Convergence result of a non montone scheme for HJB equations

Hasnaa Zidani

ENSTA ParisTech & Inria Saclay

(with O. Bokanowski, E. Cristiani, N. Forcadel, and N. Megdich)

Outline

- In HJB equation with discontinuous data
- 2 An anti-diffusive scheme: Ultra bee
- 3 Numerical Solutions
- 4 Application: space launcher

< 口 > < 同

known results Some remarks on the monotonicity

HJB equation with discontinuous data

- known results
- Some remarks on the monotonicity

2 An anti-diffusive scheme: Ultra bee

- 3 Numerical Solutions
- Application: space launcher

known results Some remarks on the monotonicity

Hamilton - Jacobi - Bellman equation

➤ Let ϑ be the unique bounded lsc (or continuous) viscosity solution of the HJB equation:

$$\partial_t \vartheta(x, t) + \sup_{a \in A} (-D_x \vartheta(x, t) \cdot f(x, a)) = 0$$

 $\vartheta(x, 0) = \Phi(x).$

Case Φ continuous: Crandall, P.L Lions, Cappuzo-Dolcetta/Bardi, Barles,... Case Φ discontinuous: Frankowska, Barron-Jensen, ...

(日) (同) (三) (

The lsc solution θ is the value function corresponding to the control problem:

$$\begin{array}{ll} \text{Minimise} & \Phi(y_x(t)) \\ \dot{y}_x(s) = f(y_x(s), a(s)), \\ y(0) = x, \\ a(s) \in A \text{ a.e.} \end{array}$$

 Barles-Souganidis'91: general convergene framework for [monotone+regular+consistante] schemes (only when Φ is continuous).

known results Some remarks on the monotonicity

When Φ is continuous, it is proven in (Crandall&Lions'84) that monotone schemes have the following favorable properties:

 \square Monotone schemes are stable in the L^{∞} norm;

- under the monotonicity assumption, the scheme satisfies a discrete comparison principle: If u^h and v^h are, respectively, discrete sub- and super-solutions, then u^h ≤ v^h.
- The error between the numerical solution of a monotone scheme and the exact viscosity solution of the HJ equation, measured in the L^{∞} norm, is in general of order $O(h^{1/2})$.

known results Some remarks on the monotonicity

- However, it is an unfortunate fact that linear monotone schemes cannot be higher than first order accurate for smooth solutions.
- Monotone schemes based on "interpolation" technics are not suitable for the approximation of discontinuous solutions.

Image: A matrix

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

HJB equation with discontinuous data

2 An anti-diffusive scheme: Ultra bee

- Linear advection in 1d
- HJB-UB scheme
- Convergence result. L¹-Error estimate

3 Numerical Solutions

Application: space launcher

< □ > < 同 >

HJB equation with discontinuous data An anti-diffusive scheme: Ultra bee Numerical Solutions Application: space launcher Convergence result. L¹-Error estimate

Consider the "linear" case,

$$\begin{cases} v_t + f(x) \cdot v_x = 0, \\ v(0, x) = v_0(x) \end{cases}$$

Idea: Approximate the exact average value on each mech interval

$$\widetilde{V}_j^n = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} v(t_n, x) dx,$$

and not the point value $v(t_n, x_j)$.

Image: Image:

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

Discretization: Uniform mesh x_j , t_n

$$\begin{cases} \frac{V_j^{n+1} - V_j^n}{\Delta t} + f(x_j) \frac{V_{j+1/2}^{n,L} - V_{j-1/2}^{n,R}}{\Delta x} = 0\\ V_j^0 = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} v_0(x) dx \end{cases}$$

- Assume f > 0. The upwind scheme is stable but it is diffusive, while the downwind scheme is anti-diffusive but it is unstable
- We denote $\nu_j := f(x_j) \frac{\Delta t}{\Delta x}$ and assume the CFL condition

$$|\nu_j| \leq 1,$$

(日) (同) (三) (

Linear advection in 1d HJB-UB scheme Convergence result. L^1 -Error estimate

Discretization: Uniform mesh x_j , t_n

$$\begin{cases} \frac{V_j^{n+1} - V_j^n}{\Delta t} + f(x_j) \frac{V_j^n - V_{j-1}^n}{\Delta x} = 0\\ V_j^0 = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} v_0(x) dx \end{cases}$$

- Assume f > 0. The upwind scheme is stable but it is diffusive, while the downwind scheme is anti-diffusive but it is unstable
- We denote $\nu_j := f(x_j) \frac{\Delta t}{\Delta x}$ and assume the CFL condition

 $|\nu_j| \leq 1,$

< ロ > < 同 > < 回 > .

