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Talk outline:

1. The IFD as an ESS of the static Habitat selection game

2. Dispersal dynamics, but no population dynamics

3. The Habitat selection game as an example of a population game 
(both frequency and population dynamics combined)
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Patch 1

Patch 2

1. Population(s) in a heterogeneous environment consisting of n patches

2. Each patch is characterized by its payoff Vi, i = 1, . . . , n

3. Payoffs are negatively density dependent, i.e. Vi(mi) decreases with increas-
ing abundance mi in the i−th patch

The Habitat selection game
(Krivan, Cressman and Schneider, 2008)
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Fitness of a mutant with strategy p̃ = (p̃1, . . . , p̃n) in a resident population
where all individulas use strategy (distribution) p = (p1, . . . , pn):

G(p̃, p) = p̃1V1(p1) + · · ·+ p̃nVn(pn).

Individual pure strategy: Stay all your life in a single patch (e.g, sessile organ-
isms)

Individual mixed strategy: Spend proportion pi of the lifetime in patch i (vagile
organism)

Population Monomorphism: All individuals in the population use the same
strategy (either pure or mixed) p = (p1, . . . , pn). In this case p is also the
population distribution among patches.

Population Polymorphism: The population consists of k behavioral phenotypes
(with frequencies xi) each of them characterized by a vector pi that specifies the
distribution of times an individual stays in different patches. Then population
profile is given by x1p1 + · · ·+ xkpk which specifies population distribution.
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Proposition 1 The strategy corresponding to the Ideal Free Distribution is the
Nash equilibrium of the Habitat selection game.

Definition 1 (Fretwell and Lucas 1969) Population distribution p = (p1, . . . , pn)
is called the Ideal Free Distribution if:

(i) there exists index k such that the first k habitats are occupied

(i.e., pi > 0 for i = 1, . . . , k and pj = 0 for j = k + 1, · · · , n )

(ii) payoffs in the occupied habitats are the same and maximal

(i.e., V1(p1) = · · · = Vk(pk) =: V ⋆ and Vj(0) ≤ V ⋆ for j = k + 1, · · · , n).

Proposition 1 (Cressman and Krivan 2006) The strategy corresponding to
the IFD is an ESS of the Habitat selection game.

The Ideal Free Distribution
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mi = abundance in the i−th patch

and all patches are occupied.

r1

r2

r3

r4

m1

m3

m2

m4

ri = resource input rate in patch i

Vi =
resource input rate

animal abundance in the patch
= ri

mi

The corresponding IFD: pi = mi

M
= ri

r1+···+rn

Parkers matching principle
(Parker 1978)

M = m1 + · · ·+mn is the total (constant) population abundance
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The IFD distribution of two fish species among two feeding sites
(Berec et al. 2006)
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G(p̃, p) = p̃1V1(p1) + p̃2V2(p2) =: 〈p̃, Up〉

Patch payoff:

Vi = ri

(
1 − mi

Ki

)

U =

[
r1(1 −

M
K1

) r1
r2 r2(1 −

M
K2

)

]

Patch payoff is a linear function of patch abundance
(Krivan and Sirot 2002, Cressman and Krivan 2010)

Fitness of a mutant with strategy p̃ = (p̃1, p̃2) in the resident population with
distribution p = (p1, p2) is:
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Overall population abundance M
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p1 =

{
1 if M < K1

r1−r2
r1

r2K1

r2K1+r1K2

+ K1K2(r1−r2)
(r2K1+r1K2)M

otherwise.

Assuming r1 > r2, the IFD for the total population size M = m1 +m2 is:

The IFD for linear payoffs in 2 patches



The Ideal Free Distribution is an ESS of the Habitat selection game. 

It is static in the following  sense:

1. It does not describe mechanistically how the distribution changes in time; it 
just predicts what the final distribution should be

2.  It considers a single population only 

3. It does not consider changes in  population densities

Summary for the IFD as a static concept of the Habitat selection
game
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Immigration Emigration

dp

dt
= D(p)p− p

Changes in population distribution:

dmi

dt
=

n∑

j=1

Dij(m)mj −Dji(m)mi i = 1, . . . , n

p = (p1, ..., pn) = (m1

M
, · · · , mn

M
)

D= dispersal matrix
Dij = is the probability with which an individual will disperse from patch j to
patch i in a unit of time

mi=animal abundance in patch i

M = m1 + · · ·+mn = overall (fixed) abundance

Frequency dynamics for the Habitat selection game: Dispersal
(Cressman and Krivan, 2006)
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with the corresponding uniform equilibrium distributionm= (Mn , · · · ,
M
n ).

