
An Introduction to 
Lift-And-Project Systems

Konstantinos Georgiou
Dept. of Combinatorics and Optimization

University of Waterloo



Lift-And-Project in a Nutshell 

  Derive systematically a hierarchy of tighter & tighter 
  LP (SDP) relaxations.

Integral 
Hull

Integral 
Hull

Integral 
Hull

Integral 
Hull

…

High dimensional space

lift
ing projection

Integral 
Hull

High level:

LP relaxation Level-1 tightening Level-2 tightening Level-r tightening

Objective: Attack a combinatorial 
   problem starting with    

           an “elementary”            
                          0-1 LP 
relaxation



The Realm of Lift-and-Project Systems

Lovász-Schrijver
 SDP

Sherali-Adams SDP

Sherali-Adams LPLovász-Schrijver LP

Lasserre SDP

• Level-n tightening gives Integral hull.
• Level-r tightening optimizable in time        . )(rOn

Algorithmic aspects

[LS91]

[SA91]
[LS91]

[Las01]



The Lovász-Schrijver (LS) LP system

Our toy example 
Stable Set Relaxation
on input G=(V,E)

∑ ∈Vi ixmin

Eijxx ji ∈∀≤+  ,1

[ ]1,0∈ix

Integral 
Hull

Integral 
Hull

LP relaxation Level-1 tightening

( ) kkji xxxx ≤+

( )( ) kkji xxxx −≤−+ 11
2
kk xx ≤

Level-1 derivation rule:

Any conical combination     
of the above

New linear constraints

Definition: Level-1 LS tightening

   Original relaxation 

+ new linear constraints



The LS System in Action

Our toy example 
Stable Set Relaxation
on input G=(V,E)

∑ ∈Vi ixmin

Eijxx ji ∈∀≤+  ,1

[ ]1,0∈ix
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The LS System – Subsequent Tightenings

Integral 
Hull

Integral 
Hull

Integral 
Hull

Integral 
Hull

…

derivation 
rule

derivation 
rule

derivation 
rule

( ) kkji xxxx ≤+

( )( ) kkji xxxx −≤−+ 11
2
kk xx ≤

Level-1 derivation rule:

Any conical 
combination                 
of the above

New linear constraints

LP relaxation Level-1 tightening Level-2 tightening Level-r tightening

Definition: The level-r tightening 
is the relaxation we obtain by 
applying the derivation rule on 
the level-(r-1) relaxation.



The LS System (Derivation Rule Made Formal)

( ) kkji xxxx ≤+

( )( ) kkji xxxx −≤−+ 11
2
kk xx ≤

Level-1 derivation rule:

Any conical 
combination                 
of the above

New linear constraints

Eijxxx ji ∈∀≤+  ,0

[ ]0,0 xxi ∈

Our toy example 
Stable Set Cone K
on input G=(V,E)
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Constraints on the lifted space

KMMex ∈== )( diag0
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Integral 
Hull

Integral 
Hull

derivation 
rule

lift
ing projection

Integral 
Hull

A Remarkable Yet Simple Implication
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ℜ∈∃⇔∈
satisfying the above

If                  then for every index t,       
x can be written as convex combination 
of vectors in K that are integral on t 

Remarkable Implication:
)(KNx ∈

( )=x

( )
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Towards Proof of Convergence

If                  then for every index t,       
x can be written as convex combination 
of vectors in the cone K, integral on t 

Remarkable Implication:
)(KNx ∈
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And … the Proof of Convergence

Integral 
Hull

Integral 
Hull

Integral 
Hull

Integral 
Hull

…
LP relaxation Level-1 tightening Level-2 tightening Level-r tightening

DOUBLE Remarkable Implication: )(KNx r∈

)(1)( 1 KNx rt −∈ )(1)( 1 KNx rt −∈

)(2)( 2 KNx rt −∈ )(2)( 2 KNx rt −∈

)(3)( 3 KNx rt −∈ )(3)( 3 KNx rt −∈



And … the Proof of Convergence (more formally)

