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Talk outline:
1. The IFD as an ESS of the static Habitat selection game
2. Dispersal dynamics, but no population dynamics

3. The Habitat selection game as an example of a population game
(both frequency and population dynamics combined)



The Habitat selection game
(Krivan, Cressman and Schneider, 2008)

1. Population(s) in a heterogeneous environment consisting of n patches
2. Each patch is characterized by its payoft V;, 2 =1,...,n

3. Payoffs are negatively density dependent, i.e. V;(m;) decreases with increas-
ing abundance m; in the :—th patch
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Figure 2 | Divided lake. Lake Windermere is separated by a shallow sill into two habitats for pike.



Individual pure strategy: Stay all your life in a single patch (e.g, sessile organ-
isms)

Individual mized strategy: Spend proportion p; of the lifetime in patch ¢ (vagile
organism)

Population Monomorphism: All individuals in the population use the same
strategy (either pure or mixed) p = (p1,...,pPn). In this case p is also the
population distribution among patches.

Population Polymorphism: The population consists of £ behavioral phenotypes
(with frequencies x;) each of them characterized by a vector p; that specifies the
distribution of times an individual stays in different patches. Then population
profile is given by x1p1 + - - - + xxpr Which specifies population distribution.

Fitness of a mutant with strategy p = (p1,...,Dn) in a resident population
where all individulas use strategy (distribution) p = (p1,...,pn):

G(ﬁa p) — ﬁlvl (pl) + - +]5nvn(pn)



The Ideal Free Distribution

Definition 1 (Fretwell and Lucas 1969) Population distributionp = (p1,...,Pn)
15 called the Ideal Free Distribution if:

(i) there exists index k such that the first k habitats are occupied
(i.e.,p; >0 fori=1,...,k andp; =0 forj=k+1,--- ,n )

(ii) payoffs in the occupied habitats are the same and mazximal
(i.e., Vilpr) = =Vi(pr) = V> and V;(0) < V* forj=k+1,--- ,n).

Proposition 1 The strateqy corresponding to the Ideal Free Distribution is the
Nash equilibrium of the Habitat selection game.

Proposition 1 (Cressman and Krivan 2006) The strategy corresponding to
the IFD 1s an ESS of the Habitat selection game.



Parkers matching principle
(Parker 1978)

T4

m; = abundance in the :—th patch

M =mq +--- 4+ m,, is the total (constant) population abundance

r; = resource input rate in patch ¢

resource input rate oy
animal abundance in the patch ~— m:

Z'_

m; T3

The corresponding IFD: p; = M = iy

and all patches are occupied.



The IFD distribution of two fish species among two feeding sites
(Berec et al. 2006)
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Patch payoff is a linear function of patch abundance
(Krivan and Sirot 2002, Cressman and Krivan 2010)

Patch payoft:

m;

Fitness of a mutant with strategy p = (p1,p2) in the resident population with
distribution p = (p1, p2) is:

G(p,p) =p1Vi(p1) + p2Va(p2) =: (P, Up)
U _ 7“1(1 — Kﬂl) 1 y
o ro(l — K—Q)



The IFD for linear payoffs in 2 patches

Assuming r1 > 7o, the IFD for the total population size M = mq + mo is:

1 if M < Ky5B=r2
p1 = ro Ky K1 Ka(ri—r2) .

roK14+1r1 Ko (roK14+r1Ko)M otherwise.
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Summary for the IFD as a static concept of the Habitat selection
game

The Ideal Free Distribution is an ESS of the Habitat selection game.
It is static in the following sense:

1. It does not describe mechanistically how the distribution changesin time; it
just predicts what the final distribution should be

2. It considers a single population only

3. It does not consider changesin population densities



Frequency dynamics for the Habitat selection game: Dispersal
(Cressman and Krivan, 2006)

