2} & A & \cdots \begin{pmatrix} n \\ r \end{pmatrix} \\ \hline & & & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{1} & \binom{n}{2} & A & \cdots \begin{pmatrix} n \\ r \end{pmatrix} \\ \hline & & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{1} & \binom{n}{2} & A & \cdots \begin{pmatrix} n \\ r \end{pmatrix} \\ \hline & & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{1} & \binom{n}{2} & A & \cdots \begin{pmatrix} n \\ r \end{pmatrix} \\ \hline & & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{1} & \binom{n}{2} & A & \cdots \begin{pmatrix} n \\ r \end{pmatrix} \\ \hline & & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{1} & \binom{n}{2} & A & \cdots \begin{pmatrix} n \\ r \end{pmatrix} \\ \hline & & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \hline & & \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} \\ \end{array} \right) = \left(\begin{array}{c} 0 & \binom{n}{2} & \binom{n}{2} & \binom{n}{2} & \binom{n}{2}$$

Claim: Level-r SA relaxation associates every subset *A*, of size at most **r**, with a distribution of 0-1 assignments *D(A)* such that

- Consistency: *D(A)* and *D(B)* agree on the marginals.
- Feasibility: Assignments in **D(A)** are locally feasible.

Proof: What is
$$D(A)$$
?
 $a \in \{0,1\}^A$
 $N \coloneqq \{i : a(i) = 0\}$
 $Y \bowtie Y \coloneqq \{i : a(i) = 1\}$
 $Pr_{D(A)}[a] \coloneqq \sum_{R \subseteq N} (-1)^{|R|} y_{R \cup Y}$

Claim: Level-r SA relaxation associates every subset A, of size at most \mathbf{r} , with a distribution of 0-1 assignments D(A) such that

- Consistency: *D(A)* and *D(B)* agree on the marginals.
- Feasibility: Assignments in **D(A)** are locally feasible.

Proof: What is
$$D(A)$$
?

$$A \in \{0,1\}^{A}$$

$$N \coloneqq \{i : a(i) = 0\}$$

$$Y \coloneqq \{i : a(i) = 1\}$$

$$Pr_{D(A)}[a] \coloneqq \sum_{R \subseteq N} (-1)^{|R|} y_{R \cup Y}$$

$$Z_{Y,N}$$

$$Z_{Y,N}$$

$$Y \coloneqq \{i : a(i) = 1\}$$

$$P(Y,N) \coloneqq \prod_{i \in Y} x_{i} \prod_{i \in N} (1-x_{i})$$

Is really D(A) a distribution? $z_{Y,N} \ge 0$

 $x \ge 0$ valid for K $P(Y, N) \mapsto \sum_{R \subseteq N} (-1)^{|R|} M^{(y)} e_{R \cup Y} \in K$

Is really **D(A)** a distribution?
$$\sum_{Y,N\subseteq A} z_{Y,N} = 1$$

Claim: Level-r SA relaxation associates every subset A, of size at most \mathbf{r} , with a distribution of 0-1 assignments D(A) such that

- Consistency: *D(A)* and *D(B)* agree on the marginals.
- Feasibility: Assignments in **D**(A) are locally feasible.

Local Consistency & Feasibility

$$A \rightarrow Y \rightarrow B = a \in \{0,1\}^{A}$$

$$N \coloneqq \{i : a(i) = 0\}$$

$$Y \coloneqq \{i : a(i) = 1\}$$

$$Pr_{D(A)}[a] = \sum_{R \subseteq N} (-1)^{|R|} y_{R \cup Y} \coloneqq z_{Y,N}$$

$$Y \coloneqq \{i : a(i) = 1\}$$

$$Pr_{D(B)}[a] = Pr_{D(A)}[a]$$

$$\Pr_{D(B)}[a] = \sum_{Y',N' \subseteq B \setminus A} z_{Y \cup Y',N \cup N'} = z_{Y,N}^{A \in to the previous}$$

Due

D(A) defines the

convex combination

Feasibility:

Claim: Let $x \in S^r(K)$ Then, for every **<u>SET</u>** $A = \{t_1, t_2, ..., t_r\}$

x can be written as convex combination of vectors in *K* that are integral in $\{t_1, t_2, ..., t_r\}$.

Solving Problems of Bounded Treewidth

Our toy example

Stable Set Relaxation on input G=(V,E)

G=(V,E) of treewidth r

- Union of bags (of size ≤r) is V
- vertices of every edge, in at least one bag
- Bags containing any vertex form one connected component.