)(KNx r∈

)(1)( 1 KNx rt −∈ )(1)( 1 KNx rt −∈

)(2)( 2 KNx rt −∈ )(2)( 2 KNx rt −∈

)(3)( 3 KNx rt −∈ )(3)( 3 KNx rt −∈

)(3)( 3 KNx rt −∈ )(3)( 3 KNx rt −∈

)(4)( 4 KNx rt −∈ )(4)( 4 KNx rt −∈

)(5)( 5 KNx rt −∈ )(5)( 5 KNx rt −∈

)(6)( 6 KNx rt −∈ )(6)( 6 KNx rt −∈

)(7)( 7 KNx rt −∈ )(7)( 7 KNx rt −∈

)(8)( 8 KNx rt −∈ )(8)( 8 KNx rt −∈

)(KNx r∈

( )rttt ,...,, 21

Claim: Let                    .

Then, for every SEQUENCE 
x can be written as convex
combination of vectors in K that are
integral in                      .{ }rttt ,...,, 21

Corollary: The level-n relaxation gives
    the integral hull

Corollary: The level-r relaxation satisfies all  
    constraints of support at most r.



Utilizing/Fooling the LS System 

Combinatorial 
Problem Integrality gap Level 

Vertex Cover 
[STT07]

Max-Cut
[STT07]

ε−2 )(nΘ

ε−2 )(nΘ

& many rank lower bounds

Combinatorial 
Problem Approximation Level 

Densest-k-
Subgraph 
[BCCFV10]

ε+4
1

n ε
1

& who knows what else …



The Realm of Lift-and-Project Systems

Lovász-Schrijver
 SDP

Sherali-Adams SDP

Sherali-Adams LPLovász-Schrijver LP

Lasserre SDP

[LS91]

[SA91]
[LS91]

[Las01]



The Lovász-Schrijver (LS+) SDP system
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is rank 1, positive semidefinite (PSD)

Integral 
Hull

Integral 
Hull

LP relaxation Level-1 tightening

lift
ing projection

Integral 
Hull

jiji
y
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)(

Algorithmic aspects of LS+
•  Convergence
•  Level-t utilizable in time 
•  Constant level tightenings derive celebrated relaxations, e.g.  [GW95], [ARV04]

)(tOn



Utilizing/Fooling the LS+ System 

Combinatorial 
Problem Integrality gap Level 

Vertex Cover 
[STT07]

Vertex Cover
[GMPT07]

Max-k-XOR
[BOGHMT06]

Hypegraph Vertex 
Cover

[AAT05]

Hypegraph Vertex 
Cover

[Tou05]

Set Cover
[AAT05]

Independent Set 
(rand instances)

[FK03]

6
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loglog
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Combinatorial 

Problem Approximation Level 

Max-Cut 
[GW95]

Sparsest Cut
[ARV04]

139.1 1

& who knows what else …
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SDP relaxation
∑

∈Eij
ijdmax

Vjixxd jiij ∈∀−≥ , ,
Vjixxd jiij ∈∀+≤ ,,

Vixi ∈∀∈  ],1,0[
( ) Vjixxd jiij ∈∀+−≤ , ,2

LP relaxation

K

Level-1 derivation rule:

( ) ijiiij xxxxd −≥

( ) ( )( )ijiiij xxxxd −−≥− 11

ii xx ≥2

jijiij xxxxd 222 −+≥

+

{ } { } { }jijiij yyyd ,2−+=
Claim: New constraint of N+(K)

Deriving the GW SDP for Max-Cut
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IG ≤ 1.139
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The Realm of Lift-and-Project Systems

Lovász-Schrijver
 SDP

Sherali-Adams SDP

Sherali-Adams LPLovász-Schrijver LP

Lasserre SDP

[LS91]

[SA91]
[LS91]

[Las01]



The Sherali-Adams (SA) LP system

Our toy example 
Stable Set Relaxation
on input G=(V,E)