D= dispersal matrix
D;; = is the probability with which an individual will disperse from patch j to
patch ¢ in a unit of time

m;=animal abundance in patch ¢

M =mq + --- 4+ m, = overall (fixed) abundance

dmi - .
. = ZDZJ(m)mJ —Dﬂ(m)mz 1 = 1,...,n
j=1

I T

|mmigration Emigration

Changesin population ditribution:  p = (p1,...,Pn) = (57, » &)
dp

11



Unconditional and balanced dispersal

Unconditional dispersal: D;; = %

dm; M 1
= — — MM 1 = LRI n
dt n 19 ) )

M. M)

with the corresponding uniform equilibrium distribution m = ( :

.

Dispersal rates that lead to the IFD are called balanced dispersal (Holt 1985)

Viimy) = -+ =V (my).
For example, Do = KLQ and Dy = I% are balanced at patch carrying capacities
my1 = K1 and mo = Ko.
drmy (1-22+D D
= rimy(l — — Mo — m
7 111 e 12712 2111
dmo ma
—— = roma(l — —==) 4+ Daymyi — Diam
pm 2 2( KQ) + Doimq 122 .



Balanced dispersal rates

d i % .
e Z — Dji(m)m; fori=1,...,n.

Proposition 1 (Cressman and Krivan, 2006) Let us assume that patch pay-
offs are negative density dependent. Let us assume that

(i) individuals never disperse to patches with lower payoff, i.e.,

and
(i) some individuals always disperse to a patch with the highest payoff, i.e.,

D;; >0 for some i,j withp; >0 and V; <V; = 1I<I}€a<XH V.

Then solutions of the dispersal dynamics converge to the IFD.

13



Dispersal Dynamics for Omniscient Animals

Assumptions: Animals are omniscient and they disperse to the patch(es) with

the highest payoff. dp1

1 1 1 a — P
dp2
Vi(pi M) > max{Vs(po M), Va(psM)}: D' = [0 0 0 o = TP —0
0 0 0 dps
a P
d
0 0 0 % = -
VQ(pQM)>maX{V1(p1M),V3(p3M)}:D2: 1 1 1 d
p
0 0 0 d—t2 — 1—p2 ®_’@
dps of
dt Ps3
0 0 0 dpy
Vg(ng)>maX{V1(p1M),V2(p2M)}:D3(O 0 o) a - Q O
1 1 1 dp2 _ @/
dt P2
dps .
W - T
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dpl
- = U1 —p1

dt
up U1 U1 dp2 <« @
Vi(piM) = Va(poM) > Va(psM) : D'? = [uy up uy a0
O 0 O dps - _ —ps
u1 +ug =1 at
dp1 B p
Uy Ul Uy o -
Vi(prM) = Va(psM) > Va(paM)} : D¥ = | 0 0 o) 2 1p ©§ @
uz U3z U3 dps
up +uz =1 @ BB
O 0 O o = h ,O
dt
VQ(pQM) = ‘/E),(ng) > Vl(le) - D?3 = U2 Uz U2 @ e — @\
u3z U3 us a b2 é
ug +uz =1 % = uz —p3
d
U1 U1 U ﬂ = Ui —p1

dt
Vi(pr M) = Va(po M) = Va(psM) : DY = [ uy us us

o @
uz  uz  ug ar - P \@f
dps

UL +us +ug =1 42 _
1 2 3 i u3 — pP3



Filippov definition of a solution
(Filippov 1960, 1985)

Let R"=G'UG*UM

(DR)
dr [ fl(z) zeG!
dr { f2(z) zeG?
( {f(2)} r € Gl
F(m)E 9 conv{limyeGl fl(y)v lirnyec;2 f2(y)} re M
Y—x Yy—zx
L (@)} z € G?
dx
_ (D)
- € F(x)

Definition: Solutions of differential equation (DR) in the Filippov sense are
solutions of differential inclusion (DI)
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Dispersal for omniscient animals

Distribution p1, p2, p3 Payofts Vi, V5, V3
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Dispersal rates that lead to the replicator equation

ppi(Vi = V5) V>V, 14
D;;(p) =
0 if V; <Vj, 1#]

Individuals are attracted to patches that are already occupied by their con-
specifics, on the condition that the new patch payoff is larger than is the current
payoft.

