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1. HANTAVIRUS:
A Recent Emerging Zoonotic Disease is Carried by Wild
Rodents.

Transmission of Hantaviruses

.

Chronically infected
rodent

Horizontal transmission of
infection by intraspecific
aggressive behavi
¢ " -

Virus is present in = Virus also present in

aerosolized excreta, Ty throat swab and feces
particularly urine Secondary aerosols, mucous
membrane contact, and skin

H breaches are also a consideration




We Summarize Hantavirus Infection in Humans and Its

Origin

e In Humans the disease is known as either Hemorrhagic
Fever with Renal Syndrome — HFRS (Europe, Asia)

Hantavirus Pulmonary Syndrome — HPS (Americas).

e HFRS was first recognized in 1951 when an outbreak
occurred in military personnel during the Korean War
(near Hataan River).

e HPS was identified in 1993 from an outbreak in New
Mexico. It is recognized as an emerging disease and
more recently, a biodefense agent.

e HPS case fatality rate in humans in the US =~ 40%.
No cure or established drug treatment.




Each Hantavirus is Associated with A Specific Wild
Rodent.

ruii.New World Hantaviruses
‘l-, New York
- Peromyscus leucopus
Peromyscus maniculatus (S Prospect Hill

Muleshoe Microtus pennsylvanicus
Sigmodon hispidus loodland Lake
: Microtus ochrogaster
~ Isla Vistm——— Bayou
Microtus californicus Oryzomys palustris
El Moro Ca Black Creek Canal
Pl 2 = '™ Sigmodon hispidus
Reithrodontomys megalotis J’_’/Rlo Segundo
Cano Delgadito Q.,_,, Reithrodontomys mexicanus
Sigmodon alstoni Laguna Negra
Juquitib; Calomys laucha
Unknown Host Maciel
Rio Mamore Necromys benefactus
Oligoryzomys microtis Hu39694
Ora Unknown Host
Oligoryzomys longicaudatus Lechiguanas
Bermejo ; Oligoryzomys flavescens
Oligoryzomys chacoensis Pergamino
Andes Akodon azarae
Oligoryzomys longicaudatis




A Zoonotic Disease Involves Multiple Species, the

Animal Reservoir and Spillover Infections.

e During an outbreak, the reservoir species is
identified by the large number of animals that have
positive antibody titers.

e Spillover species, secondary rodent species, are also
identified; a few animals that have positive antibody
titers.

e Humans are also spillover species but there is no
human-to-human transmission.




Questions of Interest

1 Disease Maintenance: Can the spillover species be a
source for maintenance of the disease in the wild?

2 Host-Shifts: What are the important drivers for cross
species transmission that result in host shifts,
spillover becoming a reservoir?




2. We Formulated an ODE Patch Model with Three

Regions

Reservoir Habitat Boundary Spillover Habitat
Sa Sb
S, J S,
v —» E B > ¥
E, I E,
v “«— L Ay — v
I; { As
v P, R, v
P, Reservoir Spillover R
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Reservoir Species in its Preferred Habitat:

(Sra Era Ir’ Pr)-

b, N, — S, (B1I, + BpP;) — S;d.(N;)—p;i Sy + PoSa
S, (B1I, + BpP,) — 6, E, — E.d,.(N,)—pi;E, 4+ poE,
0,E, —~vp I — Id.(N;)—pil, + pola

= Yl — Pod,(N;)—piP; + poPa

o

p; =movement into boundary

Po =movement out of boundary

I,. = newly infectious P,. = persistently infectious
Reservoir Species in the Boundary: (S,, E,, I,, P,).



Spillover Species in its Preferred Habitat:

(Ssa Esa Asa Rs)

bsN; — BaSsAs — Ssds(Ns)—piSs + PoSh
BaSsAs — 0sE; — E;ds(Ns)—piEs + poEy
0sEs — vsAs — Asds(Ns)—piAs — poAb

= 7sAs — Rsds(Ns)—pi Rs + poRb

)
I

ol r?; mtq w.
Il

%)

A = acutely infectious
R, = recovered
Spillover Species in the Boundary: (Sp, Ep, Ap, Rp)



Reservoir and Spillover Species in the Boundary — No

Births and Deaths.

Reservoir:
Sa - _Sa(ﬁalIa + /6a2Pa + /60,3Ab) + piSr - poSa
E, = Sa(/BalIa + /8a2Pa + ﬂa3Ab) - 6aEa, + piE'r- - poEa
ja = 6aEa - ’YaIa + szr - poIa
Pa = PYaIa +piPr_poPa
Spillover:
Se = —Sp(Bo1la + Bo2Pa + BesAs) + PiSs — PoSe
Ey, = Sp(Boila + Bb2Pa + BrsAb) — b Ep + piEs — poEp
Ab = 0pEp — WA + PiAs — PoAb

R, = ~Ap+ piRs — DoRb.



