Migration, Nomadism, and Range-Residency: How Landscape Dynamics Link Individual Movements to Population-Level Patterns

> Bill Fagan and Thomas Mueller University of Maryland

My collaborator:

Dr. Thomas Mueller

- University of Maryland
- Smithsonian Conservation Biology
 Institute
- German Biodiversity and Research Center (BiK-F)

A moment for pedagogy:

Dr. Thomas Mueller

- University of Maryland
- Smithsonian Conservation Biology
 Institute
- German Biodiversity and Research Center (BiK-F)

A moment for pedagogy:

Dr. Thomas Mueller

- University of Maryland
- Smithsonian Conservation Biology
 Institute
- German Biodiversity and Research Center (BiK-F)

How Complex, Population-level Patterns Arise from Individual Movements

Key Elements:

- Population-level movement patterns
- Individual movement mechanisms
- Key role of <u>dynamic</u> resource landscapes

Relevance:

• Ungulates, but also birds

Approaches:

• Theoretical ecology + ecoinformatics

Population-level distributions

Population-level distributions

Population-level distributions

<u>Conceptual framework for resources, population</u> <u>distributions and movement mechanisms</u>

Mueller and Fagan, Oikos 2008

- Dynamics of resource landscapes
- Individual movement mechanisms

Real Animal Movements

- Mongolian gazelles
- Comparisons among ungulate species

Computational Modeling of Animal Movements

- Situation-dependent use of movement mechanisms
- Spatial memory as a navigation aid in dynamic landscapes

Looking Forward

• Learning and Experience (Migratory Whooping Cranes)

Conceptual framework for resources, population distributions and movement mechanisms

a) Amount

a) Amountb) Spatial variability

a) Amountb) Spatial variabilityc) Temporal variability

a) Amount b) Spatial variability c) Temporal variability d) Predictability

Dynamic Landscape: variable but predictable

Dynamic Landscape: variable and <u>un</u>predictable

<u>Conceptual framework for resources, population</u> <u>distributions and movement mechanisms</u>

Individual level movement mechanisms:

(1) Non-oriented (e.g., diffusion)

stimuli coming from an animal's <u>current location</u>

 cause an alteration in an individual's movement parameters (speed, turning angle)

movement decision with <u>random</u> <u>direction</u>

Individual level movement mechanisms:

(2) Oriented, based on taxis and perceptual range

e.g. visual detection of food good habitats

stimuli <u>stem from a location beyond</u> <u>the animal's current position</u>

movement in a <u>predictable direction</u>.

Individual level movement mechanisms:

(3) *Spatial memory,* based on previous information derived from the recollection of

- an individual's own history,
- communication with conspecifics,
- or as a *genetic inheritance* from its ancestors

path integration (e.g., waggle dance in bees or magnetic compasses in birds)

cognitive maps (e.g., geomagnetic coordinates and use of landmarks)

Resource landscapes:

1) Determine the effectiveness of alternative movement mechanisms

Mueller and Fagan, Oikos 2008

Resource landscapes:

- 1) Determine the effectiveness of alternative movement mechanisms
- 2) Lead to different emergent population-level distribution patterns

Mueller and Fagan, Oikos 2008

- Dynamics of resource landscapes
- Individual movement mechanisms
- **Real Animal Movements**
 - Mongolian gazelles
 - Comparisons among ungulate species

Computational Modeling of Animal Movements

- Situation-dependent use of movement mechanisms
- Spatial memory as a navigation aid in dynamic landscapes

Looking Forward

• Learning and Experience (Migratory Whooping Cranes)

NDVI timeseries of vegetation 'greenness' GIMMS dataset: 8 km resolution, but 30 years of biweekly data

