The Degrees of Freedom of Compute-and-Forward

Urs Niesen
Jointly with Phil Whiting

Bell Labs, Alcatel-Lucent

Problem Setting

■ K transmitters, messages m_{1}, \ldots, m_{K}, power constraint P

Problem Setting

■ K transmitters, messages m_{1}, \ldots, m_{K}, power constraint P
■ Gaussian channel with constant gains $\boldsymbol{H}=\left\{h_{\ell, k}\right\}$

Problem Setting

■ K transmitters, messages m_{1}, \ldots, m_{K}, power constraint P
■ Gaussian channel with constant gains $\boldsymbol{H}=\left\{h_{\ell, k}\right\}$
■ Decode any deterministic function a_{ℓ} of the messages m_{1}, \ldots, m_{K}

Problem Setting

■ K transmitters, messages m_{1}, \ldots, m_{K}, power constraint P
■ Gaussian channel with constant gains $\boldsymbol{H}=\left\{h_{\ell, k}\right\}$
■ Decode any deterministic function a_{ℓ} of the messages m_{1}, \ldots, m_{K}
■ Invert all computed functions a_{1}, \ldots, a_{K} to recover the messages m_{1}, \ldots, m_{K}

Problem Setting

■ Computation capacity $C\left(P, \boldsymbol{H},\left\{\boldsymbol{a}_{\ell}\right\}\right)$ for fixed function $\left\{\boldsymbol{a}_{\ell}\right\}$

Problem Setting

■ Computation capacity $C\left(P, \boldsymbol{H},\left\{\boldsymbol{a}_{\ell}\right\}\right)$ for fixed function $\left\{\boldsymbol{a}_{\ell}\right\}$
■ $C(P, \boldsymbol{H}, \boldsymbol{A})$ for linear function $\left\{\boldsymbol{a}_{\ell}\right\}$

Problem Setting

■ Computation capacity $C\left(P, \boldsymbol{H},\left\{\boldsymbol{a}_{\ell}\right\}\right)$ for fixed function $\left\{\boldsymbol{a}_{\ell}\right\}$
■ $C(P, \boldsymbol{H}, \boldsymbol{A})$ for linear function $\left\{\boldsymbol{a}_{\ell}\right\}$
■ Computation capacity

$$
C(P, \boldsymbol{H}) \triangleq \max _{\left\{a_{\ell}\right\}} C\left(P, \boldsymbol{H},\left\{\boldsymbol{a}_{\ell}\right\}\right)
$$

with maximization over all invertible functions $\left\{a_{\ell}\right\}$

Computation Capacity
 Some Special Cases and Bounds

■ Identity function $\boldsymbol{A}=\boldsymbol{I} \Rightarrow C(P, \boldsymbol{H}, \boldsymbol{I})$ is the capacity of the K-user interference channel

Computation Capacity
 Some Special Cases and Bounds

■ Identity function $\boldsymbol{A}=\boldsymbol{I} \Rightarrow C(P, \boldsymbol{H}, \boldsymbol{I})$ is the capacity of the K-user interference channel

$$
C(P, \boldsymbol{H}) \geq C(P, \boldsymbol{H}, \boldsymbol{I})
$$

Computation Capacity
 Some Special Cases and Bounds

■ Identity function $\boldsymbol{A}=\boldsymbol{I} \Rightarrow C(P, \boldsymbol{H}, \boldsymbol{I})$ is the capacity of the K-user interference channel
(Motahari et al. 2009)

$$
C(P, \boldsymbol{H}) \geq C(P, \boldsymbol{H}, \boldsymbol{I})=\frac{K}{4} \log (P)+o(\log (P))
$$

Computation Capacity
 Some Special Cases and Bounds

■ Identity function $\boldsymbol{A}=\boldsymbol{I} \Rightarrow C(P, \boldsymbol{H}, \boldsymbol{I})$ is the capacity of the K-user interference channel
(Motahari et al. 2009)

$$
C(P, \boldsymbol{H}) \geq C(P, \boldsymbol{H}, \boldsymbol{I}) \Rightarrow \lim _{P \rightarrow \infty} \frac{C(P, \boldsymbol{H})}{\frac{1}{2} \log (P)} \geq K / 2
$$

Computation Capacity
 Some Special Cases and Bounds

■ Identity function $\boldsymbol{A}=\boldsymbol{I} \Rightarrow C(P, \boldsymbol{H}, \boldsymbol{I})$ is the capacity of the K-user interference channel (Motahari et al. 2009)

$$
C(P, \boldsymbol{H}) \geq C(P, \boldsymbol{H}, \boldsymbol{I}) \Rightarrow \lim _{P \rightarrow \infty} \frac{C(P, \boldsymbol{H})}{\frac{1}{2} \log (P)} \geq K / 2
$$

- Allow cooperation among transmitters and among receivers $\Rightarrow K \times K$ MIMO channel