dmi

dt
=
M

n
−mi, i = 1, · · · , n

Unconditional dispersal: Dij = 1
n

Dispersal rates that lead to the IFD are called balanced dispersal (Holt 1985)

V1(m1) = · · · = Vn(mn).

dm1

dt
= r1m1(1−

m1

K1
) +D12m2 −D21m1

dm2

dt
= r2m2(1−

m2

K2
) +D21m1 −D12m2

Unconditional and balanced dispersal

For example, D12 = 1
K2

and D21 = 1
K1

are balanced at patch carrying capacities
m1 = K1 and m2 = K2.
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dmi

dt
=

n∑

j=1

Dij(m)mj −Dji(m)mi for i = 1, . . . , n.

Proposition 1 (Cressman and Krivan, 2006) Let us assume that patch pay-
offs are negative density dependent. Let us assume that

(i) individuals never disperse to patches with lower payoff, i.e.,

Dij = 0 if Vi < Vj

and
(ii) some individuals always disperse to a patch with the highest payoff, i.e.,

Dij > 0 for some i, j with pj > 0 and Vj < Vi = max
1≤k≤H

Vk.

Then solutions of the dispersal dynamics converge to the IFD.

Balanced dispersal rates



14
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Assumptions: Animals are omniscient and they disperse to the patch(es) with
the highest payoff.

V1(p1M) > max{V2(p2M), V3(p3M)} : D1 =




1 1 1
0 0 0
0 0 0





V2(p2M) > max{V1(p1M), V3(p3M)} : D2 =




0 0 0
1 1 1
0 0 0





V3(p3M) > max{V1(p1M), V2(p2M)} : D3 =




0 0 0
0 0 0
1 1 1





dp1
dt

= −p1

dp2
dt

= 1− p2

dp3
dt

= −p3

dp1
dt

= −p1

dp2
dt

= −p2

dp3

dt
= 1− p3

dp1
dt

= 1− p1

dp2

dt
= −p2

dp3
dt

= −p3

Dispersal Dynamics for Omniscient Animals
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1

2

dp1
dt

= u1 − p1

dp2
dt

= 1 − p2

dp3
dt

= u3 − p3

dp1
dt

= u1 − p1

dp2
dt

= u2 − p2

dp3
dt

= −p3

dp1

dt
= −p1

dp2
dt

= u2 − p2

dp3
dt

= u3 − p3

dp1
dt

= u1 − p1

dp2

dt
= u2 − p2

dp3

dt
= u3 − p3

1 2

3

1 2

3

3

1 2

3
u1 + u2 + u3 = 1

u1 + u2 = 1

u1 + u3 = 1

u2 + u3 = 1

V1(p1M) = V2(p2M) > V3(p3M) : D12 =




u1 u1 u1
u2 u2 u2
0 0 0





V1(p1M) = V3(p3M) > V2(p2M)} : D13 =




u1 u1 u1
0 0 0
u3 u3 u3





V2(p2M) = V3(p3M) > V1(p1M) : D23 =




0 0 0
u2 u2 u2
u3 u3 u3





V1(p1M) = V2(p2M) = V3(p3M) : D123 =




u1 u1 u1
u2 u2 u2
u3 u3 u3




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(DI)

dx

dt
=

{
f1(x) x ∈ G1

f2(x) x ∈ G2

(DR)

F (x)≡






{f1(x)} x ∈ G1

conv{limy∈G1

y→x
f1(y), limy∈G2

y→x
f2(y)} x ∈M

{f2(x)} x ∈ G2

Definition: Solutions of differential equation (DR) in the Filippov sense are
solutions of differential inclusion (DI)

Let Rn = G1 ∪G2 ∪M

dx

dt
∈ F (x)

Filippov definition of a solution
(Filippov 1960, 1985)
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Distribution p1, p2, p3
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IFD

Dispersal for omniscient animals
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Dij(p) =






µpi(Vi − Vj) if Vi > Vj , i �= j

0 if Vi ≤ Vj , i �= j

Individuals are attracted to patches that are already occupied by their con-
specifics, on the condition that the new patch payoff is larger than is the current
payoff.

