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Feasible reasoning with VPV

The VPV theory

@ A universal theory based on Cook’s theory PV ('75) associated with
complexity class P (polytime)

@ With symbols for all polytime functions and their defining axioms
based on Cobham's Theorem ('65).

@ Induction on polytime predicates: a derived result via binary search.

@ Proposition translation: polynomial size extended Frege proofs
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Feasible reasoning with VPV

The VPV theory

@ A universal theory based on Cook’s theory PV ('75) associated with
complexity class P (polytime)

@ With symbols for all polytime functions and their defining axioms
based on Cobham's Theorem ('65).

@ Induction on polytime predicates: a derived result via binary search.

@ Proposition translation: polynomial size extended Frege proofs

@ We are mainly interested in Iy (and ;) theorems YX3Y (X, Y),
where ¢ represents a polytime predicate.

@ A proof in VPV is feasibly constructive: can extract a polytime
function F(X) and a correctness proof of VX (X, F(X)).

@ Induction is restricted to polytime “concepts”.

)
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Feasible proofs

Polytime algorithms usually have feasible correctness proofs, e.g.,
@ the “augmenting-path” algorithm: finding a maximum matching
@ the Hungarian algorithm: finding a minimum-weight matching
° ...

(formalized in VPV, see the full version on our websites)
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Feasible proofs

Polytime algorithms usually have feasible correctness proofs, e.g.,
@ the “augmenting-path” algorithm: finding a maximum matching
@ the Hungarian algorithm: finding a minimum-weight matching
° ...

(formalized in VPV, see the full version on our websites)

Main Question
How about randomized algorithms and probabilistic reasoning?

“Formalizing Randomized Matching Algorithms”




How about randomized algorithms?

Two fundamental randomized matching algorithms

@ RNC? algorithm for testing if a bipartite graph has a perfect matching
(Lovasz '79)

@ RNC? algorithm for finding a perfect matching of a bipartite graph
(Mulmuley-Vazirani-Vazirani '87)

Recall that:

Log-Space C NC>C P
RNC? C RP

Remark

The two algorithms above also work for general undirected graphs, but we
only consider bipartite graphs.
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Lovasz’s Algorithm

Problem: a b C
Elvam o serie melh €, dails | N |
if G has a perfect matching. d B £
d e f replace ones with
a | 101 distinct variables xi1 0 xi3
1 1 0 AAANANANANNNANNNANNAS MG — X201 Xo2 0
C 0 1 1 0 X32 X33
Edmonds’ Theorem (provable in VPV)
G has a perfect matching if and only if Det(Mg) is not identically zero. J




Lovasz’s Algorithm

Problem:

a c
if G has a perfect matching. LNJ‘

Given a bipartite graph G, decide

e
d e f replace ones with
a 101 distinct variables x11 0 x3
1 ]_ 0 ANAANANNNANNNNANANANAS MG — X21 X292 0
c 01 1 0 x3 x33

Edmonds’ Theorem (provable in VPV)
G has a perfect matching if and only if Det(Mg) is not identically zero.

v

The usual proof is not feasible since. ..

it uses the formula Det(A) = > s (—1)%"@) []7_; A(i,o(i)), which has
n! terms. )
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Lovasz’s Algorithm

d e f replace ones with
a 101 distinct variables x1 0 xi3
b 1 1 0 ANAAAANNNNNNANANANSS MG — Xo1 Xo2 0
c [0 11 0 Xx32 xs33

Edmonds’ Theorem (provable in VPV)
G has a perfect matching if and only if Det(Mg) is not identically zero.

v

Lovasz’s RNC? Algorithm
@ Observation: instance of the polynomial identity testing problem
o Det(MZ*") is a polynomial in n? variables x;; with degree at most n.
Det(MZ*") is called the Edmonds’ polynomial of G.
@ Pick n? random values r;j from S = {0,...,2n}

@ if Det(Mg) =0, then Det(Mg)(F) =0
© if Det(Mg) # 0, then Pr._ . [Det(Mg)(F) # 0] >1/2

@ (2) follows from the Schwartz-Zippel Lemma




Obstacle #1 - Talking about probability
@ Given a polytime predicate A(X, R),

Prretoap [A(X, R)] = LEELOI AR

@ The function F(X) :=[{R € {0,1}" | A(X,R)}| is in #P.
@ #P problems are generally harder than NP problems
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Cardinality comparison for large sets

Definition (Jefabek 2004 — simplified)
Let I, A C {0,1}" be polytime definable sets, I is “larger” than A if there
exists a polytime surjective function F : [ — A.

v

A bit of history
A series of papers by Jefabek (2004-2009) justifying and utilizing the
above definition

@ A very sophisticated framework

@ Based on approximate counting techniques

@ Related to the theory of derandomization and pseudorandomness

@ Application: formalizing probabilistic complexity classes
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Obstacle #1 - Talking about probability