Linear advection in 1d HJB-UB scheme Convergence result. L^1 -Error estimate

Discretization: Uniform mesh x_j , t_n

$$\begin{cases} \frac{V_j^{n+1} - V_j^n}{\Delta t} + f(x_j) \frac{V_{j+1}^n - V_j^n}{\Delta x} = 0\\ V_j^0 = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} v_0(x) dx \end{cases}$$

- Assume f > 0. The upwind scheme is stable but it is diffusive, while the downwind scheme is anti-diffusive but it is unstable
- We denote $\nu_j := f(x_j) \frac{\Delta t}{\Delta x}$ and assume the CFL condition

 $|\nu_j| \leq 1,$

(日) (同) (三) (

Linear advection in 1d HJB-UB scheme Convergence result. L^1 -Error estimate

Discretization: Uniform mesh x_j , t_n

$$\begin{cases} \frac{V_j^{n+1} - V_j^n}{\Delta t} + f(x_j) \frac{V_{j+1/2}^{n,L} - V_{j-1/2}^{n,R}}{\Delta x} = 0\\ V_j^0 = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} v_0(x) dx \end{cases}$$

- Assume f > 0. The upwind scheme is stable but it is diffusive, while the downwind scheme is anti-diffusive but it is unstable
- We denote $\nu_j := f(x_j) \frac{\Delta t}{\Delta x}$ and assume the CFL condition

 $|\nu_j| \leq 1,$

< □ > < 同 > < 回 > <</p>

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

Flux definitions for UB-G scheme

• If $\nu_j > 0$, then $V_{j+1/2}^{n,L} := \min(\max(V_{j+1}^n, b_j), B_j)$ (Déprès-Lagoutière)

• If
$$u_j < 0$$
 then $V_{j-1/2}^{n,R} := \min(\max(V_{j-1}^n, b_j^-), B_j^-)$,

• If $\nu_j \leq 0$ and $\nu_{j+1} \geq 0$, then define $V_{j+\frac{1}{2}}^{n,R} := V_{j+1}$ and $V_{j+\frac{1}{2}}^{n,L} := V_j$. ("Downwind choice")

• If $\nu_j \nu_{j+1} > 0$, then define $V_{j+\frac{1}{2}}^{n,R} := V_{j+\frac{1}{2}}^{n,L}$ (if $\nu_j > 0$) or $V_{j+\frac{1}{2}}^{n,L} := V_{j+\frac{1}{2}}^{n,R}$ (if $\nu_{j+1} < 0$).

where
$$\begin{cases} b_{j} := \operatorname{Max}(V_{j}^{n}, V_{j-1}^{n}) + \frac{1}{\nu_{j}}(V_{j} - \operatorname{Max}(V_{j}^{n}, V_{j-1}^{n})), & \nu_{j} = f(x_{j})\frac{\Delta t}{\Delta x}, \\ B_{j} := \operatorname{Min}(V_{j}^{n}, V_{j-1}^{n}) + \frac{1}{\nu_{j}}(V_{j} - \operatorname{Min}(V_{j}^{n}, V_{j-1}^{n})), & \nu_{j} = f(x_{j})\frac{\Delta t}{\Delta x}. \end{cases}$$

Case $\nu_j > 0$, for all *j*: $V_{j+\frac{1}{2}}^{n,L} =: V_{j+\frac{1}{2}}^{n,R}$

Hasnaa Zidani BIRS, February 14-18, 2011

イロト イポト イヨト イヨト

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

Flux definitions for UB-G scheme

• If
$$u_j > 0$$
, then $V^{n,L}_{j+1/2}$:= min $(\max(V^n_{j+1}, b_j), B_j)$ (Déprès-Lagoutière)

• If
$$\nu_j < 0$$
 then $V_{j-1/2}^{n,R} := \min(\max(V_{j-1}^n, b_j^-), B_j^-)$,

• If $\nu_j \leq 0$ and $\nu_{j+1} \geq 0$, then define $V_{j+\frac{1}{2}}^{n,R} := V_{j+1}$ and $V_{j+\frac{1}{2}}^{n,L} := V_j$. ("Downwind choice")

• If $\nu_j \nu_{j+1} > 0$, then define $V_{j+\frac{1}{2}}^{n,R} := V_{j+\frac{1}{2}}^{n,L}$ (if $\nu_j > 0$) or $V_{j+\frac{1}{2}}^{n,L} := V_{j+\frac{1}{2}}^{n,R}$ (if $\nu_{j+1} < 0$).

where
$$\begin{cases} b_{j} := \operatorname{Max}(V_{j}^{n}, V_{j-1}^{n}) + \frac{1}{\nu_{j}}(V_{j} - \operatorname{Max}(V_{j}^{n}, V_{j-1}^{n})), & \nu_{j} = f(x_{j})\frac{\Delta t}{\Delta x}, \\ B_{j} := \operatorname{Min}(V_{j}^{n}, V_{j-1}^{n}) + \frac{1}{\nu_{j}}(V_{j} - \operatorname{Min}(V_{j}^{n}, V_{j-1}^{n})), & \nu_{j} = f(x_{j})\frac{\Delta t}{\Delta x}. \end{cases}$$

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

イロト イポト イヨト イヨト

э

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

Flux definitions for UB-G scheme

• If
$$u_j > 0$$
, then $V^{n,L}_{j+1/2}$:= min $(\max(V^n_{j+1}, b_j), B_j)$ (Déprès-Lagoutière)

• If
$$\nu_j < 0$$
 then $V_{j-1/2}^{n,R} := \min(\max(V_{j-1}^n, b_j^-), B_j^-)$,

• If
$$\nu_j \leq 0$$
 and $\nu_{j+1} \geq 0$, then define
 $V_{j+\frac{1}{2}}^{n,R} := V_{j+1}$ and $V_{j+\frac{1}{2}}^{n,L} := V_j$. ("Downwind choice")