These dispersal rates lead to the replicator equation

dpi
dt

= µpi
(
Vi(piM)− V (p,M)

)
, i = 1, . . . , n

Dispersal rates that lead to the replicator equation
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1.   Population dynamics very fast when compared to trait dynamics (Adaptive 
dynamics, e.g., U. Diekmann, R. Law, F. Dercole ). Assumes that population 
dynamics are at an equilibrium at the current trait value. Changes in trait 
dynamics are described by the canonical equation. Typically assumes  
monomorphism,  recently  extended to measure valued traits  
(Cressman&Hofbauer 2004).  Fitness functions typically non-linear.

2. Trait dynamics are very fast when compared to population dynamics
(Population game dynamics). Assumes that traits are at an equilibrium at the  
current population abundance. The trait values are assumed to be evolutionary 
optimized. Can treat linear fitness functions ( i.e., matrix games).

3.   Population dynamics and trait dynamics operate on a similar time scales (P. 
Abrams, T. Vincent and J. Brown). Models explicitly both population and trait 
dynamics.

Different conceptualizations of population and dispersal time scales
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Population dynamics in patch i: dmi

dt
= rimi(1−

mi

Ki
)

At the population equilibrium V1(K1) = · · · = Vn(Kn) = 0, i.e., the IFD

Observation: At the population equilibrium the IFD is reached even when indi-
viduals do not disperse at all.

Logistic population growth in a two-patch environment

Payoff in habitat i: Vi(mi) = ri(1−
mi

Ki
) i=1,2
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Distributional dynamics Patch payoffsPopulation dynamics

Balanced (fast) dispersal

No dispersal

M = m1 +m2

dM

dt
= r1p1M (1− p1M

K1

)+

r2p2M (1− p2M

K2

)

dm1

dt
= r1m1(1 −

m1

K1

)

dm2

dt
= r2m2(1 −

m2

K2

)

pi = mi

m1+m2

dm1

dt = r1p1(M)M(1−
p1(M)M
K1

)

dm2

dt = r2p2(M)M(1− p2(M)M
K2

)

Unbalanced (random)
dispersal
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R1

C1

Patch 1 Patch 2

R2

C2

Fast dispersal

R = R1 + R2

C = C1 + C2

Ri = uiR

Ci = viC

dR
dt

= (r1 − λ1v1C)u1R + (r2 − λ2v2C)u2R

dC
dt

= (e1λ1u1R−m1)v1C + (e2λ2u2R−m2)v2C

Fitness of a prey mutant with strategy (ũ1, ũ2):

WR = ũ1(r1 − λ1v1C) + ũ2(r2 − λ2v2C)

WC = ṽ1(e1λ1u1R−m1) + ṽ2(e2λ2u2R−m2)

The Habitat selection game for two-patch Lotka-Volterra
predator-prey model

Fitness of a consumer mutant with strategy (ṽ1, ṽ2):
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C

R∗

C∗

u1 = u∗1

v1 = v∗1

u1 = 1

v1 = 1

u1 = 1

v1 = 0

v∗1 =
m1 −m2 + e2λ2R

(e1λ1 + e2λ2)R
, u∗1 =

r1 − r2 + λ2C

(λ1 + λ2)C
, R∗ =

m1 −m2

e1λ1
, C∗ =

r1 − r2
λ1

For r1 > r2 and m1 ≥ m2 the Nash equilibria are

NE =






(u∗1, v
∗
1) if R > R∗, C > C∗,

(1, 1) if R > R∗, C < C∗,
(1, 0) if R < R∗,
{(1, v1) | v1 ∈ [0, v∗1 ]} if R = R∗, C > C∗,
{(1, v1) | v1 ∈ [0, 1]} if R = R∗, C ≤ C∗,
{(u1, 1) | u1 ∈ [u∗1, 1]} if R > R∗, C = C∗.
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The arrows show in which direction prey fitness (horizontal arrow) and predator
fitness (vertical arrow) increases.

Equal payoff lines:

Prey payoff in patch 1=Prey payoff in patch 2

Pred. payoff in patch 1=Pred. payoff in patch 2

u∗1

v∗1

ESS for the predator-prey model at fixed population densites
(Cressman 1992,2003)

Proposition 1 (Cressman 1992, 2003) The interior predator-prey distribu-
tion for R > R∗ and C > C∗

v∗1 =
m1 −m2 + e2λ2R

(e1λ1 + e2λ2)R
, u∗1 =

r1 − r2 + λ2C

(λ1 + λ2)C

is a weak ESS. This IFD is asymptotically stable for omniscient animals (best
response) dynamics.
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Proposition 1 (Krivan 1997,Boukal and Krivan 1999) Trajectories of the
prey-predator model with adaptive prey and predator dispersal converge to a
global attractor that is formed by solutions of the Lotka-Volterra model

dR

dt
= R

(
r1λ2 + r2λ1

λ1 + λ2
−

λ1λ2

λ1 + λ2
C

)

dC

dt
= C

(
e1e2λ1λ2

e1λ1 + e2λ2
R −

e1λ1m2 + e2λ2m1

e1λ1 + e2λ2

)

that are contained in the region {(R,C) : R ≥ m1−m2

e1λ1
, C ≥ r1−r2

λ1
}.