@ Given a polytime predicate A(X, R),

Prrefoap [A(X, R)] = LEELGIT AR

@ The function F(X) :=|[{R € {0,1}" | A(X,R)}| is in #P.
@ #P problems are generally harder than NP problems

Solution [Jefabek '04]
@ We want to show Prgeig 130 [A(X, R)] < r/s, it suffices to show
H{R € {0,1}"|A(X,R)} -s<2"-r

@ Key idea: construct in VPV a polytime surjection
G :{0,1}" x [r] » {R € {0,1}" | A(X, R)} x [s],

where [m] .= {1,..., m}.
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The Schwartz-Zippel Lemma

Let P(Xi,...,X,) be a non-zero polynomial of degree D over a field F.

Let S be a finite subset of F. Then

. D
Pracen[P(R) = 0] < B

Obstacle #2

@ The usual proof assumes we can rewrite
D

P(le-'an) :ZX]-_I PJ(X27"‘7XI7)
J=0

@ This step is not feasible when P is given as arithmetic circuit or
symbolic determinant
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The Schwartz-Zippel Lemma

Let P(Xi,...,X,) be a non-zero polynomial of degree D over a field F.
Let S be a finite subset of F. Then

- D
Pracsn [P(R) = 0] € —

S|
Obstacle #2
@ The usual proof assumes we can rewrite
D
P(X1,....Xn) =Y _X{ - Py(Xa,..., Xn)
J=0

@ This step is not feasible when P is given as arithmetic circuit or
symbolic determinant

Solution

@ Being less ambitious: restrict to the case of Edmonds’ polynomials

@ Take advantage of the special structure of Edmonds’ polynomials
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Edmonds’ polynomials

d e f replace ones with Edmonds’
a (101 distinct variables X11

1 10 VAV VAV V V. VWV VV V.V V VSN MG — X01
c 0 1 1 0

Useful observation:
@ Each variable x;; appears at most once in Mg.

@ From the above example, by the cofactor expansion,

Det(l\/IG) = —x33 - Det ( xw 0 ) + Det
X21 X22

@ Thus, we can apply the idea in the original proof.

X11
Xx21
0

matrix:

0 X3
X22 0
X32 X33

0 X13
x» 0
X32 0
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Schwartz-Zippel Lemma for Edmonds’ polynomials

Theorem (provable in VPV)

Assume the bipartite graph G has a perfect matching.
@ Let S={0,...,5 — 1} be the sample set.
o Let MZ*" be the Edmonds’ matrix of G.

Then we can construct polytime surjection

F:[n] x S" 1 - {Fe S” |Det(Mg)(F) = 0}.

@ The degree of the Edmonds’ polynomial Det(Mg) is at most n.
@ The surjection F witnesses that

P o [Det(Me)(7) — 0] — L7 E S IDHM)N =0} _

Fesn? Sn2

0
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The Mulmuley-Vazirani-Vazirani Algorithm

@ RNC? algorithm for finding a perfect matching of a bipartite graph

@ Key idea: reduce to the problem of finding a unique min-weight
perfect matching using the isolating lemma.

Obstacle
The isolating lemma seems too general to give a feasible proof.

Solution
Consider a specialized version of the isolating lemma.

Lemma

Given a bipartite graph G. Assume the family F of all perfect matchings
of G is nonempty. If we assign random weights to the edges, then

Pr[the min-weight perfect matching is unique] is high.
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Summary

Main motivation

Feasible proofs for randomized algorithms and probabilistic reasoning:
“Formalizing Randomized Matching Algorithms”

We demonstrate the techniques through two randomized algorithms:

@ RNC? algorithm for testing if a bipartite graph has a perfect matching
(Lovasz '79)
» Schwartz-Zippel Lemma for Edmonds’ polynomials
@ RNC? algorithm for finding a perfect matching of a bipartite graph
(Mulmuley-Vazirani-Vazirani '87)
> a specialized version of the isolating lemma for bipartite matchings.

Take advantage of special linear-algebraic properties of Edmonds’ matrices
and Edmonds’ polynomials J
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Open problems and future work

Open questions

@ Can we prove in VPV more general version of the Schwartz-Zippel
lemma?

@ Can we do better than VPV, for example, VNC??
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Open problems and future work

Open questions

© Can we prove in VPV more general version of the Schwartz-Zippel
lemma?

@ Can we do better than VPV, for example, VNC??

Future work

@ How about RNC? matching algorithms for undirected graphs?
Use properties of the pfaffian
Need to generalize results from [Soltys '01] [Soltys-Cook '02]
(with L&)
@ Using Jefabek's techniques to formalize constructive aspects of
fundamental theorems that require probabilistic reasoning.

Theorems in cryptography, e.g., the Goldreich-Levin Theorem,
construction of pseudorandom generator from one-way functions, etc.
(with George and L&)

v
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