• If $\nu_j \nu_{j+1} > 0$, then define $V_{j+\frac{1}{2}}^{n,R} := V_{j+\frac{1}{2}}^{n,L}$ (if $\nu_j > 0$) or $V_{j+\frac{1}{2}}^{n,L} := V_{j+\frac{1}{2}}^{n,R}$ (if $\nu_{j+1} < 0$).

where
$$\begin{cases} b_{j} := \operatorname{Max}(V_{j}^{n}, V_{j-1}^{n}) + \frac{1}{\nu_{j}}(V_{j} - \operatorname{Max}(V_{j}^{n}, V_{j-1}^{n})), & \nu_{j} = f(x_{j})\frac{\Delta t}{\Delta x}, \\ B_{j} := \operatorname{Min}(V_{j}^{n}, V_{j-1}^{n}) + \frac{1}{\nu_{j}}(V_{j} - \operatorname{Min}(V_{j}^{n}, V_{j-1}^{n})), & \nu_{j} = f(x_{j})\frac{\Delta t}{\Delta x}. \end{cases}$$

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

Flux definitions for UB-G scheme

• If
$$u_j > 0$$
, then $V^{n,L}_{j+1/2}$:= min $(\max(V^n_{j+1}, b_j), B_j)$ (Déprès-Lagoutière)

• If
$$\nu_j < 0$$
 then $V_{j-1/2}^{n,R} := \min(\max(V_{j-1}^n, b_j^-), B_j^-)$,

• If
$$\nu_j \leq 0$$
 and $\nu_{j+1} \geq 0$, then define
 $V_{j+\frac{1}{2}}^{n,R} := V_{j+1}$ and $V_{j+\frac{1}{2}}^{n,L} := V_j$. ("Downwind choice")

• If
$$\nu_j \nu_{j+1} > 0$$
, then define
 $V_{j+\frac{1}{2}}^{n,R} := V_{j+\frac{1}{2}}^{n,L}$ (if $\nu_j > 0$) or $V_{j+\frac{1}{2}}^{n,L} := V_{j+\frac{1}{2}}^{n,R}$ (if $\nu_{j+1} < 0$).

where
$$\begin{cases} b_{j} := \operatorname{Max}(V_{j}^{n}, V_{j-1}^{n}) + \frac{1}{\nu_{j}}(V_{j} - \operatorname{Max}(V_{j}^{n}, V_{j-1}^{n})), & \nu_{j} = f(x_{j}) \frac{\Delta t}{\Delta x}. \\ B_{j} := \operatorname{Min}(V_{j}^{n}, V_{j-1}^{n}) + \frac{1}{\nu_{j}}(V_{j} - \operatorname{Min}(V_{j}^{n}, V_{j-1}^{n})), & \nu_{j} = f(x_{j}) \frac{\Delta t}{\Delta x}. \\ \text{Hasnaa Zidani} & \text{BIRS, February 14-18, 2011} \end{cases}$$

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

(H): There is a finite number of points x^* s.t. $f(x^*) = 0$

Theorem (Bokanowski-Z, JSC 2007:)

Under (H) and the CFL condition $|\nu_j| \leq 1$, the scheme is: (i) consistent, (ii) L^{∞} -stable, (iii) TVB, i.e., $\exists C \geq 0$ s.t. $\forall V^0$, $\forall n \geq 0$, $TV(V^n) \leq TV(V^0) (1 + C\Delta t)$.

(iv) Moreover, the scheme is convergent

Rem: The difficulty comes from the points x_j s.t. $f(x_j) < 0$ and $f(x_{j+1}) > 0$

イロト イポト イヨト イヨト

Linear advection in 1d

Interesting features of the UB scheme:

- \blacktriangleright For a constant velocity f, UB advects "exactly" a step function space (Deprès-Lagoutière 2000)
- > UB rapidly projects other functions on this space. This is a *conjecture*, yet numerically checked on many examples (for $\nu \neq \frac{1}{2}$) (Deprès-Lagoutière 2000)
- These properties extend to multi-dimensions ! (with Trotter splitting)

Simple to implement !

Drawbacks

➤ It is not monotone

Image: A matrix and a matrix

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

The HJB equation

$$\vartheta_t + \max_{\alpha \in A} (f(x, \alpha) \vartheta_x) = 0,$$

 $\vartheta(x, 0) = \Phi(x),$

where A is a compact set.

Set: $f_m(x) = \min_{\alpha \in A} f(x, \alpha), f_M(x) = \max_{\alpha \in A} f(x, \alpha).$

イロト イポト イヨト イヨト

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

The HJB equation

$$\vartheta_t + \max_{\alpha \in A} (f(x, \alpha) \vartheta_x) = 0,$$

 $\vartheta(x, 0) = \Phi(x),$

where A is a compact set.

Set:
$$f_m(x) = \min_{\alpha \in A} f(x, \alpha), f_M(x) = \max_{\alpha \in A} f(x, \alpha).$$

Image: A math a math

э

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

The HJB equation

$$\vartheta_t + \max(f_m(x)\vartheta_x, f_M(x)\vartheta_x) = 0, \vartheta(x,0) = \Phi(x),$$

where A is a compact set.