Predator-prey population dynamics when distribution is at the IFD
at each population densities
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Patch 1 Patch 2

m2 n2m1 n1 Fast dispersal

M = m1 +m2, N = n1 + n2, pi = mi/M, qi = ni/N

Species 1 payoff in habitat i : Vi(p, q;M,N ) = ri

(
1− piM

Ki
− αiqiN

Ki

)
i = 1, 2

Species 2 payoff in habitat j: Wj(p, q;M,N ) = sj

(
1 −

qjN

Lj
−

βjpjM

Lj

)
j = 1, 2.

dM

dt
= M [p1V1(p, q;M,N) + p2V2(p, q;M,N)]

dN

dt
= N [q1W1(p, q;M,N) + q2W2(p, q;M,N)]

The Habitat selection game for the two-patch Lotka-Volterra
competition model
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Equal payoff lines:
V1(p, q;M,N) = V2(p, q;M,N)

W1(p, q;M,N ) = W2(p, q;M,N)

Solid line

Dotted line

2-species ESSNot a 2-species ESS

2-species ESSs

IFD at current population densities
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Proposition 1 (Cressman et al. 2004) Let us assume that the interior Nash
equilibrium for the distribution of two competing species at population densities
M and N exists. If

r1s1K2L2(1−α1β1)+r1s2K2L1(1−α1β2)+r2s1K1L2(1−α2β1)+r2s2K1L1(1−α2β2) > 0

Then this distributional equilibrium is a 2-species ESS.
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Vi(p, q;M,N) = ri

(
1− piσM

Ki
− αiqi(1−σ)N

Ki

)
i = 1, 2

Wj(p, q;M,N) = sj

(
1−

qjσN

Lj
−

βjpj(1−σ)M
Lj

)
j = 1, 2.

σ = the relative strength of intraspecific competition to interspecific competition
σ=0: interspecific competition only;
σ=1: intraspecific competition only

The habitat selection game for two competing species at fixed
population densities

(Sirot and Krivan 2002, Cressman et al. 2004)
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M M

M

N

N

N

N

σ = 1 (Intraspec.comp.only)

M
M

Two alternative 
distributions for 
any population densities

p1 = 1
0 < q1 < 1

p1 = 1
q1 = 1

0 < p1 < 1
q1 = 1

0 < p1 < 1
0 < q1 < 1

0 < p1 < 1
0 < q1 < 1

0 < p1 < 1
0 < q1 < 1

p1 = 1
q1 = 0

p1 = 1
q1 = 0

0 < p1 < 1
q1 = 0

0 < p1 < 1
q1 = 1

0 < p1 < 1
q1 = 1

0 < p1 < 1
q1 = 1

p1 = 1
q1 = 1

p1 = 1
q1 = 1

p1 = 1
0 < q1 < 1

p1 = 0
q1 = 1

p1 = 0
q1 = 1

p1 = 0
0 < q1 < 1

0 < p1 < 1
q1 = 0

p1 = 1
0 < q1 < 1

p1 = 1
q1 = 1

p1 = 1
0 < q1 < 1

p1 = 0
0 < q1 < 1
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Population dynamics 
without dispersal:

Population dynamics
under balanced 
dispersal:

Question: How the stability of the model without dispersal compares to the model
with dispersal?

Population equilibrium:

dmi

dt
= miri

(
1−

mi

Ki

−
αini
Ki

)
i = 1, 2

dnj
dt

= njsj

(
1−

nj
Lj
−
βjmj

Lj

)
j = 1, 2.

dM

dt
= M [p1V1(p, q;M,N) + p2V2(p, q;M,N)]

dN

dt
= N [q1W1(p, q;M,N) + q2W2(p, q;M,N)]

m∗
i =

Ki − αiLi
1− αiβi

, n∗i =
Li − βiKi

1− αiβi
i = 1, 2.