These dispersal rates lead to the replicator equation

dp;
dt

19



Different conceptualizations of population and dispersal time scales

1. Population dynamicsvery fast when compared to trait dynamics (Adaptive
dynamics, e.g., U. Diekmann, R. Law, F. Dercole ). Assumes that population
dynamics are at an equilibrium at the current trait value. Changes in trait
dynamics are described by the canonical equation. Typically assumes
monomorphism, recently extended to measure valued traits
(Cressman& Hofbauer 2004). Fitness functions typically non-linear.

2. Trait dynamicsare very fast when compared to population dynamics
(Population game dynamics). Assumes that traits are at an equilibrium at the
current population abundance. The trait values are assumed to be evolutionary
optimized. Can treat linear fitness functions ( i.e., matrix games).

3. Population dynamics and trait dynamics operate on a ssmilar time scales (P.

Abrams, T. Vincent and J. Brown). Models explicitly both population and trait
dynamics.

20



Logistic population growth in a two-patch environment

Payoff in habitat i: Vi(m;) = r;(1 — %) i=1,2

Population dynamics in patch i: dgzi =rim;(1 — Z)
At the population equilibrium Vi (K7) =--- =V, (K,) =0, i.e., the IFD

Observation: At the population equilibrium the IFD is reached even when indi-
viduals do not disperse at all.

21



No dispersal Population dynamics  Distributional dynamics ~ Patch payoffs
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The Habitat selection game for two-patch Lotka-Volterra
predator-prey model

Patch 1 Patch 2
= Ri+ Ry

R
@ T @ C = Ci+0y

Fast dispersal

@ — @ C; = vC

% — (Tl — )\11}10)UJ1R + (TQ — )\QUQC)UQR

~

& = (eyMurR —m1)viC 4+ (e2dausR — ma)voC

Fitness of a prey mutant with strategy (u1, ts2):

Wg = ?11(7“1 — )\11)10) -+ ?12(7“2 — )\21}20)

Fitness of a consumer mutant with strategy (o1, v2):

We = ti(ertdiun R — my) + v2(e2Aous R — mo) 23



For r1 > ro and m; > my the Nash equilibria are

[ (u%,v}) if R>R* C>C~,
(1,1) if R>R*, C<Cr,
B (1,0) if R< R,
NE=9 1, v) v €[00} if R=R* C>C*
{(1,v1) | v €]0,1]} if R=R*, C<C*,
| {(u1,1) |ug € [uj, 1]} if R>R* C=C".
v*_ml_m2‘|‘€2>\2R u*_?“l—?“2-|—>\20 R*_ml_m2 o —
(e e)R Tt M+ )0 e
C's |
i Uy = Uy
Ul—]. i e h
¢ ’Ul :O i_ ____________
: ’LL1—1
i ’U1—1
| R




ESS for the predator-prey model at fixed population densites
(Cressman 1992,2003)

Proposition 1 (Cressman 1992, 2003) The interior predator-prey distribu-
tion for R > R* and C' > C*

., mi—maot+e R, r1—1r2+ A(C

e (e1 A1 + eaX2)R = (A1 4+ X2)C

1s a weak ESS. This IFD is asymptotically stable for Omnzsczent a,mma,ls ( best
response) dynamics. :

Equal payoff lines:

Prey payoff in patch 1=Prey payoff in patch 2

Pred. payoff in patch 1=Pred. payoff in patch 2 0

The arrows show in which direction prey fitness (horizontal arrow) and predator

fitness (vertical arrow) increases. oe



Predator-prey population dynamics when distribution is at the IFD
at each population densities

Proposition 1 (Krivan 1997,Boukal and Krivan 1999) Trajectories of the
prey-predator model with adaptive prey and predator dispersal converge to a
global attractor that is formed by solutions of the Lotka-Volterra model

dR _ p (7“1)\2 +r2A1 A1 C’)

dt A1+ Ao A1+ Ao

Q _ ( e1e9A1\2 n_ e1A1mso + 62)\2777,1)
dt e1A1 + €29 e1A1 + e2)s

that are contained in the region {(R,C): R > ™72 (' > B2

eiA1 ! A1
T
15 .