Measuring resources for gazelles Occupancy is greatest for mid-range NDVI values

Mueller et al., J. Appl. Ecol. 2008

Steps to Field Project

Steps to Field Project

0) Theoretical ecologist applies for animal care and use permit

Steps to Field Project

1) Put Satellite Collars on Gazelles

Steps to Field Project

- 1) Put Satellite Collars on Gazelles
- 2) Read Email from Gazelles

Steps to Field Project

- 1) Put Satellite Collars on Gazelles
- 2) Read Email from Gazelles

Characterizing Movement of Mongolian Gazelles

Serengeti - Mara Ecosystem

~400,000 wildebeest

- Dynamics of resource landscapes
- Individual movement mechanisms

Real Animal Movements

- Mongolian gazelles
- Comparisons among ungulate species

Computational Modeling of Animal Movements

- Situation-dependent use of movement mechanisms
- Spatial memory as a navigation aid in dynamic landscapes

Looking Forward

• Learning and Experience (Migratory Whooping Cranes)

Dynamics of population distributions: Multispecies comparison

Data: Four different ungulate species:

- Caribou of the Porcupine herd

(Craig Nicolson, UMASS & Porcupine Caribou Technical Committee)

- Mongolian gazelle (UMASS, WCS, UMD, NZP)

- Patagonian guanaco

(Andres Novaro, Argentine Research Council)

- Moose in Massachusetts

(David Wattles, Stephen DeStefano, UMASS)

Mueller et al. in press. Global Ecology and Biogeography

Realized mobility

Mueller et al. in press. Global Ecology and Biogeography

Relating Dynamics of Population Distributions to Dynamics of Landscapes

Relating Dynamics of Population Distributions to Dynamics of Landscapes

Mueller et al. in press. Global Ecology and Biogeography

Resource landscapes:

- 1) Determine the effectiveness of alternative movement mechanisms
- 2) Lead to different emergent population-level distribution patterns

- Dynamics of resource landscapes
- Individual movement mechanisms

Real Animal Movements

- Mongolian gazelles
- Comparisons among ungulate species

Computational Modeling of Animal Movements

 Spatial memory as a navigation aid in dynamic landscapes

Looking Forward

• Learning and Experience (Migratory Whooping Cranes)

Individual-based Neural Net Genetic Algorithm (ING) Model

A consumer seeking resources by moving through a heterogeneous landscape ...

→ Designed so that individual movement mechanisms may be "turned off"

Individual-based Neural Net Genetic Algorithm (ING) Model

Two key landscape features:

1) Patch Size

Α

2) Resource Predictability

Probability Patch Does Not Move Between Generations

Foci:

- 1) Frequency
- 2) Time of use
- 3) "Relevance" of different movement mechanisms

Relevance = $1 - \left[\frac{efficiency_{reduced neural network}}{efficiency_{full neural network}}\right]$

Efficiency is greatest in predictable landscapes with large patch sizes

Contours are efficiency of movement

(Avg. resources per movement step)

Unpredictable Resources

Consumers evolved to use different mechanisms in different situations

Consumers evolved to use different mechanisms in different situations

Most unexpected result:

Memory used extensively at intermediate patch sizes to systematically search the entire domain

Memory may contribute to 'superdiffusion' observed in many empirical systems

$$MSD = Dt^{\alpha}$$
, $\alpha > 1$

- Dynamics of resource landscapes
- Individual movement mechanisms

Real Animal Movements

- Mongolian gazelles
- Comparisons among ungulate species

Computational Modeling of Animal Movements

- Situation-dependent use of movement mechanisms
- Spatial memory as a navigation aid in dynamic landscapes

Looking Forward

• Learning and Experience (Migratory Whooping Cranes)

Navigating through a dynamic, disordered landscape

- -- Habitat patches, which can be transient
- -- Reference memory (shortest path across)
- -- Working memory (most recent *n* patches)
- -- Rule 1: If on migration route, go to next patch in reference memory, provided it exists

Berbert et al. in review.