Population dynamics for competing species
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Interplay between population and dispersal stability

1. Conditions for population stability in the two patches without dispersal:

1− α1β1 > 0 and 1− α2β2 > 0

2. Condition for distributional stability of the IFD:

r1s1K2L2(1−α1β1)+r1s2K2L1(1−α1β2)+r2s1K1L2(1−α2β1)+r2s2K1L1(1−α2β2) > 0

Thus, population equilibrium stability of the model without dispersal does not
imply distributional stability of the model with dispersal.

dm1

dt
= m1V1(mi, ni) + I12(m,n)m2 − I21(m,n)m1

dm2

dt
= m2V2(m2, n2) + I21(m,n)m1 − I12(m,n)m2

dn1
dt

= n1W1(m1, n1) + J12(m,n)m2 − J21(m,n)m1

dn2
dt

= n2W2(m2, n2) + J21(m,n)m1 − J12(m,n)m2
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Table 1: Candidate population-distributional equilibria (Abrams
et al. 2007)

M N p1 q1 payoffs
11 11 10

11
1
11

V1 = V2 = W1 =W2 = 0
20 10 19

20 0 V1 = V2 = W2 = 0, W1 > 0
12 1 5

6
1 V1 = V2 = W1 = 0, W2 > 0

10 20 1 1
20 V1 = V1 =W2 = 0, V2 > 0

1 10 0 0 V2 = W2 = 0, V1 > 0, W1 > 0
19 19 1 0 V1 = W2 = 0, V2 > 0, W1 > 0
2 2 0 1 V2 = W1 = 0, V1 > 0, W2 > 0
10 1 1 1 V1 = W1 = 0, V2 > 0, W2 > 0

1. 1− α1β1 > 0 and 1− α2β2 > 0

2. Distributional instability of the interior IFD:

r1s1K2L2(1−α1β1)+r1s2K2L1(1−α1β2)+r2s1K1L2(1−α2β1)+r2s2K1L1(1−α2β2) < 0

Dispersal can destabilizes population dynamics
(Abrams et al. 2007)
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No dispersal

Intermediate
dispersal

Fast dispersal

Species distributions p1, q1 Total Population dynamics M , N
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Population dynamics

Controls (animal strategies, or phenotypic plastic traits):

Gi(ui;u, x) = fi(x, u)Fitness of the i-th individuals:

Strategies  that maximize animal fitness are  the Nash equilibria (or ESS) 
at current population numbers:

N(x) =
{
u ∈ U | Gi(ui;u, x) ≥ Gi(v;u, x) for any v ∈ U i, i = 1, . . . , k

}
.

u = (u1, . . . , uk) ∈ U=U1 × · · · × Uk

Feedback control: u ∈ N(x)

This approach assumes time scale separtion: Behavioral processes operate on a much 
faster time scale than do population dynamics

dxi
dt

= xifi(x, u), i = 1, . . . , n

Mathematical conceptualization of population game dynamics
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u ∈ N(x, x̃, ũ)

Optimal resident behavior when mutants are present:

N (x, x̃, ũ) = {u ∈ U | Gi(ui;u, x, ũ, x̃) ≥ Gi(v; u, x, ũ, x̃) for any v}

Proposition 1 (Cressman and Krivan, 2009) The proportion of mutants
to residents (x̃/x) cannot increase in time, but mutants can survive in the pop-
ulation mix.

Mathematical conceptualization of the mutant-resident system

dxi
dt

= xiGi(ui;u, x, ũ, x̃), i = 1, . . . , k

dx̃i
dt

= x̃iGi(ũi;u, x, ũ, x̃), i = 1, . . . , k
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U(x, x̃, ũ) =




r1(1−

x+ũ1x̃
K1

) r1(1−
ũ1x̃
K1

)

r2(1−
ũ2x̃
K2

) r2(1−
x+ũ2x̃
K2

)





dx

dt
= x G(u; ũ, x, x̃) = x〈u, U(x, x̃, ũ)u〉

dx̃

dt
= x̃ G(ũ; ũ, x, x̃) = x̃〈ũ, U(x, x̃, ũ)u〉

Resident population x with strategy u and fitness:

G(ũ; ũ, x, x̃) = ũ1r1

(
1 − u1x+ũ1x̃

K1

)
+ ũ2r2

(
1− u2x+ũ2x̃

K2

)
Mutant population x̃ with strategy ũ and fitness:

G(u; ũ, x, x̃) = u1r1

(
1− u1x+ũ1x̃

K1

)
+ u2r2

(
1− u2x+ũ2x̃

K2

)