∑ ∈Vi ixmin

Eijxx ji ∈∀≤+  ,1

[ ]1,0∈ix

Integral 
Hull

Integral 
Hull

LP relaxation Level-r tightening

r
kkk xxx ≤≤≤ 

2

Level-r derivation rule:

Any conical combination     
of the above

New linear constraints

Definition: Level-r SA tightening

   Original relaxation 

+ new linear constraints

rAnA ≤⊆∀ ],[
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The SA System (Derivation Rule Made Formal)

Eijxxx ji ∈∀≤+  ,0

[ ]0,0 xxi ∈

Our toy example 
Stable Set Cone K
on input G=(V,E)
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New linear constraints
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SA & Distributions of 0-1 Assignments
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Claim: Level-r SA relaxation associates every subset A, of size at 
            most r, with a distribution of 0-1 assignments D(A) such that
• Consistency: D(A) and D(B) agree on the marginals.
 

• Feasibility: Assignments in D(A) are locally feasible. 

Proof: What is D(A) ? 

{ }Aa 1,0∈
[ ]aAD )(Pr

{ }0)(:: == iaiN

{ }1)(:: == iaiY

∑
⊆

∪−=
NR

YR
R y||)1(:

Y
N

A



SA & Distributions of 0-1 Assignments
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Proof: What is D(A) ? 

{ }Aa 1,0∈
[ ]aAD )(Pr

{ }0)(:: == iaiN

{ }1)(:: == iaiY

∑
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NR
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R y||)1(

Y
N

A

Claim: Level-r SA relaxation associates every subset A, of size at 
            most r, with a distribution of 0-1 assignments D(A) such that
• Consistency: D(A) and D(B) agree on the marginals.
 

• Feasibility: Assignments in D(A) are locally feasible. 



SA & Distributions of 0-1 Assignments
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Proof: What is D(A) ? 

{ }Aa 1,0∈
[ ]aAD )(Pr
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Claim: Level-r SA relaxation associates every subset A, of size at 
            most r, with a distribution of 0-1 assignments D(A) such that
• Consistency: D(A) and D(B) agree on the marginals.
 

• Feasibility: Assignments in D(A) are locally feasible. 



SA & Distributions of 0-1 Assignments

Proof: What is D(A) ? 

{ }Aa 1,0∈
[ ]aAD )(Pr

{ }0)(:: == iaiN
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Is really D(A) a distribution? 

0≥x valid for K
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SA & Distributions of 0-1 Assignments

Proof: What is D(A) ? 

{ }Aa 1,0∈
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Is really D(A) a distribution? 
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SA & Distributions of 0-1 Assignments

Claim: Level-r SA relaxation associates every subset A, of size at 
            most r, with a distribution of 0-1 assignments D(A) such that
• Consistency: D(A) and D(B) agree on the marginals.
 

• Feasibility: Assignments in D(A) are locally feasible. 



Local Consistency & Feasibility

[ ]aAD )(Pr ∑
⊆

∪−=
NR

YR
R y||)1( NYz ,:=

{ }Aa 1,0∈

{ }0)(:: == iaiN

{ }1)(:: == iaiY

Due to the previous 

homomorphism 

Y
N

A Y’

N’

B

[ ] NY
ABNY

NNYYBD zza ,
\','

',')(Pr == ∑
⊆

∪∪

Local Consistency: rBAB ≤⊇∀ ||, [ ] [ ]aa ADBD )()( PrPr = ?

Feasibility:

x can be written as convex combination 
of vectors in K that are integral in                  .

)(KSx r∈
{ }rtttA ,...,, 21=

Claim: Let 
Then, for every SET 

{ }rttt ,...,, 21

D(A) defines the 
convex combination



Solving Problems of Bounded Treewidth
Our toy example 
Stable Set Relaxation
on input G=(V,E)

∑ ∈Vi ixmin

Eijxx ji ∈∀≤+  ,1

[ ]1,0∈ix

G=(V,E) of treewidth r
• Union of bags (of size ≤r) is V
• vertices of every edge, in at least one bag
• Bags containing any vertex form one 
  connected component. 