Set:
$$f_m(x) = \min_{\alpha \in A} f(x, \alpha), f_M(x) = \max_{\alpha \in A} f(x, \alpha).$$

э

-

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

• Step 1:
$$V_{3j}^0 = V_{3j+1}^0 = V_{3j+2}^0 := \frac{1}{3\Delta x} \int_{x_{3j-\frac{1}{2}}}^{x_{3(j+1)-\frac{1}{2}}} \Phi(x) dx$$
,

• Step 2: For $n \ge 0$, knowing $V_{.}^{n}$

- For
$$f \in f_m(x_j), f_M(x_j)$$

$$\frac{U_j^{n+1}(f) - V_j^n}{\Delta t} + f \frac{U_{j+\frac{1}{2}}^{n,L}(f) - U_{j-\frac{1}{2}}^{n,R}(f)}{\Delta x} = 0,$$

- Take $V_j^{n+1} := \min_{f = f_m(x_j), f_M(x_j)} U_j^{n+1}(f), \forall j.$

- Truncation step

イロト イポト イヨト イヨト

э

Hasnaa Zidani BIRS, February 14-18, 2011

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

Theorem (Numerische Math'10, Math Comp'10)

Assume: -
$$f$$
 is L-lipschitz continuous,
- Φ is piecewise C^1 regular with compact support,
- CFL condition: $\max_{k,x} |f(x, u_k)| \frac{\Delta t}{\Delta x} \leq 1$.

For T > 0, $\exists C(L, T, \Phi) > 0$ s.t.

$$e^n := \|V_{\Delta}^n - \overline{V}^n\|_{L^1(\mathbb{R})} \le C\Delta x \qquad \forall t_n = n\Delta t \le T,$$

where for
$$x \in (x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}})$$

 $V_{\Delta}^n(x) = V_j^n,$
and $\overline{V}^n(x) = \frac{1}{\Delta x} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \vartheta(\xi, t_n) d\xi$
Hasnaa Zidani BIRS, February 14-18, 2011

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

Some notations

• For
$$a \in \mathbb{R}$$
, define:

$$\begin{cases} \dot{X}_a^m(t) = f_m(X_a^m(t)) \\ X_a^m(0) = a \end{cases} \begin{cases} \dot{X}_a^M(t) = f_M(X_a^M(t)) \\ X_a^M(0) = a \end{cases}$$

• For
$$x \in [x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}]$$
, set:
 $f_m^S(x) := f_m(x_j), \qquad f_M^S(x) := f_M(x_j),$

and define $X_a^{m,S}$ and $X_a^{M,S}$ by:

$$\begin{cases} \dot{X}_{a}^{m,S}(t) = f_{m}^{S}(X_{a}^{m,S}(t)) \\ X_{a}^{m,S}(0) = a \end{cases} \begin{cases} \dot{X}_{a}^{M,S}(t) = f_{M}^{S}(X_{a}^{M,S}(t)) \\ X_{a}^{M,S}(0) = a \end{cases}$$

イロト イポト イヨト イヨト

ldea of the proof: The simple case when $\Phi(x)=1_{[a,+\infty[n])}$

➤ The viscosity solution is given by

$$\vartheta(x,t) = \mathbb{1}_{[X^M_a(t),+\infty[}(x)$$

The numerical solution satisfies:

$$V_j^n = \frac{1}{\Delta x} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \vartheta^S(x, t^n) dx,$$

where $\vartheta^S(x, t) := \mathbb{1}_{[X_a^{M,S}(t), +\infty[}(x).$

$$\succ ||\vartheta^{\mathsf{S}}(t,.) - \vartheta(t,.)||_{L^{1}(\mathbb{R})} = |X_{\mathsf{a}}^{\mathsf{M}}(t) - X_{\mathsf{a}}^{\mathsf{M},\mathsf{S}}(t)|.$$

< D > < P > < P > < P >

ldea of the proof: The simple case when $\Phi(x)=\overline{1_{[a,+\infty[})}$

➤ The viscosity solution is given by

$$\vartheta(x,t) = \mathbb{1}_{[X^M_a(t),+\infty[}(x)$$

> The numerical solution satisfies:

$$V_j^n = \frac{1}{\Delta x} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \vartheta^S(x, t^n) \, dx,$$

where $\vartheta^S(x, t) := \mathbb{1}_{[X_a^{M,S}(t), +\infty[}(x).$

$$\succ ||\vartheta^{\mathsf{S}}(t,.) - \vartheta(t,.)||_{L^{1}(\mathbb{R})} \leq \frac{1}{2} Lt e^{Lt} \Delta x.$$

ldea of the proof: The simple case when $\Phi(x) = \mathbb{1}_{[a,+\infty[}$

> The viscosity solution is given by

$$\vartheta(x,t) = \mathbf{1}_{[X_a^M(t),+\infty[}(x)$$

The numerical solution satisfies:

$$V_j^n = \frac{1}{\Delta x} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \vartheta^S(x, t^n) \, dx,$$

where $\vartheta^S(x, t) := \mathbb{1}_{[X_a^{M,S}(t), +\infty[}(x).$

► $||\vartheta^{S}(t,.) - \vartheta(t,.)||_{L^{1}(\mathbb{R})} = 0$ (Eikonale eq. constant velocity).