Computation Capacity
 Some Special Cases and Bounds

- Identity function $\boldsymbol{A}=\boldsymbol{I} \Rightarrow C(P, \boldsymbol{H}, \boldsymbol{I})$ is the capacity of the K-user interference channel (Motahari et al. 2009)

$$
C(P, \boldsymbol{H}) \geq C(P, \boldsymbol{H}, \boldsymbol{I}) \Rightarrow \lim _{P \rightarrow \infty} \frac{C(P, \boldsymbol{H})}{\frac{1}{2} \log (P)} \geq K / 2
$$

- Allow cooperation among transmitters and among receivers $\Rightarrow K \times K$ MIMO channel
(Telatar 1999)
$C(P, \boldsymbol{H}) \leq \max _{\boldsymbol{Q}} \frac{1}{2} \log \operatorname{det}\left(\boldsymbol{I}+\boldsymbol{H} \boldsymbol{Q} \boldsymbol{H}^{\boldsymbol{T}}\right)$

Computation Capacity
 Some Special Cases and Bounds

- Identity function $\boldsymbol{A}=\boldsymbol{I} \Rightarrow C(P, \boldsymbol{H}, \boldsymbol{I})$ is the capacity of the K-user interference channel (Motahari et al. 2009)

$$
C(P, \boldsymbol{H}) \geq C(P, \boldsymbol{H}, \boldsymbol{I}) \Rightarrow \lim _{P \rightarrow \infty} \frac{C(P, \boldsymbol{H})}{\frac{1}{2} \log (P)} \geq K / 2
$$

- Allow cooperation among transmitters and among receivers $\Rightarrow K \times K$ MIMO channel
(Telatar 1999)

$$
C(P, \boldsymbol{H}) \leq \max _{\boldsymbol{Q}} \frac{1}{2} \log \operatorname{det}\left(\boldsymbol{I}+\boldsymbol{H} \boldsymbol{Q} \boldsymbol{H}^{T}\right) \Rightarrow \lim _{P \rightarrow \infty} \frac{C(P, \boldsymbol{H})}{\frac{1}{2} \log (P)} \leq K
$$

Computation Capacity

Lattice Codes

■ Two transmitters, one receiver, $\boldsymbol{h}=(1,1)$

Computation Capacity

Lattice Codes

■ Two transmitters, one receiver, $\boldsymbol{h}=(1,1)$

Computation Capacity

Lattice Codes

- Two transmitters, one receiver, $\boldsymbol{h}=(1,1)$

Computation Capacity

Lattice Codes

■ Two transmitters, one receiver, $\boldsymbol{h}=(1,1)$

Computation Capacity

Lattice Codes

■ Two transmitters, one receiver, $\boldsymbol{h}=(1,1)$

Computation Capacity

Lattice Codes

■ Two transmitters, one receiver, $\boldsymbol{h}=(1,1)$
■ Decode $\boldsymbol{a}=(1,1)$

Computation Capacity

Lattice Codes

■ Two transmitters, one receiver, $\boldsymbol{h}=(1,0.5)$

Computation Capacity

Lattice Codes

- Two transmitters, one receiver, $\boldsymbol{h}=(1,0.5)$

Computation Capacity

- Two transmitters, one receiver, $\boldsymbol{h}=(1,0.5)$

■ Scale output by $\beta=2$, decode $\boldsymbol{a}=(2,1)$

Computation Capacity

Lattice Codes

- K transmitters, one receiver, $\boldsymbol{h} \in \mathbb{R}^{K}$

Computation Capacity

■ K transmitters, one receiver, $\boldsymbol{h} \in \mathbb{R}^{K}$
■ Scale output by $\beta \in \mathbb{R}$, decode $\boldsymbol{a} \in \mathbb{Z}^{K}$

Computation Capacity

■ K transmitters, one receiver, $\boldsymbol{h} \in \mathbb{R}^{K}$
■ Scale output by $\beta \in \mathbb{R}$, decode $\boldsymbol{a} \in \mathbb{Z}^{K}$

$$
C(P, \boldsymbol{h}, \boldsymbol{a}) \geq \max _{\beta} \frac{1}{2} \log \left(\frac{P}{\beta^{2}+P\|\beta \boldsymbol{h}-\boldsymbol{a}\|^{2}}\right)
$$

Computation Capacity

■ K transmitters, one receiver, $\boldsymbol{h} \in \mathbb{R}^{K}$
■ Scale output by $\beta \in \mathbb{R}$, decode $\boldsymbol{a} \in \mathbb{Z}^{K}$

$$
C(P, \boldsymbol{h}, \boldsymbol{a}) \geq \frac{1}{2} \log \left(\frac{1+P\|\boldsymbol{h}\|^{2}}{\|\boldsymbol{a}\|^{2}+P\left(\|\boldsymbol{a}\|^{2}\|\boldsymbol{h}\|^{2}-\left(\boldsymbol{h}^{T} \boldsymbol{a}\right)^{2}\right)}\right)
$$