The Total Population Satisfies a Logistic Growth

Assumption.
dN,.
dt = polNg + N, [br _pi_d'r'(Nr)]
dN,
dt = piN,. — poN,
dNj,
dt = poNb+Ns [bs_pi_ds(Ns)]
dNy
? = pPilNs — poNp.
Solutions approach their carrying capacities.
RESERVOIR: .
Jim N,(t) = K, and lim Na(t) = * K, = K,
SPILLOVER: ’

Jim N,(t) = K, and lim Ny (t) = Pk, = Ky
—00 —00 P

(o]



The Basic Reproduction Numbers for Reservoir,

Spillover and Three-Patches are Computed.

X = (Era Ea,a Eba Esa Ir, Ia, Ab, Asa Pra Pa)
In the special case §; = 0 = ~;, ¢ = a, b, an explicit
expression for Rg can be obtained:

poK'r' (BIb'r + BP’YT')(ST + piKa(ﬁalb'r + Ba2’7’r‘)5r
po((sr + b'r) ('71’ + b'r)b'r )

poKs,@A(ss + Pz’Kb,@b353
po(‘ss + bs)(’)’s + bs)

R, =

Ry =

Diekmann, Heesterbeek, Metz, 1990; van den Driessche, Watmough, 2002; Roberts, Heesterbeek, 2003



The Basic Reproduction Number for Three Patches

Depends on the Crossover Reproduction Number

_ Ry + Ry + (R — Rg)? + 475
- . ,

Crossover Reproduction Number in the Boundary
(51 =0=n";, 1= a,b):

piKb(/Bblb'r‘ + /3b2'7'r‘)6r:| I: PiBa3Kads
po(5r + br) ('7r + br)br po('Ys + bs)((ss + bs)

Ro

Ro

= RsrRrs .

Disease invasion occurs if Rg > 1.



The Basic Reproduction Number Determines the Global

Dynamics.

Theorem

(ODE Model, 61, =0=";, 1 = a, b)
(i) If Ro < 1, then the DFE is globally asymptotically
stable, and

(iii) If Ro > 1, then the DFE is unstable and there exists a
unique positive EE.




3. Continuous-Time Markov Chain (CTMC) Model for

Rodent-Hantavirus System
Z =
(Sr’ E’ra Ira P’ra Saa Ea7 Ia7 Pa7 Sln Eb7 Abv Rb7ssa Esa Asa Rs)

AZ = (AS,,AE,,...,AA,, AR,)

Change AZ Probability
(—1,1,0,0,...,0) | BaS.I,At + o(At)
(0,—-1,1,...,0) SAE,. At + o(At)




Assumptions about Parameter Values

Reservoir Spillover

Parameter | Value | Parameter | Value
K, 100 K 50
b, 3 bs 3
o 26/yr ds 26/yr
Ir 4 [yr Vs 26/yr
da 26/yr b 26/yr
Ya a/yr o 26/yr
Br 0.075 Ba 0.025
Bp 0.025 Bbs 0.025
Ba, 0.075 Bb, 0.15
Bas 0.025 Bb. 0.05
Bas 0.05

Table: Basic parameter values for the ODE and the CTMC
models for reservoir and spillover species. For p; = 8, p, = 52,
Ry =1.4,R5~0.04, and R§ < 2 X 10~%.



Comparison of ODE and CTMC Infectious Reservoir

Population in Preferred Habitat and in Boundary

Preferred Habitat Boundary

Reservoir Species

Reservoir Species (Bdry)

Figure: Solution to the ODE model (straight lines) and one
sample path of the CTMC model (variable curves)



Probability Histograms for the Reservoir Species in

Preferred Habitat

Newly Infectious Persistently Infectious

Prob{l =njx 10°*
Prob{P =njx 10*

25 30 35

30 0 5 10 15 20
n

Figure: Probability histograms I,. and P, based on 10,000 sample
paths of the CTMC model; 17, = 8.8, 67, = 4.3 and
fip, = 14.0, 6p, = 5.4.



ODE and CTMC for the Acute Infection of Spillover

Species in Preferred Habitat and Boundary.

Spillover Species
N

2
Year

The model shows sporadic infection in spillover species.
Spillover events may lead to “host shifts” and emergence
of new diseases.



The Value of Ry as a function of p; (rate move into
boundary) and 364 /p, (average number days in bdry)

p, (visits/year) 2 364/po (days)



4. We Formulate a Branching Process Model

We apply Galton Watson Branching Process to
approximate the probability of an outbreak, given

I.(0) =1, I,(0) = 1, or Ap(0) = 1. Assume events are
independent. In each region, the population densities are
at their disease-free states.

Preferred Habitats:

Boundary Habitat:

S, = Ko, Sp= Kbp.

K,=2k K =Pk,

Po Do




We will Formulate Probability Generating Functions

(P.G.F.) for the Offspring

At the disease-free state consider the offspring distribution
for X = (E,, I, P, Eq, 1o, P,, Ep, Ap, Es, As) if one
individual is introduced, E, or I,, etc. Given

X(0) = ((513', .o ,(5nj), then

,fj(sla csey 310)

- Z Prob{X = (i1,...,410)}s% - - - sit0

i15.09210

ji=1,...,10, f;(1,...,1) = 1.



