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Analysis of spatiotemporal models 
for stream and river populations 



Essential question:  
How much water is required to maintain river ecosystems? 

What is the impact of changes in flow regimes on ecosystems? 
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Factors effecting population dynamics in river ecosystems  

•  Biological factors: growth, biodiffusion, transfer between 
benthos and water, interspecific interactions. 

•  Physical factors: water flow, advection, diffusion, channel 
shape, temperature, ice 



Effects of flows on ecosystems  

•  High flows may wash species downstream. 

•  Drift paradox: how can species persist in rivers where flow is 
unidirectional? 

•  Low flows provide insufficient food for drift feeders. 

•  They may also allow invaders to thrive, driving out resident 
species 



Mathematical model for river dynamics 

•  Reaction-diffusion-advection models (Bencala and Walters 
(1983), DeAngelis et al. (1995), Speirs and Gurney (2001), 
Pachepsky et al. (2005), Lutscher et al. (2006) etc.). 

•  Integrodifferential/integrodifference models (Lutscher et al. 
(2005), Nisbet et al. (2007) etc.). 

•  Numerical flow models coupled to habitat suitability for target 
species (Rosenfeld (2003), PHABSIM) 

•  Numerical flow models coupled to population dynamical 
equations (uses River2D, Steffler, Blackburn, Jin and Lewis (in 
prep)). 



Mathematical ideas 

•  Spreading speeds/critical domain size (Spiers and Gurney 
(2001), Lutscher et al. (2010) etc.). 

•  Uptake and spiraling lengths (Anderson et al. (2005)). 

•  Dynamic energy budget models (Nisbet et al. (2000), 
Kooijman et al. (2000)). 

•  Habitat heterogeneity and ecological requirements (Rosenfeld 
(2003)). 



Outline 

•  How can we manage rivers? Biological dynamics and 
management question. 

•  Biology meets physics: coupling population dynamics to 
stream flows 

•  The stream paradox: spreading speeds and critical domain size 

•  Is this a good place to live? Niche theory and the net 
reproductive rate 

•  Towards realistic stream models 
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Water management 
•  Trade-off between urban, industrial, agricultural and 
conservation goals for water 
•  Flows can be modified, and discharges can be varied and 
timed 
•  Successful management requires knowledge of flows required 
to  maintain ecosystem integrity (instream flow needs) 



Habitat modelling 



Can process-oriented models lead to better instream 
flow assessment? 

•  Process-oriented models can potentially include population 
dynamics, competition, predation, community structure, as 
interactions with the abiotic environment. 

•  Ideally they should be able to demonstrate how these factors 
change with river flow and hence how ecosystem function 
depends on water flow. 
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In results given below, it is assumed Db=0 unless otherwise stated. 



Water depth: spatially uniform, medium flow 



Water depth: spatially variable, medium flow 



Drift-benthic model: spatially uniform, medium flow 
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Drift-benthic model: spatially uniform, medium flow 



Drift-benthic model: spatially variable, medium flow 
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Drift-benthic model: spatially variable, medium flow 



Drift-benthic model: spatially variable, medium flow 



Drift-benthic model: spatially variable, high flow 
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Drift-benthic model: spatially variable, high flow 



Drift-benthic model: spatially variable, high flow 



Drift-benthic model: spatially variable, high flow 



Drift-benthic model: spatially variable, high flow 



Drift-benthic model: spatially variable, high flow 



Drift-benthic model: spatially variable, high flow 



Drift-benthic model: spatially variable, high flow 



Summary of analytical results for 1D river population 

•  Analytical results were derived for the case with piecewise 
constant “good” and “bad” patches, repeating with length scale 
L in Lutscher et al. (2006). 

•  For the pelagic model: adding spatial heterogeneity can allow 
for persistence, when none would be possible in the 
appropriately homogenized spatially uniform system. 

•  For the benthic/drift model: if the transfer rate from benthic to 
drift components is less than intrinsic growth rate in benthic 
compartment (µ <        g(x,0)) there will be unconditional 
persistence, independent of flow. When µ >        g(x,0) 
persistence is conditional on sufficiently low flow, and spatial 
heterogeneity also can allow for persistence. 
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Numerical simulation of a 2D river population 

 Steffler, Blackburn. 

•  Water flow in a river is modelled using Reynolds-averaged 
Navier-Stokes methods, with bed friction and with eddy 
viscosity to define turbulence (River2D). 

•  Equations are solved in 2D (depth averaging), using finite 
elements, and are run to steady state.  

• Physical quantities of velocity a(x,y), depth h(x,y) and 
turbulent diffusion D(x,y) terms come from River2D 
calculations. 



Benthic-drift model 

Jin, Lewis, Steffler, Blackburn. 

•  Water flow is coupled to a population that grows, dies and 
moves between the water column and the benthos 

Water                                                                         

Benthos                                                                      



Jin, Lewis, Steffler, Blackburn. 

