Wireless network coding over finite rings

Emanuele Viterbo[†]

joint work with: Joseph Boutros[‡], Yi Hong[†]

(†) ECSE, Monash University, Clayton, Victoria(‡) TAMUQ, Doha, Qatar

Algebraic Structure in Network Information Theory Banff, Canada, August 18th, 2011

Motivation

- Mathematicians love prime numbers p and engineers love 2^m
- Bit labeling is a problem with *p* (loss of rate and additional complexity)
- Linear codes (n, k) over F_p can be mapped by Construction A to a lattice Λ and by working mod p to a subset of (p-PAM)ⁿ finite constellation
- In lattice network coding + and × mod p operations provide the natural operations for p-PAM mod p constellations and we use the fact that the ring Z_p is equivalent to the field F_p.
- Feng, Silva, and Kschischang, (2010-2011) have shown how to construct lattice network codes by concatenating linear codes over F_p with a finite 2D constellation with p points.
- Narayanan (2011) has shown how to improve the shaping of the *p* and *p*² point 2D constellations.

The infinite rings $\mathbf{Z}[i]$ *and* $\mathbf{Z}[\omega]$

					0		0		0		0						
				0		0		0		0		0					
	0		0		0		0		0		0		0		0		
0		0		0		0		0		0		0		0		0	
	0		0		0		0		0		0		0		0		
		-0-		-0-								-0-		-0-		-0-	 _
	0		0		0		0		0		0		0		0		
0		0		0		0		0		0		0		0		0	
	0		0		0		0		0		0		0		0		
				0		0		0		0		0					
					0		0		0		0						

• Basis: $\{1, \theta\}$ where $\theta = i = \sqrt{-1}$ or $\theta = \omega = e^{i2\pi/3}$

- Elements: $\{a + b\theta : a, b \in \mathbf{Z}\}$
- Units: $\{\pm 1, \pm i\} \{\pm 1, \pm \omega, \pm \omega^*, \}$

Motivation Cont'd

- ► To have almost always invertible network equations we need large *p*
- An invertible matrix *A* over a ring *R* must have

$$\frac{1}{\det(A)} \in R$$

- Often rings have few invertible elements (units of *R*) hence we have a very limited choice for the network equations.
- We need more freedom so we need to put in more units.
- ► This can be effectively achieved by working in finite rings where the integers are taken mod 2^m

$$R = \mathbf{Z}_{2^m}[\theta] = \{a + \theta b | a, b \in \mathbf{Z}_{2^m}\}$$

The Gaussian integers mod 2^m

Problem: Build a large set of invertible matrices over the finite ring

$$R = \mathbf{Z}_{2^{m}}[i] = \{a + ib | a, b \in \mathbf{Z}_{2^{m}}\}$$

• Units of R: $R^* = \mathbb{Z}_{2^m}[i] = \{a + ib | a, b \in \mathbb{Z}_{2^m}, a + b = 1 \mod 2^m\} = D_2 + (1, 0) \cap \mathcal{B}$

► Non units $\bar{R} = \mathbf{Z}_{2^m}[i] = \{a + ib | a, b \in \mathbf{Z}_{2^m}, a + b = 0 \mod 2^m\} = D_2 \cap \mathcal{B}$

- Properties:
 - $\triangleright \ \bar{R} + \bar{R} = \bar{R}$
 - $\triangleright \ R^* + R^* = \bar{R}$
 - $\triangleright \ R^* + \bar{R} = \bar{R}$
 - $\triangleright \ \bar{R}\bar{R} = \bar{R}$
 - $\triangleright \ R^*R^* = R^*$
 - $\triangleright \ R^*\bar{R}=\bar{R}$

A possible solution: the matrix $A = (a_{ij})$ is invertible if $a_{ii} \in R^*$ and $a_{ij} \in \overline{R}$. What is this? can it be improved/generalized to Eisenstein integers or even quaternions?

- Red diamonds are the units R^*
- Blue circles are non-invertible elements \bar{R}

Commutative rings

A *commutative ring R* is a set closed under two binary operations, addition and multiplication such that

- 1. R is an Abelian group under addition
- 2. ab = ba for all $a, b \in R$ (commutativity)
- 3. a(bc) = (ab)c for all $a, b, c \in R$ (associativity)
- 4. there exists a element $1 \in R$ such that 1a = a for all $a \in R$ (*identity element*)
- 5. a(b+c) = ab + ac for all $a, b, c \in R$ (distributivity)
- Examples of rings: $\mathbf{Z}, \mathbf{Z}[i]$
- These are not rings: $2\mathbf{Z} + 1$, \mathbf{Z}^+

Ideals

An *ideal* in a commutative ring R is a subset I such that for all $a, b \in R$

 $1.0 \in I;$

- 2. if $a, b \in I$, then $a + b \in I$;
- 3. if $a \in I$ and $r \in R$, then $ra \in I$.
- Examples of ideals: $2\mathbf{Z}$, $(1+i)\mathbf{Z}[i]$
- These are not ideals: $2\mathbf{Z} + 1$, \mathbf{Z}^+

Invertible elements in \mathbb{Z}_{2^m}

The group of units of \mathbf{Z}_{2^m} is

$$\{1, 3, 5, \dots, 2^m - 1\}$$

Proof

Let $a \in \mathbb{Z}_{2^m}$. It is enough consider the modular equation to find the inverse element x

 $ax = 1 \mod 2^m$

This has a solution, if and only if we can solve

$$ax - 2^m q = 1$$

for some integers x and q.