Computation Capacity

■ K transmitters, one receiver, $\boldsymbol{h} \in \mathbb{R}^{K}$
■ Scale output by $\beta \in \mathbb{R}$, decode $\boldsymbol{a} \in \mathbb{Z}^{K}$

$$
C(P, \boldsymbol{h}, \boldsymbol{a}) \geq \frac{1}{2} \log \left(\frac{1+P\|\boldsymbol{h}\|^{2}}{\|\boldsymbol{a}\|^{2}+P\left(\|\boldsymbol{a}\|^{2}\|\boldsymbol{h}\|^{2}-\left(\boldsymbol{h}^{T} \mathbf{a}\right)^{2}\right)}\right) \triangleq R_{L}(P, \boldsymbol{h}, \boldsymbol{a})
$$

Computation Capacity

Lattice Codes

■ K transmitters, K receivers, $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

- Decode $\boldsymbol{A} \in \mathbb{Z}^{K \times K}$

Computation Capacity

Lattice Codes

- K transmitters, K receivers, $\boldsymbol{H} \in \mathbb{R}^{K \times K}$
- Decode $\boldsymbol{A} \in \mathbb{Z}^{K \times K}$

$$
C(P, \boldsymbol{H}, \boldsymbol{A}) \geq \quad R_{L}(P, \boldsymbol{H}, \boldsymbol{A})
$$

Computation Capacity

Lattice Codes

- K transmitters, K receivers, $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

■ Decode $\boldsymbol{A} \in \mathbb{Z}^{K \times K}$

$$
\max _{\boldsymbol{A}} C(P, \boldsymbol{H}, \boldsymbol{A}) \geq \max _{\boldsymbol{A}} R_{L}(P, \boldsymbol{H}, \boldsymbol{A})
$$

Computation Capacity

Lattice Codes

■ K transmitters, K receivers, $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

- Decode $\boldsymbol{A} \in \mathbb{Z}^{K \times K}$

$$
C(P, \boldsymbol{H}) \geq \quad R_{L}(P, \boldsymbol{H})
$$

Questions

■ We already know that the computation capacity satisfies

$$
K / 2 \leq \lim _{P \rightarrow \infty} \frac{C(P, \boldsymbol{H})}{\frac{1}{2} \log (P)} \leq K
$$

Questions

■ We already know that the computation capacity satisfies

$$
K / 2 \leq \lim _{P \rightarrow \infty} \frac{C(P, \boldsymbol{H})}{\frac{1}{2} \log (P)} \leq K
$$

■ What are the degrees of freedom of compute-and-forward

$$
\lim _{P \rightarrow \infty} \frac{C(P, \boldsymbol{H})}{\frac{1}{2} \log (P)}=?
$$

Questions

■ We already know that the computation capacity satisfies

$$
K / 2 \leq \lim _{P \rightarrow \infty} \frac{C(P, \boldsymbol{H})}{\frac{1}{2} \log (P)} \leq K
$$

■ What are the degrees of freedom of compute-and-forward

$$
\lim _{P \rightarrow \infty} \frac{C(P, \boldsymbol{H})}{\frac{1}{2} \log (P)}=?
$$

\square What are the degrees of freedom achieved by lattice codes

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(P, \boldsymbol{H})}{\frac{1}{2} \log (P)}=?
$$

Performance of Lattice Codes

$$
R_{L}(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1+P\|\boldsymbol{h}\|^{2}}{\|\boldsymbol{a}\|^{2}+P\left(\|\boldsymbol{a}\|^{2}\|\boldsymbol{h}\|^{2}-\left(\boldsymbol{h}^{T} \boldsymbol{a}\right)^{2}\right)}\right)
$$

Performance of Lattice Codes

$$
R_{L}(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1+P\|\boldsymbol{h}\|^{2}}{\|\boldsymbol{a}\|^{2}+P\left(\|\boldsymbol{a}\|^{2}\|\boldsymbol{h}\|^{2}-\left(\boldsymbol{h}^{T} \boldsymbol{a}\right)^{2}\right)}\right)
$$

■ Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K}$

Performance of Lattice Codes

$$
R_{L}(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1+P\|\boldsymbol{h}\|^{2}}{\|\boldsymbol{a}\|^{2}+P\left(\|\boldsymbol{a}\|^{2}\|\boldsymbol{h}\|^{2}-\left(\boldsymbol{h}^{T} \boldsymbol{a}\right)^{2}\right)}\right)
$$

■ Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K} \Rightarrow$ Set $\boldsymbol{A}=\boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(P, \boldsymbol{H})}{\frac{1}{2} \log (P)}=K
$$

Performance of Lattice Codes

$$
R_{L}(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1+P\|\boldsymbol{h}\|^{2}}{\|\boldsymbol{a}\|^{2}+P\left(\|\boldsymbol{a}\|^{2}\|\boldsymbol{h}\|^{2}-\left(\boldsymbol{h}^{T} \boldsymbol{a}\right)^{2}\right)}\right)
$$

■ Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K} \Rightarrow$ Set $\boldsymbol{A}=\boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(P, \boldsymbol{H})}{\frac{1}{2} \log (P)}=K
$$

■ Rational channel gains $\boldsymbol{H} \in \mathbb{Q}^{K \times K}$

Performance of Lattice Codes

$$
R_{L}(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1+P\|\boldsymbol{h}\|^{2}}{\|\boldsymbol{a}\|^{2}+P\left(\|\boldsymbol{a}\|^{2}\|\boldsymbol{h}\|^{2}-\left(\boldsymbol{h}^{T} \boldsymbol{a}\right)^{2}\right)}\right)
$$

■ Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K} \Rightarrow$ Set $\boldsymbol{A}=\boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(P, \boldsymbol{H})}{\frac{1}{2} \log (P)}=K
$$

■ Rational channel gains $\boldsymbol{H} \in \mathbb{Q}^{K \times K} \Rightarrow$ Set $\boldsymbol{A}=\boldsymbol{q} \boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(P, \boldsymbol{H})}{\frac{1}{2} \log (P)}=K
$$

Performance of Lattice Codes

$$
R_{L}(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1+P\|\boldsymbol{h}\|^{2}}{\|\boldsymbol{a}\|^{2}+P\left(\|\boldsymbol{a}\|^{2}\|\boldsymbol{h}\|^{2}-\left(\boldsymbol{h}^{T} \boldsymbol{a}\right)^{2}\right)}\right)
$$

■ Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K} \Rightarrow$ Set $\boldsymbol{A}=\boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(P, \boldsymbol{H})}{\frac{1}{2} \log (P)}=K
$$

■ Rational channel gains $\boldsymbol{H} \in \mathbb{Q}^{K \times K} \Rightarrow$ Set $\boldsymbol{A}=\boldsymbol{q} \boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(P, \boldsymbol{H})}{\frac{1}{2} \log (P)}=K
$$

■ Real channel gains $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

Performance of Lattice Codes

$$
R_{L}(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1+P\|\boldsymbol{h}\|^{2}}{\|\boldsymbol{a}\|^{2}+P\left(\|\boldsymbol{a}\|^{2}\|\boldsymbol{h}\|^{2}-\left(\boldsymbol{h}^{T} \boldsymbol{a}\right)^{2}\right)}\right)
$$

■ Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K} \Rightarrow$ Set $\boldsymbol{A}=\boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(P, \boldsymbol{H})}{\frac{1}{2} \log (P)}=K
$$

■ Rational channel gains $\boldsymbol{H} \in \mathbb{Q}^{K \times K} \Rightarrow$ Set $\boldsymbol{A}=\boldsymbol{q} \boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(P, \boldsymbol{H})}{\frac{1}{2} \log (P)}=K
$$

■ Real channel gains $\boldsymbol{H} \in \mathbb{R}^{K \times K} \Rightarrow$?

Performance of Lattice Codes

- Two transmitters, one receiver, $\boldsymbol{h}=\left(1, h_{2}\right)$

Performance of Lattice Codes

■ Two transmitters, one receiver, $\boldsymbol{h}=\left(1, h_{2}\right)$
■ Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}$

Performance of Lattice Codes

■ Two transmitters, one receiver, $\boldsymbol{h}=\left(1, h_{2}\right)$
■ Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}$

$$
\frac{\max _{\boldsymbol{a}} R_{L}(P, \boldsymbol{h}, \boldsymbol{a})}{\frac{1}{2} \log \left(1+\|\boldsymbol{h}\|^{2} P\right)}
$$

Performance of Lattice Codes

■ Two transmitters, one receiver, $\boldsymbol{h}=\left(1, h_{2}\right)$
■ Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}$

$$
\frac{\max _{\boldsymbol{a}} R_{L}(P, \boldsymbol{h}, \boldsymbol{a})}{\frac{1}{2} \log \left(1+\|\boldsymbol{h}\|^{2} P\right)}
$$

Performance of Lattice Codes

- Two transmitters, one receiver, $\boldsymbol{h}=\left(1, h_{2}\right)$

■ Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}$

$$
\frac{\max _{\boldsymbol{a}} R_{L}(P, \boldsymbol{h}, \boldsymbol{a})}{\frac{1}{2} \log \left(1+\|\boldsymbol{h}\|^{2} P\right)}
$$

Performance of Lattice Codes

■ Two transmitters, one receiver, $\boldsymbol{h}=\left(1, h_{2}\right)$
■ Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}$

$$
\frac{\max _{\boldsymbol{a}} R_{L}(P, \boldsymbol{h}, \boldsymbol{a})}{\frac{1}{2} \log \left(1+\|\boldsymbol{h}\|^{2} P\right)}
$$