Water                                                                         

Benthos                                                                      

Benthic-drift model 



Simulation of benthic-drift model: high flow 

Steffler, Blackburn, Jin, Lewis. 



•  River2D simulation for the benthic-drift model 

Steffler, Blackburn, Jin, Lewis. 

Simulation of benthic-drift model: lower flow 



•  Flow levels affect  environmental conditions (scouring, nutrients, 
flooding) and hence control of invader (eg., weeds, Didymo) 

•  Reduced flow can enhance upstream spread (eg., zebra mussels). 
•  Reduced seasonal flow could lead to an invasion ratchet 

Limited upstream spread 
Jin, Lewis, Steffler et al. (in prep) 

How can flow levels affect invasions? The invasion ratchet 
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Enhanced upstream spread 
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How can flow levels affect invasions? The invasion ratchet 
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General single species pelagic model 
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Spatially homogeneous model 



Drift Paradox 
•  The drift paradox asks how organisms can persist without being 

washed out, when they are continuously subjected to unidirectional 
stream flow 

•  If we assume logistic-type growth dynamics and hostile boundaries 
then… 

(a) 



Spreading speeds and critical domain size 

c+ = c*+a downstream 

c- = c*-a upstream 

a 

a 



Spreading speeds and critical domain size 

•  different boundary conditions (McKenzie et al., 2011). 

•  long-distance dispersal via integro-difference or 
integrodifferential equations (Lutscher et al., 2005).  

•  spatial heterogeneity (Lutscher et al., 2006). 

•  seasonality in growth and dispersal (Jin and Lewis, 2011). 

The connection between the critical domain size and the advection 
speed at which spread stalls can be extended to account for: 

A summary of some of these ideas is found in Lutscher et al. 
(2010). 
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Is this a good place to live? 

New individuals born at      
x0 over a lifetime 

Point source 

1  Rloc(x): number of offspring produced by an individual introduced at 
x (dispersal excluded), fundamental niche. 

a 

Krkosek and Lewis (2010) 



Is this a good place to live? 

New individuals born 
at x over lifetime Point source 

2  Rδ(x): number of offspring produced by an individual introduced at 
x (dispersal included), realized niche 

a 

Krkosek and Lewis (2010) 



Is this a good place to live? 

Krkosek and Lewis (2010) 

3  R0: net reproductive rate – number of offspring produced over an 
individual’s lifetime, given that the individual is distributed spatially 
in a manner appropriate for maximizing long-term growth 

Initial distribution 

Next generation distribution 

a 

Γ: Next generation distribution 
R0: maximal eigenvalue of  Γ 



Net reproductive rate for the single pelagic species model 
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We assume that g is a continuous function of “logistic” form, 
and that A  > 0 and D > 0 are C2[0,L] 



Density of individuals originally present: 

Next generation operator                      is defined by: 

€ 
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Net reproductive rate for the single pelagic species model 

  

€ 

Linearized growth term: let g(x,0) = f (x)
birth
 − v

mortality




It can alternatively be defined by: 

The function k(x,y) can be considered the lifetime density of space use of an 
individual originally introduced at y.  Then  

Net reproductive rate for the single pelagic species model 



The next generation operator 



Spectral properties of the next generation operator 



Spreading speeds and critical domain size 
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Spreading speeds and critical domain size 
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Using math to decide: is this a good place to live? 

Rloc(x) 

Rδ(x0) 

Rloc(x) 

Rδ(x0) 

It is possible to show that R0 is greater than the spatially averaged value of Rδ	
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Applying R0 to river model (spatially homogeneous) 

Classical thresholds from critical domain size/spreading speed analysis can 
be recovered, but R0 analysis can also be easily applied to spatially variable 
rivers 



Applying R0 to river models 

•  This type of analysis also provides a useful way to understand 
persistence in spatially variable rivers. 

•  The idea can be extended to the benthic-drift model and to 
two-dimensional environments (detailed analysis still needs to 
be done).  
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Dynamics of persistence: R0 > 1 



Dynamic 2D Simulation: R0 > 1 



Dynamic 2D Simulation: R0 > 1 
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Dominant eigenfunction: R0 > 1 



2D Calculation of dominant eigenfunction: R0 > 1 
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Dynamics of washout: R0 < 1 



Dynamic 2D Simulation: R0 < 1 



Dynamic 2D Simulation: R0 < 1 
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Related research: Net Reproductive Rate 



Dominant eigenfunction: R0 < 1 



Summary 

•  Spatial R0 analysis is a powerful approach to understanding 
persistence in stream habitats, especially when habitats vary 
spatially, depending upon flow conditions. 

•  The next step is to prove that this kind of analysis can work for 
benthic/drift models and in higher dimensions. 

•  Rloc and Rδ are alternative metrics that have biological 
interpretations. 

•  Classical mathematical results pertaining to the drift paradox 
can be recovered with R0 analysis. 

•  Hybrid mathematical/numerical methods for R0 analysis can 
provide realistic approaches to stream modelling. 

•  A current project involves extending these methods to multiple 
trophic levels. 
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