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

Idea of the proof: ϑ_0 has one maximum

We considere here that:

- (i) $\vartheta_0(x)$ is an l.s.c. step function;
- (ii) $\exists B_1 \in \mathbb{R}$, s.t. $\vartheta_0(x) \nearrow$ for $x \le B_1$ and $\vartheta_0 \searrow$ for $x \ge B_1$.
- (ii) f_m and f_M are increasing functions

Decomposition Lemma

- + $\exists \vartheta_{01}, \vartheta_{02} \text{ s.t. } \vartheta_0 = \min(\vartheta_{01}, \vartheta_{02}) \text{ with } \vartheta_{01} \nearrow, \vartheta_{02} \searrow$
- + Then $\vartheta(t,x) = \min(\vartheta_1(t,x), \vartheta_2(t,x))$ where

$$\vartheta_1(t,x) := \vartheta_{01}(X^M_x(-t)) \quad \text{and} \quad \vartheta_2(t,x) := \vartheta_{02}(X^m_x(-t)).$$

Linear advection in 1d HJB-UB scheme Convergence result. L^1 -Error estimate

 ϑ_0 and its decomposition into ϑ_{01} and ϑ_{02} .

(日) (同) (三) (

Linear advection in 1d HJB-UB scheme Convergence result. L^1 -Error estimate

Idea of the proof: ϑ_0 has one maximum

$$\vartheta(x,t) = \min\left(\vartheta_{01}(X_x^{\mathcal{M}}(-t)), \vartheta_{02}(X_x^{\mathcal{m}}(-t))\right) = \min\left(\vartheta_1(x,t), \vartheta_2(x,t)\right)$$
$$\vartheta^{\mathcal{S}}(x,t) = \min\left(\vartheta_{01}(X_x^{\mathcal{M},\mathcal{S}}(-t)), \vartheta_{02}(X_x^{\mathcal{m},\mathcal{S}}(-t))\right) = \min\left(\vartheta_1^{\mathcal{S}}(x,t), \vartheta_2^{\mathcal{S}}(x,t)\right)$$

•
$$||V^n - \overline{\vartheta}^S(\cdot, t_n)|| \leq C\Delta x.$$

•
$$||\vartheta(., t_n) - \vartheta^{S}(., t_n)||_{L^1(\mathbb{R})}$$

 $\leq \frac{1}{2} Lt e^{Lt} TV(\vartheta_{01})\Delta x + \frac{1}{2} Lt e^{Lt} TV(\vartheta_{02})\Delta x$
 $\leq \frac{1}{2} Lt e^{Lt} TV(\vartheta_0)\Delta x$

イロト イポト イヨト イヨト

Linear advection in 1d HJB-UB scheme Convergence result. L^1 -Error estimate

イロト イポト イヨト イヨト

3

Idea of the proof: ϑ_0 has one maximum

Define
$$\overline{\vartheta}^{S}(t_{n},x) = \frac{1}{\Delta x} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \vartheta^{S}t_{n}, y) dy$$
, for $x \in]x_{j-\frac{1}{2}, j+\frac{1}{2}}[.$

•
$$||V^n - \overline{\vartheta}^S(\cdot, t_n)|| \leq C\Delta x.$$

•
$$\|\vartheta(., t_n) - \vartheta^{\mathsf{S}}(., t_n)\|_{L^1(\mathbb{R})}$$

 $\leq \frac{1}{2} Lt \ e^{Lt} \ TV(\vartheta_{01})\Delta x + \frac{1}{2} Lt \ e^{Lt} \ TV(\vartheta_{02})\Delta x$
 $\leq \frac{1}{2} Lt \ e^{Lt} \ TV(\vartheta_0)\Delta x$

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

Idea of the proof: A general case

Suppose
$$\begin{cases} \vartheta_0(x) \text{ is a step function;} \\ \vartheta_0 \text{ has } q \text{ local maxima (denoted } B_1, \dots, B_q). \end{cases}$$

Let
$$\vartheta_0^{(i)}(x) := \min_{y \in [x; B_i]} \vartheta_0(y), \quad i = 1, \dots, q.$$

By the first decomposition Lemma,

$$\vartheta_0^{(i)} = \min(\vartheta_{01}^{(i)}, \vartheta_{02}^{(i)}), \quad \text{with } \vartheta_{01}^{(i)} \nearrow, \vartheta_{02}^{(i)} \searrow$$

General Decomposition Lemma

(i)
$$\vartheta_0 = \max_{i=1,\dots,q} \min\left(\vartheta_{01}^{(i)}, \vartheta_{02}^{(i)}\right)$$
, with $\vartheta_{01}^{(i)} \nearrow, \vartheta_{02}^{(i)} \searrow$
(ii) $\vartheta(t, x) = \max\min\left(\vartheta_{01}^{(i)}(X^m(-t)), \vartheta_{02}^{(i)}(X^M(-t))\right)$

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

Idea of the proof: A general case

Suppose $\begin{cases} \vartheta_0(x) \text{ is a step function;} \\ \vartheta_0 \text{ has } q \text{ local maxima (denoted } B_1, \dots, B_q). \end{cases}$

General Decomposition Lemma

(i)
$$\vartheta_0 = \max_{i=1,...,q} \min\left(\vartheta_{01}^{(i)}, \vartheta_{02}^{(i)}\right)$$
, with $\vartheta_{01}^{(i)} \nearrow, \vartheta_{02}^{(i)} \searrow$
(ii) $\vartheta(t,x) = \max_{i=1,...,q} \min\left(\vartheta_{01}^{(i)}(X_x^m(-t)), \vartheta_{02}^{(i)}(X_x^M(-t))\right)$
(iii) $\vartheta^s(t,x) := \max_{i=1,...,q} \min\left(\vartheta_{01}^{(i)}(X_x^{m,s}(-t)), \vartheta_{02}^{(i)}(X_x^{M,s}(-t))\right)$
(iv) $\|V^n - \overline{\vartheta}^s(\cdot, t_n)\| \le C\Delta x$.