Performance of Lattice Codes

■ Two transmitters, one receiver, $\boldsymbol{h}=\left(1, h_{2}\right)$
■ Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}$

$$
\frac{\max _{\boldsymbol{a}} R_{L}(P, \boldsymbol{h}, \boldsymbol{a})}{\frac{1}{2} \log \left(1+\|\boldsymbol{h}\|^{2} P\right)}
$$

Performance of Lattice Codes

Theorem 1

For any $K \geq 2$ and almost every $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(\boldsymbol{H}, P)}{\frac{1}{2} \log (P)} \leq \frac{2}{1+1 / K} \leq 2
$$

Performance of Lattice Codes

Theorem 1

For any $K \geq 2$ and almost every $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(\boldsymbol{H}, P)}{\frac{1}{2} \log (P)} \leq \frac{2}{1+1 / K} \leq 2
$$

Compare to:

- MIMO upper bound of K on the degrees of freedom of compute-and-forward

Performance of Lattice Codes

Theorem 1

For any $K \geq 2$ and almost every $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{R_{L}(\boldsymbol{H}, P)}{\frac{1}{2} \log (P)} \leq \frac{2}{1+1 / K} \leq 2
$$

Compare to:

- MIMO upper bound of K on the degrees of freedom of compute-and-forward
■ Decode-and-forward lower bound of $K / 2$ on the degrees of freedom compute-and-forward

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR?

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR ? \Rightarrow Yes!

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR? \Rightarrow Yes!
Theorem 2
For any $K \geq 2$ and almost every $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{C(\boldsymbol{H}, P)}{\frac{1}{2} \log (P)}=K
$$

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR? \Rightarrow Yes!
Theorem 2
For any $K \geq 2$ and almost every $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{C(\boldsymbol{H}, P)}{\frac{1}{2} \log (P)}=K
$$

■ Compute-and-forward achieves MIMO upper bound of K degrees of freedom
■ Invertible functions can be encoded/decoded distributedly at same asymptotic rate as the centralized scheme

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR? \Rightarrow Yes!
Theorem 2
For any $K \geq 2$ and almost every $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

$$
\lim _{P \rightarrow \infty} \frac{C(\boldsymbol{H}, P)}{\frac{1}{2} \log (P)}=K
$$

■ Compute-and-forward achieves MIMO upper bound of K degrees of freedom
■ Invertible functions can be encoded/decoded distributedly at same asymptotic rate as the centralized scheme

- Compute-and-forward achieves twice the degrees of freedom of decode-and-forward

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR? \Rightarrow Yes!
Theorem 2
For any $K \geq 2$ and almost every $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

$$
-O\left(\log ^{K^{2} /\left(1+K^{2}\right)}(P)\right) \leq C(\boldsymbol{H}, P)-\frac{1}{2} K \log (P) \leq O(1)
$$

■ Compute-and-forward achieves MIMO upper bound of K degrees of freedom
■ Invertible functions can be encoded/decoded distributedly at same asymptotic rate as the centralized scheme
■ Compute-and-forward achieves twice the degrees of freedom of decode-and-forward

Lower Bound in Theorem 2

■ Channel computes noisy linear combinations with real coefficients

Lower Bound in Theorem 2

- Channel computes noisy linear combinations with real coefficients
- Lattice codes transform this into a system computing noiseless linear combinations with integer coefficients

Lower Bound in Theorem 2

- Channel computes noisy linear combinations with real coefficients
- Lattice codes transform this into a system computing noiseless linear combinations with integer coefficients
- The achievable scheme in Theorem 2 opts instead to implement these two functions separately

Lower Bound in Theorem 2

- Channel computes noisy linear combinations with real coefficients
- Lattice codes transform this into a system computing noiseless linear combinations with integer coefficients
- The achievable scheme in Theorem 2 opts instead to implement these two functions separately
- Use signal alignment to transform real linear combinations into integer linear combinations

Lower Bound in Theorem 2

- Channel computes noisy linear combinations with real coefficients
- Lattice codes transform this into a system computing noiseless linear combinations with integer coefficients
- The achievable scheme in Theorem 2 opts instead to implement these two functions separately
- Use signal alignment to transform real linear combinations into integer linear combinations
- Use a linear outer code to transform noisy linear combinations into noiseless linear combinations

Lower Bound in Theorem 2

Outline

■ Channel computes noisy linear combinations with real coefficients

$$
h_{1,1} m_{1}+h_{1,2} m_{2}+z_{1}
$$

Lower Bound in Theorem 2

Outline

■ Channel computes noisy linear combinations with real coefficients

$$
h_{1,1} m_{1}+h_{1,2} m_{2}+z_{1}
$$

■ Use signal alignment to transform real linear combinations into integer linear combinations

$$
a_{1,1} m_{1}+a_{1,2} m_{2}+z_{1}
$$

Lower Bound in Theorem 2

■ Channel computes noisy linear combinations with real coefficients

$$
h_{1,1} m_{1}+h_{1,2} m_{2}+z_{1}
$$

■ Use signal alignment to transform real linear combinations into integer linear combinations

$$
a_{1,1} m_{1}+a_{1,2} m_{2}+z_{1}
$$

\Rightarrow Split each message into several submessages
\Rightarrow Use tools from Diophantine approximation