Resident-mutant system for single species logistic growth
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dx

dt
= x〈u,U(x, x̃, ũ)u〉 = (r1u1 + r2u2)x

(
1− x

k1
− α

k1
x̃
)

dx̃

dt
= x̃〈ũ, U(x, x̃, ũ)u〉 = (r1ũ1 + r2ũ2)x̃

(
1− x̃

k2
− β

k2
x
)

k1 =
K1K2(r1u1 + r2u2)

K2r1u21 +K1r2u22
, k2 =

K1K2(r1ũ1 + r2ũ2)

K2r1ũ21 +K1r2ũ22

α =
K2r1u1ũ1 +K1r2u2ũ2
K2r1u21 +K1r2u22

, β =
K2r1u1ũ1 +K1r2u2ũ2
K2r1ũ21 +K1r2ũ22

Proposition 1 (Cressman and Krivan, 2010) When resident and mutant
strategies u = (u1, u2) and v = (v1, v2) are fixed then:

1. When residents and mutants show distinct preferences for patches (u1 −
K1/(K1 + K2))(ũ1 − K1/(K1 + K2)) < 0) then residents and mutants
co-exists at a globally asymptotically stable equilibrium.

2. When residents and mutants show the same preferences for patches (u1 −
K1/(K1+K2))(ũ1−K1/(K1+K2)) > 0) then the population with strategy
that better matches the IFD will survive and outcompete the other popula-
tion.

Resident-mutant system for single species logistic growth
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dx

dt
= x〈u,U(x, x̃, ũ)u〉 = (r1u1 + r2u2)x

(
1− x

k1
− α

k1
x̃
)

dx̃

dt
= x̃〈ũ, U(x, x̃, ũ)u〉 = (r1ũ1 + r2ũ2)x̃

(
1− x̃

k2
− β

k2
x
)

u1 =

{
1 x ≤ x1

r2K1

r2K1+r1K2

+ K1K2(r1−r2)
(r2K1+r1K2)x

+ (K1r2−ũ1(K1r2+K2r1))x̃
(K1r2+K2r1)x

x > x1

x1 = K1(r1−r2)
r1

+ (r2K1−ũ1(K2r1+K1r2))x̃
r1K2

Proposition 1 (Cressman and Krivan, 2010) When residents follow the IFD
strategy, population densities in both patches converge to their carrying capaci-
ties and mutants survive with residents.

Resident-mutant system for logistic growth: Residents follow the
IFD
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Prediction: If at the population dynamics attractor the animal distribution equalizes 

patch payoffs, there is no selection against mutants. Thus, mutants can survive 

with residents, and polymorphism can occur.
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Proposition 1 (Cressman, Krivan, in prep.) Let ∂fi
∂xi

< 0, ∂fi
∂yi

< 0, g′i(xi) >
0, and there exists an interior equilibrium of predator-prey population dynamics
without any dispersal (x∗, y∗). Then this equilibrium is locally asymptotically
stable for any dispersal rates α ≥ 0 and β ≥ 0.

dx1
dt

= x1f1(x1, y1) + α(f1(x1, y1)− f2(x2, y2))

dx2
dt

= x2f2(x2, y2) + α(f2(x2, y2)− f1(x1, y1))

dy1
dt

= y1g1(x1) + β(g1(x1)− g2(x2))

dy2
dt

= y2g2(x2) + β(g2(x2)− g1(x1)).

Dispersal and predator-prey population dynamics operate on a
similar time scales
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dx1
dt

= x1f1(x1, y1) + α(f1(x1, y1)− f2(x2, y2))

dx2
dt

= x2f2(x2, y2) + α(f2(x2, y2)− f1(x1, y1))

dy1
dt

= y1g1(x1, y1) + β(g1(x1, y1)− g2(x2, y2))

dy2
dt

= y2g2(x2, y2) + β(g2(x2, y2)− g1(x1, y1)).

Proposition 1 (Cressman, Krivan, in prep.) Let
∂fi
∂xi

< 0,
∂fi
∂yi

< 0,
∂gi
∂xi

<

0,
∂gi
∂yi

< 0 and without any dispersal (α = β = 0)the two species do coexists at

an stable equilibrium in both patches. If, in addition

∂f1
∂x1

∂g2
∂y2

−
∂f1
∂y1

∂g2
∂x2

> 0,
∂f2
∂x2

∂g1
∂y1

−
∂f2
∂y2

∂g1
∂x1

> 0,

Then the interior equilibrium is locally asymptotically stable for any dispersal
rates α ≥ 0 and β ≥ 0.

Dispersal and competition population dynamics operate on a similar
time scales
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