1a
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The Habitat selection game for the two-patch Lotka-Volterra
competition model

Patch 1 Patch 2
dM
= M [p1Vi(p,q; M, N) + p2Va(p,q; M, N))
dN
— = N |giWi(p,q; M, N) + ¢2Wa(p, q; M, N)]

M =my +mo, N =n1 +no, p; =m;/M, ¢ =n;/N

Species 1 payoff in habitat i : V;(p,q¢; M, N) =, (1 — M O‘iq'ﬂ',N) i =

Species 2 payoff in habitat j: W;(p,q; M, N) = s; (1 — uN ﬁjij) j=1,2.



IFD at current population densities

Vi(p,q; M,N) = Va(p,q; M, N) Solid line
Wi(p,q; M, N) = Wa(p,q; M, N) Dotted line

Equal payoff lines:

2-species ESS

28
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0
0

Proposition 1 (Cressman et al. 2004) Let us assume that the interior Nash

equilibrium for the distribution of two competing species at population densities
M and N exists. If

r151 Ko La(1—01 B1)+r182 Ko L1 (1—aq B2)+ras1 K1 La(1—ow (1) +resa K1 L (1—asf2) > 0

Then this distributional equilibrium is a 2-species ESS.
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The habitat selection game for two competing species at fixed

population densities
(Sirot and Krivan 2002, Cressman et al. 2004)

o = the relative strength of intraspecific competition to interspecific competition
0=0: interspecific competition only;
o=1: intraspecific competition only

Vilp,q; M,N) = (1 - PR - a'”'q'i(}{")N) i=1,2

Yo Bipi(l—o)M .
W;(p,q; M, N) =Sj(1—qJL—j— Jpj(Lj) ) j=12.

30
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o = 1 (Intraspec.comp.only)

pr=1
0<pp <1

O<q <f 0<qg <1

L= 0<p1 <1

=1 _
q1 =

H 1 3 + Lo

M

17.5 in

i 5 1.5 10 1li.5 15

oc=0.8
10
p1 =1
10<qr <1
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0<qg <1
N
4
i plii 0<p1 <1
n =1
) .; b & 1n
M
c=0.33
ilill T
P1 :1 B 1
17.5 0<q <15 P =
v q1 =0
15 ¥,
b =0 Two alternative
B < g < 1N distributions for
N w} __ -=="% any population densities
rs | PL= .
n=1
5
| 0<pr <1 0<pr <1
t.5 Nl " q1 =0
g1 =1
i.5 5 7.5 10 1li.5 15 17.5 0
M
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Population dynamics for competing species

dm; (1 m; Ny 19
Population dynamics { A K, K, T
without dispersal. dn; n;  Bym;\ .
—J —n.s. 1= — =1,2.
it 9% ( L, L, )77
dM
% =M [plvl(p7 q; M7 N) _'_pQVQ(p? q, M7 N)]
Population dynamics
under balanced dN
dISpersal E :N[Qlwl(p7Q7M7N)_'_QQWQ(pvq’MaN)]
Population equilibrium: B~ oal _ Liz Ol 1,2
om; = n. = 1= .
P . Co -t 1= af ’