Lower Bound in Theorem 2

Outline

■ Channel computes noisy linear combinations with real coefficients

$$
h_{1,1} m_{1}+h_{1,2} m_{2}+z_{1}
$$

■ Use signal alignment to transform real linear combinations into integer linear combinations

$$
a_{1,1} m_{1}+a_{1,2} m_{2}+z_{1}
$$

\Rightarrow Split each message into several submessages
\Rightarrow Use tools from Diophantine approximation
■ Use a linear outer code to transform noisy linear combinations into noiseless linear combinations

$$
a_{1,1} m_{1}+a_{1,2} m_{2}
$$

Lower Bound in Theorem 2

Preliminaries

Groshev's Theorem
For any $\varepsilon>0$, and almost all $\left(h_{1}, h_{2}, \ldots, h_{K}\right) \in \mathbb{R}^{K}$,

$$
\min _{q_{i} \in \mathbb{Z}}\left|h_{1} q_{1}+\ldots+h_{K} q_{K}\right| \geq \Omega\left(\left(\max _{i}\left|q_{i}\right|\right)^{1-K-\varepsilon}\right)
$$

Lower Bound in Theorem 2

Preliminaries

Groshev's Theorem

For any $\varepsilon>0$, and almost all $\left(h_{1}, h_{2}, \ldots, h_{K}\right) \in \mathbb{R}^{K}$,

$$
\min _{q_{i} \in \mathbb{Z}}\left|h_{1} q_{1}+\ldots+h_{K} q_{K}\right| \geq \Omega\left(\left(\max _{i}\left|q_{i}\right|\right)^{1-K-\varepsilon}\right)
$$

■ Let $x_{k}=A q_{k}$ with $q_{k} \in\{-Q,-Q+1, \ldots, Q-1, Q\}$

Lower Bound in Theorem 2

Preliminaries

Groshev's Theorem

For any $\varepsilon>0$, and almost all $\left(h_{1}, h_{2}, \ldots, h_{K}\right) \in \mathbb{R}^{K}$,

$$
\min _{q_{i} \in \mathbb{Z}}\left|h_{1} q_{1}+\ldots+h_{K} q_{K}\right| \geq \Omega\left(\left(\max _{i}\left|q_{i}\right|\right)^{1-K-\varepsilon}\right)
$$

■ Let $x_{k}=A q_{k}$ with $q_{k} \in\{-Q,-Q+1, \ldots, Q-1, Q\}$
■ Assume we observe $y=h_{1} x_{1}+\ldots+h_{K} x_{K}+z$

Lower Bound in Theorem 2

Preliminaries

Groshev's Theorem

For any $\varepsilon>0$, and almost all $\left(h_{1}, h_{2}, \ldots, h_{K}\right) \in \mathbb{R}^{K}$,

$$
\min _{q_{i} \in \mathbb{Z}}\left|h_{1} q_{1}+\ldots+h_{K} q_{K}\right| \geq \Omega\left(\left(\max _{i}\left|q_{i}\right|\right)^{1-K-\varepsilon}\right)
$$

■ Let $x_{k}=A q_{k}$ with $q_{k} \in\{-Q,-Q+1, \ldots, Q-1, Q\}$
■ Assume we observe $y=h_{1} x_{1}+\ldots+h_{K} x_{K}+z$
■ Minimum distance between $\left(x_{1}, \ldots, x_{K}\right) \neq\left(x_{1}^{\prime}, \ldots, x_{K}^{\prime}\right)$

Lower Bound in Theorem 2

Preliminaries

Groshev's Theorem

For any $\varepsilon>0$, and almost all $\left(h_{1}, h_{2}, \ldots, h_{K}\right) \in \mathbb{R}^{K}$,

$$
\min _{q_{i} \in \mathbb{Z}}\left|h_{1} q_{1}+\ldots+h_{K} q_{K}\right| \geq \Omega\left(\left(\max _{i}\left|q_{i}\right|\right)^{1-K-\varepsilon}\right) .
$$

- Let $x_{k}=A q_{k}$ with $q_{k} \in\{-Q,-Q+1, \ldots, Q-1, Q\}$

■ Assume we observe $y=h_{1} x_{1}+\ldots+h_{K} x_{K}+z$

- Minimum distance between $\left(x_{1}, \ldots, x_{K}\right) \neq\left(x_{1}^{\prime}, \ldots, x_{K}^{\prime}\right)$

$$
\left|\sum_{k=1}^{K} h_{k}\left(x_{k}-x_{k}^{\prime}\right)\right|
$$

Lower Bound in Theorem 2

Preliminaries

Groshev's Theorem

For any $\varepsilon>0$, and almost all $\left(h_{1}, h_{2}, \ldots, h_{K}\right) \in \mathbb{R}^{K}$,

$$
\min _{q_{i} \in \mathbb{Z}}\left|h_{1} q_{1}+\ldots+h_{K} q_{K}\right| \geq \Omega\left(\left(\max _{i}\left|q_{i}\right|\right)^{1-K-\varepsilon}\right)
$$

