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Channel Coding: Interference
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Three User: A very good place to start

Three User Interference channel – What is the capacity region? 

m1 

m2 

m3 
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Lattice codes vs Single-letterized Uniform/Gaussian
Random codes

sum of signals/lattices
Fewer distinct sums of lattice codewords than random points
in n-D space
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(a) Random - 108 points
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(b) Lattice - 49 points

Figure: Sum of two sets of vectors in 2-D
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Lattice Preliminaries

Additive noise translates lattice point 

Λ = {x = zG : z ∈ Zn,G ∈ Rn×n}
Quantization - QΛ(x) = argminr∈Λ‖x− r‖
Fundamental Voronoi region - V0 = {x ∈ Rn : Q− Λ(x) = 0}
xmod Λ = x−QΛ(x)
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Very Stong Interference: A 2-level Matryoshka Doll

Lattice  

Shaping Region 
     (Power  P) 

Voronoi Region of Lattice  

Works only for all cross gains hij = Ω(
√
P ) and rationally related
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More general: Multilevel Matryoshkas!

If all cross-channel gains are ”a”, then

Theorem

If a2 > 2, then sum rate ≥ 3 log a2−1
2a4−a2 logSNR

Theorem

If a2 < 1/3, then sum rate ≥ 3 log(1−a2)−log(2a2)
log(1+a2)−log(2a4)

logSNR
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Dead End?

Any improvements possible?

Yes, using a transformation to a noiseless n-dimenstion
channel

Theorem

The central dogma of lattices:

Let X1, X2, X3 all be lattice points

Y1 = X1 + h21X2 + h31X3 +N1 is a corrupted lattice point.

Recover Z1 = X1 + h21X2 + h31X3 +N1. Now, Y1 to Z1 is a
discrete memoryless noiseless channel.

Use Algebra and geometry to find codebooks to maximize rate

One dimensional noisy to n-dimensional noiseless
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..For emphasis... repeat!

If L is the subset of lattice points (”input alphabet”, not
codebook)

Then output alphabet at Receiver 1 is L+ h21L+ h31L
Real multiplication and Minkowski-sum

Similar alphabets at other receivers

Use Algebraic (geometric) coding to design maximally
separable codebook, vectors of lattice points
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Is this Useful?

Theorem

All cross-gains are a for simplicity, then symmetric rate of

1

2

(
1− log(K − 1)

log a

)
logSNR

is achievable, where K is users in system.

Use a code, not necessarily linear, over the lattice

For example, symbol alignment can be superposed on lattices

Rate = (rational DoF) *logSNR
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Multiterminal Source Coding
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Multiterminal Source Coding Through a Relay

ENCODER 1

ENCODER 2

ENCODER 3 DECODER

What are efficient coding schemes?
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Relays in Lossy Source Coding

Simple Relay Model
Relay only needs to forward message from Encoder 1

ENCODER 1 ENCODER 2 DECODER

Relays with Side Information
Tension between whether relay should forward message from
Encoder 1 or decode and compress desired function

ENCODER 1 ENCODER 2 DECODER
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Multiterminal Source Coding

Quantize and bin architecture based on random codes is optimal
for

Quadratic Gaussian CEO Problem - [Oohama],
[PrabhakaranTseRamchandran]

Gaussian Two Terminal Source Coding -
[WagnerTavildarViswanath]

ENCODER 1

ENCODER 2

DECODER

Are random codes optimal for multiterminal source coding through
relays?
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System Model

ENCODER 1

ENCODER 2

ENCODER 3 DECODER

S ∼ N (0, σ2
S), N1 ∼ N (0, σ2

N1
), N2 ∼ N (0, σ2

N2
)

Distortion constraint -
∑n

i=1 E
[
(Si − Ŝi)2

]
≤ D

Find the set of all achievable tuples (R1, R2, R3, D)
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Key Questions

How to integrate incoming messages?