< ロ > (同 > (回 > (回 >))

Linear advection in 1d HJB-UB scheme Convergence result. L¹-Error estimate

・ロ・ ・聞・ ・ヨ・ ・ヨ・

Idea of the proof: A general case

Suppose $\begin{cases} \vartheta_0(x) \text{ is a step function;} \\ \vartheta_0 \text{ has } q \text{ local maxima (denoted } B_1, \dots, B_q). \end{cases}$

General Decomposition Lemma

$$\begin{array}{l} (i) \ \vartheta_{0} = \max_{i=1,...,q} \min \left(\vartheta_{01}^{(i)}, \ \vartheta_{02}^{(i)} \right), \quad \text{with} \ \vartheta_{01}^{(i)} \nearrow, \ \vartheta_{02}^{(i)} \searrow \\ (ii) \ \vartheta(t,x) = \max_{i=1,...,q} \min \left(\vartheta_{01}^{(i)}(X_{x}^{m}(-t)), \ \vartheta_{02}^{(i)}(X_{x}^{M}(-t)) \right) \\ (iii) \ \vartheta^{S}(t,x) := \max_{i=1,...,q} \min \left(\vartheta_{01}^{(i)}(X_{x}^{m,S}(-t)), \ \vartheta_{02}^{(i)}(X_{x}^{M,S}(-t)) \right) \\ (iv) \ \|V^{n} - \overline{\vartheta}^{S}(\cdot, t_{n})\| \leq C\Delta x. \end{array}$$

Van der Pol Problem :

$$\left\{ egin{array}{l} \dot{y}_1(t) = y_2 \ \dot{y}_2(t) = -y_1 + y_2(1-y_1^2) + a(t) \ a(t) \in [-1,1] \end{array}
ight.$$

$$\Phi(y) = 1 - \mathbf{1}_{|y| \le r_0}$$

 The value function needs to be computed only in a neighborhood of the front: Narrow band implementation for front propagation problems (with Φ(x) ∈ {0,1}).

Small target problem

Consider

$$\begin{cases} \vartheta_t(t,x) + \vartheta_{x_1}(t,x) + |\vartheta_{x_2}(t,x)| = 0, \quad t \in [0, T], \ x = (x_1, x_2) \in \mathbb{R}^2.\\ \vartheta(0,x) = \varphi_r(x), \end{cases}$$

where the initial data is given by

$$arphi_r(x) := \left\{ egin{array}{cc} -1 & ext{if } ||x||_\infty \leq r, \ 1 & ext{otherwise} \end{array}
ight.$$

- Two types of target:
 - r = 0.1: large target case.
 - $r = \Delta x$: thin target case.

Image: Image:

メロト メポト メヨト メヨト

æ

	UB-HJB		Level	set
N^2	L^1 error	Haus.	L^1 error	Haus.
51 ²	0.178	0.052	-	-
101 ²	0.105	0.022	0.101	0.094
201 ²	0.044	0.011	0.008	0.047
401 ²	0.022	0.006	0.006	0.027

Large target (r = 0.1)

Thin target $(r = \Delta x)$

	UB-HJB		Level	set	
N^2	L^1 error	Haus.	L^1 error	Haus.	
51 ²	0.166	0.043	-	-	
101 ²	0.080	0.031	-	-	
201 ²	0.040	0.016	-	-	
401 ²	0.020	0.008	- • □	► < # ► <	≣ ► ∢

Hasnaa Zidani

BIRS, February 14-18, 2011

≣≯

2-dimensional deformation of a half plane

• Consider a front propagation problem, where the initial front Γ_0 is given by: $\Gamma_0 := \{x = (x_1, x_2) \in \mathbb{R}^2 \mid x_2 = 0\}$. The velocity of the front evolution is given by

$$f(t, x_1, x_2) = -sign(\frac{T}{2} - t) \begin{pmatrix} -2\pi x_2 \\ 2\pi x_1 \end{pmatrix} \max(1 - \sqrt{x_1^2 + x_2^2}, 0).$$

• Hence the evolution is driven by

$$\begin{cases} \vartheta_t(t,x) + f(t,x) \cdot \nabla \vartheta(t,x) = 0 \quad x \in \mathbb{R}^2, \ t \in [0, T], \\ \vartheta(0,x) = \varphi(x) \end{cases}$$
(1)

and with (for the UltraBee scheme):

$$\varphi(x_1, x_2) := \begin{cases} -1 & x_2 \le 0 \\ 1 & \text{otherwise} \end{cases}$$
(2)