- Let $x_{k}=A q_{k}$ with $q_{k} \in\{-Q,-Q+1, \ldots, Q-1, Q\}$

■ Assume we observe $y=h_{1} x_{1}+\ldots+h_{K} x_{K}+z$

- Minimum distance between $\left(x_{1}, \ldots, x_{K}\right) \neq\left(x_{1}^{\prime}, \ldots, x_{K}^{\prime}\right)$

$$
\left|\sum_{k=1}^{K} h_{k}\left(x_{k}-x_{k}^{\prime}\right)\right|=A\left|\sum_{k=1}^{K} h_{k}\left(q_{k}-q_{k}^{\prime}\right)\right|
$$

Lower Bound in Theorem 2

Preliminaries

Groshev's Theorem

For any $\varepsilon>0$, and almost all $\left(h_{1}, h_{2}, \ldots, h_{K}\right) \in \mathbb{R}^{K}$,

$$
\min _{q_{i} \in \mathbb{Z}}\left|h_{1} q_{1}+\ldots+h_{K} q_{K}\right| \geq \Omega\left(\left(\max _{i}\left|q_{i}\right|\right)^{1-K-\varepsilon}\right)
$$

- Let $x_{k}=A q_{k}$ with $q_{k} \in\{-Q,-Q+1, \ldots, Q-1, Q\}$

■ Assume we observe $y=h_{1} x_{1}+\ldots+h_{K} x_{K}+z$

- Minimum distance between $\left(x_{1}, \ldots, x_{K}\right) \neq\left(x_{1}^{\prime}, \ldots, x_{K}^{\prime}\right)$

$$
\left|\sum_{k=1}^{K} h_{k}\left(x_{k}-x_{k}^{\prime}\right)\right|=A\left|\sum_{k=1}^{K} h_{k}\left(q_{k}-q_{k}^{\prime}\right)\right| \gtrsim A \Omega\left(Q^{1-K}\right)
$$

Lower Bound in Theorem 2

Preliminaries

Groshev's Theorem

For any $\varepsilon>0$, and almost all $\left(h_{1}, h_{2}, \ldots, h_{K}\right) \in \mathbb{R}^{K}$,

$$
\min _{q_{i} \in \mathbb{Z}}\left|h_{1} q_{1}+\ldots+h_{K} q_{K}\right| \geq \Omega\left(\left(\max _{i}\left|q_{i}\right|\right)^{1-K-\varepsilon}\right)
$$

- Let $x_{k}=A q_{k}$ with $q_{k} \in\{-Q,-Q+1, \ldots, Q-1, Q\}$
- Assume we observe $y=h_{1} x_{1}+\ldots+h_{K} x_{K}+z$
- Minimum distance between $\left(x_{1}, \ldots, x_{K}\right) \neq\left(x_{1}^{\prime}, \ldots, x_{K}^{\prime}\right)$

$$
\left|\sum_{k=1}^{K} h_{k}\left(x_{k}-x_{k}^{\prime}\right)\right|=A\left|\sum_{k=1}^{K} h_{k}\left(q_{k}-q_{k}^{\prime}\right)\right| \gtrsim A \Omega\left(Q^{1-K}\right)
$$

- For $A \approx P^{(K-1) / 2 K}$ and $Q \approx P^{1 / 2 K}$ satisfy power constraint and can remove noise

Lower Bound in Theorem 2

Signal Alignment

Consider a simple interference channel without noise

$$
\begin{aligned}
& y_{1}=x_{1}+x_{2} \\
& y_{2}=x_{1}+h x_{2}
\end{aligned}
$$

Lower Bound in Theorem 2

Signal Alignment

Consider a simple interference channel without noise

$$
\begin{aligned}
& y_{1}=x_{1}+x_{2} \\
& y_{2}=x_{1}+h x_{2}
\end{aligned}
$$

■ Set

$$
\begin{aligned}
& x_{1} / A=q_{11} \\
& x_{2} / A=q_{21}
\end{aligned}
$$

Lower Bound in Theorem 2

Signal Alignment

Consider a simple interference channel without noise

$$
\begin{aligned}
& y_{1}=x_{1}+x_{2} \\
& y_{2}=x_{1}+h x_{2}
\end{aligned}
$$

■ Set

$$
\begin{aligned}
& x_{1} / A=q_{11} \\
& x_{2} / A=q_{21}
\end{aligned}
$$

- This is received as

$$
\begin{aligned}
& y_{1} / A=\left(q_{11}+q_{21}\right) \\
& y_{2} / A=q_{11}+h q_{21}
\end{aligned}
$$