ENCODER 1

ENCODER 2

ENCODER 3 DECODER

Forward messages

Reconstructing linear function requires further compression

Compute and forward - Directly compute linear function of
codewords and forward

Compress and forward - Estimate desired linear function and
compress
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Main Results

Given a distortion constraint D

ENCODER 1

ENCODER 2

ENCODER 3 DECODER

for symmetric noise variances, compute and forward achieves
optimum R1 +R2 and within 1/2 bit of optimum R3

can further reduce R3 at at cost of higher R1 +R2 using
compress and forward

18/39



Compute and Forward - Lattice codes

E[S|S1, S2] = β1S1 + β2S2 is the linear function to be
compressed
Λ1, Λ21, Λ22 are ‘good’ lattices with suitable nesting structure

Decode

Quantization Binning

Quantization
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Compute and Forward - Lattice codes

Zn
1 , Z

n
2 ∼ Unif(V0) - dithers for quantization

Λ1, Λ21 - Quantization at Encoder 1 and 2, R1 = I(S1;U1)
Λ22 - Binning to achieve R2 = I(S2;U2|U1)

Decode

Quantization Binning

Quantization
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Compute and Forward - Lattice codes

Λ3 - ‘good’ channel coding lattice

Λ3 - useful for analysis, not used for quantization

Lattice points summed up at relay to compute function

Decode
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Compute and Forward - Lattice codes

Λ3 - ’good’ channel coding lattice

Λ3 - useful for analysis, not used for quantization

Lattice points summed up at relay to compute function

Decode

Linear 

Estimate
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Compress and Forward - Lattice codes

Λ4 - used for dithered quantization at Encoder 3

Random or lattice codes achieve same performance here

Compute the sum estimate and then compress

Decode
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Compress and Forward - Lattice codes

Λ4 - used for dithered quantization at Encoder 3

Random or lattice codes achieve same performance here

Compute the sum estimate and then compress

Decode

Linear 

Estimate
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Outer Bound

Outer Bound on (R1, R2)

Allow Encoder 3 and Decoder to cooperate

(R1, R2) bounded by rate region of the CEO problem

ENCODER 1

ENCODER 2

ENCODER 3 DECODER
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Outer Bound

Lower Bound on R3

Allow Encoder 1, 2 and 3 to cooperate

R3 bounded by rate distortion function of remote source

ENCODER 1

ENCODER 2

ENCODER 3 DECODER
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Results

Compute and Forward

(R1, R2) achieve sum rate of CEO problem

R3 is within 1/2 bit of optimum for symmteric case
σ2
N1

= σ2
N2

= σ2
N

Compress and Forward

(R1, R2) achieve higher than sum rate of CEO problem

R3 is lower than the rate achievable by compute and forward
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Numerical Results - Sum Rate R1 +R2 +R3

σ2
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Lower Bound
Compute and Forward
Compress and Forward

Compute and forward is within 1/2 bit of total sum rate

Compress and forward achieves a smaller sum rate for higher
distortions
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Joint (Source/Channel) Settings

Setting one: Gaussian broadcast channels with Gaussian sources

Setting two: Linear functions over Gaussian MACs
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Broadcast with Correlated Sources

Transmitter  

Receiver 2 

Receiver 1 

Figure: Correlated data over a broadcast channel with minimum
distortion
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Mathematical Setup

Encoder  

Decoder 1 

Decoder 2 

Figure: Correlated Gaussian sources over a Gaussian channel
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Main Results

A hybrid coding scheme = ”analog” dirty paper coding.
Hybrid = part lattice + part analog for one source

independent sources = optimal

correlated sources

uniformly better than separation
Better than all analog beyond a threshold SNR
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Hybrid Coding

Lattice  
Voronoi region 
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Numerical Comparison

All schemes achieve the 
same distortion at Receiver 2 

Figure: Hybrid can do uniformly better, and is optimal if independent
sources
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Setting two: Linear Functions over a MAC

Encoder 1

Encoder 2

Decoder

Noise

Characterize optimal distortion in linear functions

Challenge - Source channel separation not optimal
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System Model

Encoder 1

Encoder 2

Decoder

(S1, S2) ∼ N (0,Σ) where Σ =

[
σ2 ρσ2

ρσ2 σ2

]
, ρ ≥ 0

Power constraint P at Encoder 1 and 2, Z ∼ N (0, N)

Linear function S3 = S1 + cS2

Squared error distortion in function - 1
n

∑n
i=1 E

[
(S3i − Ŝ3i)

2
]

What is the smallest distortion in the function that can be
achieved?
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Main Result

Theorem

If SNR > -3 dB, then a lattice coding scheme achieves a distortion

1 within 1 bit of the optimal distortion when c ∈ [−1,−ρ]

2 within 2 bits of the of the optimal distortion when
c ∈ R \ [−1,−ρ]
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Performance Comparison
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Conclusion

Structure plays a role across domains

Interference: Signals naturally mix, and lattices curtail the
cardinality growth of interference

Source Coding: Lattices enable more efficient representations
of functions of source

Joint: Both advantages mix
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