EXAMPLE: Branching Process Applied to the Spillover

Species in its Preferred Habitat—

5532 + bs

63 + bs
,BAK33132 + “¥s + bs

A, =1: =
f2(81’ 82) /6AKS + Vs + bs
Expectation Matrix M = (0f;/05;)s;=1=s,

E;, =1: fi(s1,82) =

ds
0 0:+b
M = BAKS AI{SS

/6AK5 + Vs + bs ﬁAKs + RE + bs

Lahodney, Allen (in progress)



EXAMPLE: Probability of Disease Extinction for

Spillover Species

/BO,K863
m=p(M) <1 iff Ry = <1
(M) O (7s + bs)(8s + bs)
(i) f m < 1(R§ < 1), the branching process is called

subcritical and the probability of extinction is one.

(ii) If m > 1(R§ > 1), the branching process is called
supercritical and the probability of extinction is less

than one,
ai a2

q; 427

where (g1, g2) is the smallest fixed point of
fi(gl, (I2) =qi,0<q; <1,i=1,2, Es(o) = ai
and A;(0) = as.



EXAMPLE: Explicit Expressions for the Fixed Points

when Ry > 1

_ % 1 b
BT 5+ bRy 6.+ b,
. 1
q2 = R

if the process is supercritical, R§ > 1. In general, an
explicit expression for a fixed point for multi-type
processes may not be possible to compute. We compute
the fixed point numerically for our three-patch hantavirus
model.



General Theory of Multi-Type Branching Process

Let fj, j =1,...,10 be the p.g.f. for a multi-type
branching process and let m be the spectral radius of the
expectation matrix

M = (afj/asi)lslzl,..-,SIOZ]- :

(i) If m < 1, the process is subcritical and the
probability of extinction equals one.

(ii) If m > 1, the process is supercritical and the
probability of extinction is approximately

ay a2 alo

d17°42" ---q10 »

where (q1,...,q10) is the unique minimal fixed point
of f;,0<¢q; < 1,E.(0) = a1,...,As(0) = aio-



Formulating a Branching Process for Spillover and

Reservoir

For the spillover species Y = (Esy As, Ep, Ap),
AY = (AEy, AAy, AE,, AA,).

Change AY Probability
(0’ 0’ 19 0) ﬁAAsKsAt
(0,0,—1,1) 0, E At
(0,0,—1,0) b, E;At
(1,0,—1,0) piEsAt
(—1, 0,1, 0) poEp At
(0,0,0,—1) (vs + bs)As AL
(0,1,0,—1) DiAsAt
(0,-1,0,1) PoApAt
(13 Oa 07 0) Kb(/BblIa + ﬁb2Pa + ﬂbSAb)At
(-1,1,0,0) o Ep At
(Oa -1,0, 0) 'YbAbAt




We Formulate the P.G.F. for Offspring for the Spillover

Species

X = (E'r’ Ir, P'm Eaa Iaa Paa Eba Aba E57 As)
(sla 824834844 85,8645 S7, S84 59, 510)

0 o
By — 1 f, — 958 T Poso
6b + Po
BazKassss + Bu3Kpssst + Y6 + PoS10
Ab =1: fs =
BazKa + Bo3Kp + b + Do
55 bs 7
E,—1: fo— Ss10 + bs + pist
55 + bs + P
Ks 7 bs s
A, =1: fio = BaKss9s1o + pisg + bs +

,BAKS +pi+bs+’)’s



Probability of an Outbreak in Hantavirus Model with

Spillover and Reservoir

For the parameter values in the Table, m = p(M) > 1.
The minimal fixed point for f; is calculated. For one
infectious individual, the probability of an outbreak is

1—gqj:

Three curves 1 — q; are graphed as a function of
K, = (pi/po)K'r-

Reservoir in Preferred Habitat, I,. = 1: 1 — g2
Reservoir in Boundary, I, = 1: 1 — g5

Spillover in Boundary, Ay, = 1: 1 — gs



The Probability of an Outbreak Increases as K,
increases.

50 100 150 2(])(0 250 300 350 400

Figure: Parameter values as in the Table with
K, = (pi/po)K, = 1000/p, (K, = 100 and p; = 10).



Conclusion

Questions on Disease Maintenance and Host-Shifts

1 Disease maintenance? It is possible for the spillover
species to contribute to the maintenance of the
disease in the wild when the density of (or
transmission between) the reservoir and spillover
species in regions of overlap increase significantly.
Presence of spillover increases Ry and decreases
probability of disease extinction ( amplification
effect).

2 Host-shifts? Cross species transmission can lead to
host-shifts when a new viral strain is able to
reproduce in a new host. Evolution must lead to
R§ > 1. More likely between closely related hosts.

Streicker et al. 2010
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