Walker efficiency (# patches / # steps for successful migrations)

Collaborators:

- Volker Grimm (UFZ, Germany)
- Kirk Olson (Wildlife Conservation Society)
- Peter Leimgruber (Smithsonian)
- Todd Fuller (Univ. Mass.)
- Craig Nicolson (Univ. Mass.)
- Andres Novaro (Argentine Research Council)
- Maria Bolgeri (Argentine Scientific Agency)
- Gunnar Dressler (UFZ, Germany)
- Justin Calabrese (Smithsonian)
- David Wattles (Univ. Mass. / USGS)
- Steven DeStefano (Univ. Mass. / USGS)
- Devatuyla Kavathekar (Univ. Maryland)
- Juliana Berbert (Univ. Estadual Paulista, Brazil)
- Roberto Kraenkel (Univ. Estadual Paulista, Brazil)
- Jim Tucker (NASA)

Funding:

- US National Science Foundation
 - -- Ecology Panel
 - -- Advances in Bioinformatics Panel

- Dynamics of resource landscapes
- Individual movement mechanisms

Real Animal Movements

- Mongolian gazelles
- Comparisons among ungulate species

Computational Modeling of Animal Movements

- Situation-dependent use of movement mechanisms
- Spatial memory as a navigation aid in dynamic landscapes

Looking Forward

Learning and Experience (Migratory Whooping Cranes)

Whooping Crane (Grus americana)

- tallest bird in North America
- one of only 2 crane species in North America
- long lived >20 years in the wild
- ~ 70 mating pairs in Wood Buffalo NP

Whooping Crane (Grus americana)

"Experimental" eastern flock migrates from Wisconsin to Florida

Eastern Flock of Whooping Cranes

- -- Not yet reproducing in wild
- -- Population augmented from captive breeding
- -- Captive birds don't instinctively know how to migrate, so they must be taught ...

Eastern Flock of Whooping Cranes

-- Unique opportunities for studying long distance movements

-- Individuals trained in controlled ways, and tracked over many years:

→ Information on learning (age, group composition)

-- Human -- controlled breeding :

→ Known pedigrees

→ Tease apart genetics from environmental influences (work in progress / not today)

Quantifying migratory movements

- -- First southbound flight: trained by ultralight aircraft
- -- Subsequent flights (N and S) : birds only, individually or in groups
- Intense monitoring (and GPS)
 give spatiotemporal details
 of each bird's migration
- -- Measure:
 - Departure/ arrival dates
 - Trip duration
 - Deviation from straight line
- How do cranes' migratory journeys change across years ?

Older birds travel more slowly

So older cranes:

- 1) Fly more directly with much less deviation (85% reduction in 9 years)
- 2) Take longer to travel the migration route
- 3) Depart and arrive earlier on both N- and S-bound legs (not shown)

So older cranes:

- 1) Fly more directly with much less deviation (85% reduction in 9 years)
- 2) Take longer to travel the migration route
- 3) Depart and arrive earlier on both N- and S-bound legs (not shown)

Do not anthropomorphize this
A Google Earth Plug-in to Aid Visualization of Animal Movements

Java World Wind transitioning to a Google API

Kavathekar et al. in prep.

Gazelles encounter border fences → Real world reflecting boundaries

100 km

50

Effects of imposing a barrier to movement

Mueller, Fagan, & Grimm. Theoretical Ecology. In press.

Animal distributions and movement behaviors in relation to resource dynamics

ramework of resource distribute

Part 2 :(empirical)

> Resource distributions and movements of Mongolian gazelle

Part 3 : (empirical) > Comparison of movements between species

Part 1: Conceptual framework for resources, population distributions and movement mechanisms

Mueller and Fagan, Oikos 2008

Visualization of Gazelle Movements

Sep 4, 2007

100 km

50

0

Discussion

Conservation Strategies Nomadism versus Migration:

- protection of seasonal ranges (e.g. calving grounds)
- protection of migration routes
- integrative landscape approaches vs. protected areas
- Minimum Dynamic area

Coping with changes in patterns of primary productivity as a consequence of climate change:

What population level pattern and which individual level movement behaviors are more threatened or more flexible?