1B

2B 3B

4B
5B

6B
Level-r SA tihgtening

Claim: Level-r SA tightening 
            solves problem exactly

Theorem ([WJ04]): Level-r SA LP solves exactly any polytope of treewidth r.



Utilizing/Fooling the SA LP System 

Combinatorial 
Problem Integrality gap Level 

Vertex Cover 
[CMM09]

Max Cut
[CMM09]

Unique Games
[CMM09]

Max Acyclic 
Subgraph
[CMM09]

Sparsest Cut
[CMM09]

Knapsack
[KMN11]

( )δnΩ

ε−2

Combinatorial 
Problem Approximation Level 

Max-Cut  
(dense graphs)

[FdlVM07]

Vertex Cover 
(planar graphs)

[MM09]

Independent Set 
(planar graphs)

[MM09

Max Min 
Allocation
[BCG09]

Sparsest Cut 
(treewidth r)
[CKR10]

ε+1 
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The Realm of lift-and-project Systems

Lovász-Schrijver
 SDP

Sherali-Adams SDP

Sherali-Adams LPLovász-Schrijver LP

Lasserre SDP

[LS91]

[SA91]
[LS91]

[Las01]



The Notorious Sherali-Adams SDP (SA+) System
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The level-r SA+ SDP relaxation: • Start with your favorite 0-1 relaxation.
• Impose level-r SA linear constraints.
• Require low level PSDness.



Utilizing/Fooling the SA+ System 

Combinatorial 
Problem Integrality gap Level 

Max Cut
[KS09]

Some Max CSPs
[BGMT11]

Unique Games
[RS09]

Quadratic 
Programming

[BM10]

MaxCut Gain
[BM10]

Vertex Cover
[BCGM11]

( )nlogloglog 6
1

ΩCombinatorial 
Problem Approximation Level 

Max CSPs
[Rag08]

Max Cut 
(random dense 

graphs)
[AU03]

OPT ( )1O

γε    vs1−

139.1

( )nΘ

( )nlogΩ ( )δnΩ
( )r

11 Θ+ r
( )nloglog 4

1

Ω

tight

( )1Ω ( )1Ω… and I am sure, more are coming.

 2 ε− 6



The Realm of lift-and-project Systems

Lovász-Schrijver
 SDP

Sherali-Adams SDP

Sherali-Adams LPLovász-Schrijver LP

Lasserre SDP

[LS91]

[SA91]
[LS91]

[Las01]



The Renowned Lasserre System
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An Application of the Lasserre System
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BAy ∪

A

B

PSD

Our toy example 
Stable Set Relaxation
on input G=(V,E)

∑ ∈Vi ixmin

Eijxx ji ∈∀≤+  ,1

[ ]1,0∈ix

+ level-r Lasserre tightenings 

∑ ∈
⋅

Vi ivv0min

stablenot  ,2||, ,02 IrIVIvI ≤⊆∀=

rJIVJIvvv JIJI ≤⊆∀=⋅ ∪ |||,|,, ,2

12 =∅v

Set r=1 to get the Lovász theta function!



Utilizing/Fooling the Lasserre System 

Combinatorial 
Problem Integrality gap Level 

Vertex Cover
[Sch08]

Vertex Cover
[Tul09]

Max-k-XOR
[Sch08]

Max-k-CSPs
[Toul09]

Combinatorial 
Problem Approximation Level 

Knapsack
[KMN11]

Coloring 
(3 colorable graphs)

[Chl07]

Independent Set 
(3-uniform 

hypergraph with 
solution rn)

[CS08]

2-CSPs
[BRS11]

Directed 
Steiner Tree

[Rot11]

r
11+ ( )2rO

ε−2

6
7 ( )nΘ

ε−k
k

2
2

( )2072.0nO )1(O

361.

… new exciting stuff 
to be presented shortly!

( )δnΩ

( )nΘ

( )nΘ

( )2
1
r

O( )2

 abs rnO

… and try if you dare to show a level-2 
tight integrality gap for any problem with 
hard constraints.

ε+1 ( )εpoly
1

( )||log3 RO ||log R
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