Lower Bound in Theorem 2

Signal Alignment

Consider a simple interference channel without noise

$$
\begin{aligned}
& y_{1}=x_{1}+x_{2} \\
& y_{2}=x_{1}+h x_{2}
\end{aligned}
$$

■ Set

$$
\begin{aligned}
& x_{1} / A=q_{11}+h q_{12} \\
& x_{2} / A=q_{21}+h q_{22}
\end{aligned}
$$

- This is received as

$$
\begin{aligned}
& y_{1} / A=\left(q_{11}+q_{21}\right) \\
& y_{2} / A=q_{11}+h q_{21}
\end{aligned}
$$

Lower Bound in Theorem 2

Signal Alignment

Consider a simple interference channel without noise

$$
\begin{aligned}
& y_{1}=x_{1}+x_{2} \\
& y_{2}=x_{1}+h x_{2}
\end{aligned}
$$

■ Set

$$
\begin{aligned}
& x_{1} / A=q_{11}+h q_{12} \\
& x_{2} / A=q_{21}+h q_{22}
\end{aligned}
$$

- This is received as

$$
\begin{aligned}
& y_{1} / A=\left(q_{11}+q_{21}\right)+h\left(q_{12}+q_{22}\right) \\
& y_{2} / A=q_{11}+h\left(q_{21}+q_{12}\right)+h^{2} q_{22}
\end{aligned}
$$

Lower Bound in Theorem 2

Signal Alignment

Consider a simple interference channel without noise

$$
\begin{aligned}
& y_{1}=x_{1}+x_{2} \\
& y_{2}=x_{1}+h x_{2}
\end{aligned}
$$

■ Set

$$
\begin{aligned}
& x_{1} / A=q_{11}+h q_{12}+\ldots \\
& x_{2} / A=q_{21}+h q_{22}+\ldots
\end{aligned}
$$

- This is received as

$$
\begin{aligned}
& y_{1} / A=\left(q_{11}+q_{21}\right)+h\left(q_{12}+q_{22}\right)+\ldots \\
& y_{2} / A=q_{11}+h\left(q_{21}+q_{12}\right)+h^{2} q_{22}+\ldots
\end{aligned}
$$

Lower Bound in Theorem 2

Signal Alignment

Consider a simple interference channel without noise

$$
\begin{aligned}
& y_{1}=x_{1}+x_{2} \\
& y_{2}=x_{1}+h x_{2}
\end{aligned}
$$

■ Set

$$
\begin{aligned}
& x_{1} / A=q_{11}+h q_{12}+\ldots \\
& x_{2} / A=q_{21}+h q_{22}+\ldots
\end{aligned}
$$

■ This is received as

$$
\begin{aligned}
& y_{1} / A=\left(q_{11}+q_{21}\right)+h\left(q_{12}+q_{22}\right)+\ldots \\
& y_{2} / A=q_{11}+h\left(q_{21}+q_{12}\right)+h^{2} q_{22}+\ldots
\end{aligned}
$$

■ Groshev's Theorem to separate equations

Lower Bound in Theorem 2

Signal Alignment

Consider a simple interference channel without noise

$$
\begin{aligned}
& y_{1}=x_{1}+x_{2} \\
& y_{2}=x_{1}+h x_{2}
\end{aligned}
$$

■ Set

$$
\begin{aligned}
& x_{1} / A=q_{11}+h q_{12}+\ldots \\
& x_{2} / A=q_{21}+h q_{22}+\ldots
\end{aligned}
$$

- This is received as

$$
\begin{aligned}
& y_{1} / A=\left(q_{11}+q_{21}\right)+h\left(q_{12}+q_{22}\right)+\ldots \\
& y_{2} / A=q_{11}+h\left(q_{21}+q_{12}\right)+h^{2} q_{22}+\ldots
\end{aligned}
$$

■ Groshev's Theorem to separate equations
■ Linear outer code to drive probability of error to zero

Summary

■ Compute-and-forward as communication strategy for wireless networks

Summary

■ Compute-and-forward as communication strategy for wireless networks

- Lattice codes achieve at most 2 degrees of freedom over a $K \times K$ channel

Summary

■ Compute-and-forward as communication strategy for wireless networks

- Lattice codes achieve at most 2 degrees of freedom over a $K \times K$ channel
■ However, a different implementation of compute-and-forward achieves K degrees of freedom

Summary

■ Compute-and-forward as communication strategy for wireless networks

- Lattice codes achieve at most 2 degrees of freedom over a $K \times K$ channel
■ However, a different implementation of compute-and-forward achieves K degrees of freedom
■ Matches MIMO upper bound of K degrees of freedom

Summary

- Compute-and-forward as communication strategy for wireless networks
- Lattice codes achieve at most 2 degrees of freedom over a $K \times K$ channel
- However, a different implementation of compute-and-forward achieves K degrees of freedom
- Matches MIMO upper bound of K degrees of freedom
- Compute-and-forward achieves twice the degrees of freedom of decode-and-forward