N = 100

Level set, t = 3

t = 6

N = 50

	UB-HJB		Level set	
N ²	L^1 error	Haus.	L^1 error	Haus.
50 ²	0.170	0.035	0.584	0.086
100 ²	0.092	0.019	0.136	0.028
200 ²	0.057	0.013	0.047	0.008

$$T = 6$$

	UB-HJB		Level set	
N ²	L^1 error	Haus.	L^1 error	Haus.
50 ²	0.193	0.308	0.995	0.639
100 ²	0.073	0.107	0.282	0.195
200 ²	0.041	0.064	0.079	0.053

・ロト ・回 ト ・ ヨト ・ ヨト

æ

3-dimensional rotation problem

• 3d advection:

$$\begin{cases} \vartheta_t(t,x) + f(x) \cdot \nabla \vartheta(t,x) = 0, \quad t \in [0,T], \ x \in [-2,2]^3, \\ \vartheta(0,x) = \varphi(x) \end{cases}$$

• Corresponding target problem:

 $\begin{cases} \vartheta_t(t,x) + \max(0, f(x) \cdot \nabla \vartheta(t,x)) = 0, & t \in [0, T], x \in [-2, 2]^3, \\ \vartheta(0,x) = \varphi(x) \end{cases}$

with

4

$$f(x_1, x_2, x_3) = (-2\pi x_2, 2\pi x_1, -1)^{\mathsf{T}}$$

• The initial data corresponds to a sphere centered at (-1, 0, 1) and with radius r = 0.1.

• □ ▶ • • □ ▶ • • □ ▶

<ロト <団ト < 団ト

э

Advection

N ³	CPU		L^1 error	Hausdorff
50 ³	0.22		4.1e-3	2.6e-1
100 ³	1.00	4.6	2.2e-3	8.0e-2
200 ³	7.19	7.2	6.2e-4	4.4e-2

Target problem

N ³	CPU		L^1 error	Hausdorff
50 ³	3.61		1.3e-1	1.9e-1
100 ³	17.9	5.2	6.4e-2	8.0e-2
200 ³	128.8	7.2	5.6e-2	4.9e-2

Image: Image:

Controllable case (8 directions)

(日)

э

Non-controllable case (4 directions: $\swarrow, \downarrow, \searrow, \rightarrow$)

The physical model The simplified problem Optimal control problem GTO target, Pressure constraint

Ariane V

GOAL

For a given payload M_{CU} , minimize the consumption needed to steer the launcher to the GTO.

・ロト ・日・ ・ ヨト

э

HJB equation with discontinuous data An anti-diffusive scheme: Ultra bee Numerical Solutions Application: space launcher GTO target, Pressure constraint

The physical model involves 7 state variables, the position \overrightarrow{OG} of the rocket in the 3D space, its velocity \overrightarrow{v} and its mass *m*.

The forces acting on the rocket are: Gravity \overrightarrow{P} , Drag $\overrightarrow{F_D}$, Thrust $\overrightarrow{F_T}$, and Coriolis $\overrightarrow{\Omega}$.

► Newton Law:

$$m\frac{d\overrightarrow{v}}{dt} = \overrightarrow{P} + \overrightarrow{F_D} + \overrightarrow{F_T} - 2m\overrightarrow{\Omega} \wedge \overrightarrow{v} - m\overrightarrow{\Omega} \wedge (\overrightarrow{\Omega} \wedge \overrightarrow{OG}),$$

The physical model The simplified problem Optimal control problem GTO target, Pressure constraint

The related equation

State variables: r = altitude v = modulus of the velocity $\gamma = angle between the direction earth-rocket and the direction of the$ rocket's velocity.<math>L = latitude $\ell = longitude$ $\chi = azimuth$ m = masse of the engine

<u>Control:</u>

 α =angle between the thrust direction and the direction of the rocket's velocity.

< ロ > < 同

The physical model The simplified problem Optimal control problem GTO target, Pressure constraint

$$\dot{r} = v \cos \gamma$$

$$\dot{v} = -g(r) \cos \gamma - \frac{F_D(r, v)}{m} + \frac{F_T(r, v, a)}{m} \cos \alpha$$

$$\Omega^2 r \cos \ell (\cos \gamma \cos \ell - \sin \gamma \sin \ell \sin \chi)$$

$$\dot{\gamma} = \sin \gamma \left(\frac{g(r)}{v} - \frac{v}{r}\right) - \frac{F_T(r, v, a)}{vm} \sin \alpha$$

$$-2\Omega \cos \ell \cos \chi - \Omega^2 \frac{r}{v} \cos \ell (\sin \gamma \cos \ell - \cos \gamma \sin \ell \sin \chi)$$

$$\dot{L} = \frac{v}{r} \frac{\sin \gamma \cos \chi}{\cos \ell}$$

$$\dot{\ell} = \frac{v}{r} \sin \gamma \sin \chi$$

$$\dot{\chi} = -\frac{v}{r} \sin \gamma \tan \ell \cos \chi - 2\Omega (\sin \ell - \cot \alpha \gamma \cos \ell \sin \chi) + \Omega^2 \frac{r}{v} \frac{\sin \ell \cos \ell \cos \chi}{\sin \gamma}$$

HJB equation with discontinuous data An anti-diffusive scheme: Ultra bee Numerical Solutions Application: space launcher GTO target, Pressure constraint

> The plane of motion is the equatorial plane $\ell \equiv 0$, and $\chi \equiv 0$.