Claim: Level-r SA tightening solves problem exactly

Theorem ([WJ04]): Level-r SA LP solves exactly any polytope of treewidth r.

Utilizing/Fooling the SA LP System

Combinatorial Problem	Approximation	Level
Max-Cut (dense graphs) [FdIVM07]	1+ <i>ε</i>	$O\left(\begin{array}{c} \log \frac{1}{\varepsilon} \\ \varepsilon \\ \varepsilon \end{array} \right)$
Vertex Cover (planar graphs) [MM09]	1+ <i>ε</i>	$O\!\!\left(rac{1}{arepsilon} ight)$
Independent Set (planar graphs) [MM09	1+ <i>ε</i>	$O\!\!\left(rac{1}{arepsilon} ight)$
Max Min Allocation [BCG09]	n^{ε}	$O\!\!\left(rac{1}{arepsilon} ight)$
Sparsest Cut (treewidth r) [CKR10]	$2^{2^{r}}$	O(r)

Combinatorial Problem	Integrality gap	Level
Vertex Cover [CMM09]	2 - <i>ε</i>	$\Omega\left(n^{\delta} ight)$
Max Cut [CMM09]	2 - <i>ε</i>	$\Omega\left(n^{\delta} ight)$
Unique Games [CMM09]	$1 - \varepsilon vs \gamma$	$\Omega\left(n^{\delta} ight)$
Max Acyclic Subgraph [CMM09]	2 – <i>ε</i>	$\Omega\left(n^{\delta} ight)$
Sparsest Cut [CMM09]	$\Omega\left(\sqrt{\frac{\log n}{(\log r + \log \log n)}}\right)$	r
Knapsack [KMN11]	2 - <i>ε</i>	Θ (<i>n</i>)

The Realm of lift-and-project Systems

The Notorious Sherali-Adams SDP (SA+) System

The level-r **SA+** SDP relaxation: • Start with your favorite 0-1 relaxation.

- - Impose level-r SA linear constraints.
 - Require low level PSDness.

Utilizing/Fooling the SA+ System

Combinatorial Problem	Approximation	Level
Max CSPs [Rag08]	OPT	<i>O</i> (1)
Max Cut (random dense graphs) [AU03]	$1 + \Theta\left(\frac{1}{r}\right)$	r

... and I am sure, more are coming.

Combinatorial Problem	Integrality gap	Level
Max Cut [KS09]	1.139	$\Omega\left(\log^{\frac{1}{6}}\log\log n\right)$
Some Max CSPs [BGMT11]	tight	$\Theta(n)$
Unique Games [RS09]	$1 - \varepsilon vs \gamma$	$\Omega\left(\log^{\frac{1}{4}}\log n\right)$
Quadratic Programming [BM10]	$\Omega\left(\log n\right)$	$\Omega\left(n^{\delta} ight)$
MaxCut Gain [BM10]	Ω (1)	Ω (1)
Vertex Cover [BCGM11]	2 – <i>ε</i>	6

The Realm of lift-and-project Systems

The Renowned Lasserre System

An Application of the Lasserre System

Utilizing/Fooling the Lasserre System

Combinatorial Problem	Approximation	Level	
Knapsack [KMN11]	$1 + \frac{1}{r}$	$O(r^2)$	
Coloring (3 colorable graphs) [Chl07]	$O(n^{0.2072})$	<i>O</i> (1)	
Independent Set (3-uniform hypergraph with solution rn) [CS08]	abs $O(n^{r^2})$	$O\left(\frac{1}{r^2}\right)$	
2-CSPs [BRS11]	1+ ε	$\frac{1}{\operatorname{poly}(\varepsilon)}$	
Directed Steiner Tree [Rot11]	$O(\log^3 R)$	$\log R $	

... new exciting stuff to be presented shortly!

Combinatorial Problem	Integrality gap	Level
Vertex Cover [Sch08]	$\frac{7}{6}$	$\Theta(n)$
Vertex Cover [Tul09]	1.36	$\Omega\left(n^{\delta} ight)$
Max-k-XOR [Sch08]	2 - <i>ε</i>	$\Theta(n)$
Max-k-CSPs [Toul09]	$\frac{2^k}{2k} - \mathcal{E}$	$\Theta(n)$

... and try if you dare to show a level-2 tight integrality gap for any problem with hard constraints.