Question: How the stability of the model without dispersal compares to the model

with dispersal ?
32



Interplay between population and dispersal stability

1. Conditions for population stability in the two patches without dispersal:
1—a;06; >0 and 1 — ay08s >0

2. Condition for distributional stability of the IFD:
r1s1KoLa(1—a1B1)+rise Ko L1 (1—a1 B2)+1r281 K1 Lo (1—aaB1)+1r282 K1 L1 (1—a2(2) > 0

Thus, population equilibrium stability of the model without dispersal does not
imply distributional stability of the model with dispersal.

dg;bl = miVi(mg, ng) + Liz(m, n)ma — Ia1(m,n)m;

2 = myVa(mag, ng) + Ta1(m, n)ymy — Iia(m, n)mo
% = nmiWi(my,n1) + Jiz(m,n)mo — Ja1(m,n)m;
% = naWa(ma,n2) + Jo1(m,n)mi — Jiz(m,n)ma

33



Dispersal can destabilizes population dynamics
(Abrams et al. 2007)

1. 1—04161>O and 1—04262>O

2. Distributional instability of the interior IFD:
ris1KoLao(1—a1f1)+rise Ko Li(1—a182)+res1 K1 La(1—a2f1)+rase K1 Li(1—a2f62) < 0

Table 1: Candidate population-distributional equilibria (Abrams

et al. 2007)
M N p @ payofls
- 1111 % ﬁ Vi=Vo=W; =Wy=0
/20 10 ¥ 0 Vi=V=Wya=0,W >0
I' 12 1 % 1 V1:V2:W1=0,W2>0
10 20 1 % Vi=Vi=We=0,V,>0
1 10 0 0 Vo=Wy=0,V1 >0, W7 >0
mo 19 19 1 0 Vi=W,=0,V,>0 W; >0
2 2 0 1 Vo=W;=0,Vi >0, Wy, >0
10 1 1 1 Vi=W;=0,Vo>0, Wy >0
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Mathematical conceptualization of population game dynamics

dxq; .
Population dynamics ar rifi(z,u), 1=1,...,n

Controls (animal strategies, or phenotypic plastic traits):
u=(ug,...,up) € U=U x --- x U"

Fitness of thei-th individudls: G (u;;u, x) = fi(z, u)

Strategies that maximize animal fitness are the Nash equilibria (or ESS)
at current population numbers:

N(x) = {u c U | Gi(uj;u,x) > Gi(v;u,z) for any v e U, i= 1,...,k}.
Feedback control: u € N(x)

This approach assumes time scal e separtion: Behavioral processes operate on a much
faster time scale than do population dynamics
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Mathematical conceptualization of the mutant-resident system

dxq; ~ ~ .
= x;Gi(uu,x,u,z), 1=1,...,k
dt
dz; 3 3 o .
e z,Gi(Uj;u, 2, U, %), 1=1,...,k

u € N(x,Z,u)

Optimal resident behavior when mutants are present:

N(xz,Z,0) ={u e U | Gi(u;;u,z,u,%) > G;(v;u,x,u,) for any v}

Proposition 1 (Cressman and Krivan, 2009) The proportion of mutants
to residents (Z/x) cannot increase in time, but mutants can survive in the pop-
ulation miz.
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Resident-mutant system for single species logistic growth

Resident population x with strategy u and fitness:

G(u; a,x,f) = Uuinm (1 — ula};'f#) — UTo (1 _ uzw—l—uzm)

Mutant population z with strategy u and fitness:

G(ﬂﬂ aaxaj) = U1 (1 — %1&15:) + UsTo (]_ — M)

Ko
dx S oy
E = X G(uauvxax) — $<’U,, U(a;,a;,u)U>
dx - ~ ~ /= 0
E - G(u,u,x,a}) — $<’U,, U(a;,a;,u)U>
ri(1 mtglliz) r1( _%f)
Uz, ,a) =

38



Resident-mutant system for single species logistic growth

dx - ~
il r{u,U(x,Z,0)u) = (riuy + reus)x ( — &= ki‘la;)
dx o L. . . .
il z(u, U(x,Z,0)u) = (rity + rets)T (1 — = k%a;)
I K1 Ka(riuy + raus) b K1 Ko (rity + rots)
! Koriu? + Kirau3 ' 2 Koria3 + Kirat3
. Koriuiuy + Kirausts _ Koriupug + Kyraugts
 Keru? + Kirou2 7T Kor@? + Kirewi?