$$\dot{r} = v \cos \gamma$$
$$\dot{v} = -g(r) \cos \gamma - \frac{F_D(r, v)}{m} + \frac{F_T(r, v, a)}{m} \cos \alpha + \Omega^2 r \cos \gamma$$
$$\dot{\gamma} = \sin \gamma \left(\frac{g(r)}{v} - \frac{v}{r}\right) - \frac{F_T(r, v, a)}{vm} \sin \alpha - 2\Omega - \Omega^2 \frac{r}{v} \sin \gamma$$
$$\dot{L} = \frac{v}{r} \sin \gamma$$
$$\dot{m} = -b(m(t))$$

イロト イポト イヨト イヨト

HJB equation with discontinuous data An anti-diffusive scheme: Ultra bee Numerical Solutions Application: space launcher GTO target, Pressure constraint

> The plane of motion is the equatorial plane $\ell \equiv 0$, and $\chi \equiv 0$.

$$\dot{r} = v \cos \gamma$$
$$\dot{v} = -g(r) \cos \gamma - \frac{F_D(r, v)}{m} + \frac{F_T(r, v, a)}{m} \cos \alpha + \Omega^2 r \cos \gamma$$
$$\dot{\gamma} = \sin \gamma \left(\frac{g(r)}{v} - \frac{v}{r}\right) - \frac{F_T(r, v, a)}{vm} \sin \alpha - 2\Omega - \Omega^2 \frac{r}{v} \sin \gamma$$
$$\dot{L} = \frac{v}{r} \sin \gamma$$
$$\dot{m} = -b(m(t))$$

イロト イポト イヨト イヨト

The physical model The simplified problem Optimal control problem GTO target, Pressure constraint

The rocket's mass

► The evolution of the mass can be summarized as follows

Phase 0 & 1	Phase 2	Phase 3
$\dot{m}_1(t) = -eta_{EAP}$	$\dot{m}_1(t) = 0$	$\dot{m}_1(t) = 0$
$\dot{m}_2(t) = -eta_{E1}$	$\dot{m}_2(t) = -eta_{E1}$	$\dot{m}_2(t)=0$
$\dot{m}_3(t)=0$	$\dot{m}_3(t)=0$	$\dot{m}_3(t) = -\beta_{E2}$

where β_{EAP} , β_{E1} and β_{E2} are the mass flow rates for the boosters, the first and the second stage.

At the changes of phases, we have a (not negligible) discontinuity in the rocket's mass.

(日) (同) (三) (

HJB equation with discontinuous data An anti-diffusive scheme: Ultra bee Numerical Solutions Application: space launcher GTO target, Pressure constraint

The control problem can be formulated as (for a fixed payload)

Minimize t_f

 $(r, v, \gamma, m, \alpha)$ satisfy the state equation $\alpha(t) \in [0, \pi/2]$ a.e. $t \in (0, t_f)$, $(r(t_f), v(t_f), \gamma(t_f)) \in C$, $Q(r(t), v(t))\alpha(t)) \leq C_s$ for $t \in (0, t_f)$, $m(t_f) = M_p$.

where the target C corresponds to the GTO orbit, and the function Q is the dynamic pressure.

(日) (同) (三) (

HJB equation with discontinuous data An anti-diffusive scheme: Ultra bee Numerical Solutions Application: space launcher GTO target, Pressure constraint

➤ The Capture Basin is wide

We introduce "physical" state constraints to define the computational domain

Due to the CFL condition, the time step is very small
Adaptative time discretization

> "Different scales" for the state variables: The change of variable: $\begin{cases} r = r_0(e^x - 1) + r_T \\ v = v_0(e^y - 1) + v_T \end{cases}$

HJB equation with discontinuous data	The physical model
An anti-diffusive scheme: Ultra bee	The simplified problem
Numerical Solutions	Optimal control problem
Application: space launcher	GTO target, Pressure constraint

➤ The Capture Basin is wide

We introduce "physical" state constraints to define the computational domain

Due to the CFL condition, the time step is very small Adaptative time discretization

> "Different scales" for the state variables: The change of variable: $\begin{cases} r = r_0(e^x - 1) + r_T \\ v = v_0(e^y - 1) + v_T \end{cases}$

HJB equation with discontinuous data	The physical model
An anti-diffusive scheme: Ultra bee	The simplified problem
Numerical Solutions	Optimal control problem
Application: space launcher	GTO target. Pressure constraint

➤ The Capture Basin is wide

We introduce "physical" state constraints to define the computational domain

- Due to the CFL condition, the time step is very small Adaptative time discretization
- > "Different scales" for the state variables: Change of variable: $\begin{cases} r = r_0(e^x - 1) + r_T \\ v = v_0(e^y - 1) + v_T \end{cases}$

The physical model The simplified problem Optimal control problem GTO target, Pressure constraint

GTO target (comparison with the reference trajectory of CNES)

Figure: Full trajectory using the HJB minimal time value function

Reference trajectory, final mass: $m_T = 21.57$ (t) HJB trajectory, final mass (after reconstruction): $m_T = 22.50$ (t)

Hasnaa Zidani BIRS, February 14-18, 2011

< ロ > < 同 > < 回 > <

HJB equation with discontinuous data	The physical model
An anti-diffusive scheme: Ultra bee	The simplified problem
Numerical Solutions	Optimal control problem
Application: space launcher	GTO target, Pressure constraint

... Thank you for your attention.

э

< 3 > < 3