- ▶ It is well known that the above equation can be solved using the extended Euclidean algorithm if and only if $GCD(a, 2^m) = 1$ which is the case for all odd a = 2k + 1.
- ▶ Note that an even a = 2k will have $GCD(a, 2^m) \ge 2$.

Group of units of R

The group of units of R is given by

 $R^* = \{a + ib | a, b \in \mathbf{Z}_{2^m}, a + b = 1 \text{ mod } 2\}$

and the non units form the maximal ideal

$$\bar{R} = \{a + ib | a, b \in \mathbb{Z}_{2^m}, a + b = 0 \mod 2\}$$

Proof

• Let $a + ib \in R$. It is enough to consider the inverse element

$$x = \frac{a - ib}{a^2 + b^2}$$

- This is in *R* iff $a^2 + b^2$ is invertible in \mathbb{Z}_{2^m} .
- This is true iff $a^2 + b^2 = 1 \mod 2$, which is equivalent to $a + b = 1 \mod 2$.
- To prove that \overline{R} is an ideal we consider 3) property of ideals.
- Let $a + ib \in \overline{R}$ and $x + iy \in R$ then by adding real and imaginary part of the product we get

$$(ax - by) + (bx + ay) = (a + b)x + (a - b)y = 0 \mod 2$$

since $a - b = 0 \mod 2$.

Finally, since $R = R^* \cup \overline{R}$, \overline{R} is a *maximal ideal* of R, i.e. is not contained in any larger non trivial ideal of R.

More definitions

- Given the two rings *R* and *S*, a *ring homomorphism* is a mapping $\varphi : R \to S$ such that for all $a, b \in R$
 - 1. $\varphi(a + b) = \varphi(a) + \varphi(b)$ 2. $\varphi(ab) = \varphi(a)\varphi(b)$ 3. $\varphi(1) = 1$
- Given the two sided ideal *I* we define the *quotient ring* R/I where addition \oplus and multiplication \otimes are defined as

$$(a+I) \oplus (b+I) = ((a+b)+I)$$
$$(a+I) \otimes (b+I) = (ab+I)$$

where $a, b \in R$ and '+' and \cdot are the operations in the ring R

• We define the *natural map* $\phi : R \to R/I$ as the ring homomorphism defined by $a \mapsto a + I$.

Mapping to \mathbf{F}_2

The quotient ring R/\bar{R} is isomorphic to the field \mathbf{F}_2 .

Proof – The image of the natural map $\phi : R \to R/\overline{R}$ is composed of two element \overline{R} and R^* . By mapping

 $\bar{R} \mapsto 0$ $R^* \mapsto 1$

the above properties provide the explicit addition and multiplication tables of $\mathbf{F}_2 = \{0, 1\}$. Alternatively, the proof is a direct application on the quotient of a commutative ring by a maximal ideal.

The invertible matrices

The matrices $A = (a_{ij})$ with $a_{ii} \in R^*$ and $a_{ij} \in \overline{R}$ $i \neq j$ are invertible in the ring of matrices $\mathcal{M}_n(R)$ with coefficients in R.

Proof – It is enough to show that $det(A) \in R^*$, i.e., it has an inverse in R. Extending the natural map ϕ we define the the matrix ring homomorphism

$$\Phi: \mathcal{M}_n(R) \to \mathcal{M}_n(\mathbf{F}_2).$$

All the matrices *A* are mapped to the identity matrix *I* in $\mathcal{M}_n(\mathbf{F}_2)$, which is invertible in \mathbf{F}_2 . Using the properties of ring homomorphisms in the Leibniz formula for the determinant

$$\det(A) = \sum_{\pi \in S_n} sgn(\pi) \prod_{i=1}^n a_{i,\pi(i)}$$

we have

$$\phi(\det(A)) = \det(\Phi(A)) = \det(I) = 1$$

which implies that that $det(A) \in R^*$.

More invertible matrices

More invertible matrices can be obtained by applying the inverse map Φ^{-1} to any binary invertible matrix.

$$\begin{pmatrix} R^* & \bar{R} & \bar{R} \\ \bar{R} & R^* & \bar{R} \\ \bar{R} & \bar{R} & R^* \end{pmatrix} \qquad \begin{pmatrix} \bar{R} & \bar{R} & R^* \\ R^* & \bar{R} & \bar{R} \\ \bar{R} & R^* & \bar{R} \end{pmatrix} \qquad \begin{pmatrix} R^* & \bar{R} & \bar{R} \\ \bar{R} & \bar{R} & R^* \\ \bar{R} & R^* & \bar{R} \end{pmatrix} \qquad \cdots$$

"Disquisitiones"

- We have made the engineers happy with 2^m .
- We can still generate many invertible network equations, which quantize the channel well.
- We do not rely on large field and randomness.
- In physical layer network coding we need a ring structure because of the multiplicative effect of the channel.
- The field structure is often used because we know a lot about codes over fields ...
- In but the code over the field is not usually easy to match to a finite constellation: Hamming distance or Lee distance is not matched to Euclidean distance
- Using the ring structure we do not need to go through a linear code over a field and we are allowed to take any lattice that we like, as for BCM and set-partitioning.
- With ring codes we can work with channels that are ring homomorphisms transformations of the input ring.

Wireless network coding over finite rings • BIRS