Proposition 1 (Cressman and Krivan, 2010) When resident and mutant
strategies u = (u1,u2) and v = (v1,v2) are fixed then:

1. When residents and mutants show distinct preferences for patches (uy —
Ki/(Ki 4+ K2))(u1 — K1 /(K1 + K3)) < 0) then residents and mutants
co-exists at a globally asymptotically stable equilibrium.

2. When residents and mutants show the same preferences for patches (u; —
K1 /(K1+Ks))(uy — K1 /(K14 K3)) > 0) then the population with strategy
that better matches the IFD will survive and outcompete the other paggla-
tion.



Resident-mutant system for logistic growth: Residents follow the

IFD
dx ~ o~ L * T
= z({u, U(z, &, w)u) = (riur + raug)x (1 ko k_lx)
dzx e . - N T B
= z(u, U(z, , u)u) = (r1us + raus)@ (1 k2 k_zx)
| r < x
Uy = K K1Ka(r1—r2) | (Kira—U1(Kira+Kori))3
7“2K7;12+?“11K2 + (7“21K12+7“11K22)33 T 1 2(K11702+1K—;01)m2 1 ron
T = Ki(ri—r2) + (ro Ky —t1 (Ko +K172))Z

r1 r1 Ko

Proposition 1 (Cressman and Krivan, 2010) When residents follow the IFD
strateqy, population densities in both patches converge to their carrying capaci-
ties and mutants survive with residents.
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Resident-mutant system for logistic growth: Residents follow the

IFD

Resident and mutant

Mutant/resident ratio

pop. dynamics
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Prediction: If at the population dynamics attractor the animal distribution equalizes

patch payoffs, there is no selection against mutants. Thus, mutants can survive

with residents, and polymorphism can occur.
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Dispersal and predator-prey population dynamics operate on a
similar time scales

% =z fi(z,y1) + a(fi(z,y1) — fao(22,y2))
% = Zofol@a,y2) + a(folza, y2) — f1(z1,y1))
% = y191(z1) + B(g1 (1) — g2(z2))
% = y292(22) + B(g2(z2) — g1 (1))

8fz ofi

Proposition 1 (Cressman, Krivan, in prep.) Let <0, 5, <0, gi(x;) >
0, and there exists an intertor equilibrium of predator-prey population dynamics
without any dispersal (x*,y*). Then this equilibrium is locally asymptotically
stable for any dispersal rates o > 0 and 3 > 0.

43



Dispersal and competition population dynamics operate on a similar
time scales

dx
—tl = z1fi(z, 1) +al(fi(zr, y1) — fo(x2,92))
T
—tQ = x2fa(x2,y2) + a(fo(z2,y2) — f1(z1,91))
Y
—tl = ylgl(xlayl) T (gl(xlayl) - 92($2ay2))
Y2
ar = y2g2(x2,y2) + B(92(z2,y2) — 91(x1,91)).
.. : : Ofi dfi
Proposition 1 (Cressman, Krivan, in prep.) Let <0, < 0, <
0x; 0y; 8:1;1
0gi
0, 89 < 0 and without any dispersal (o = 3 = 0)the two species do coexists at
Yi
an stable equilibrium n both patches. If, in addition
0f1 0ga 0f1 092 Of2 0g1 B 0f2 0g1

> 0,

g = -7 0’

Ox1 0y2  Oy1 Ox2 Ox2 Oy1  Oya Ox1

Then the interior equilibrium is locally asymptotically stable for any dispersal
rates a« > 0 and 8 > 0. 44
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