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What are the degrees of freedom achieved by lattice codes
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1 + 1/K
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Compare to:

MIMO upper bound of K on the degrees of freedom of
compute-and-forward

Decode-and-forward lower bound of K/2 on the degrees of
freedom compute-and-forward
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For A ≈ P(K−1)/2K and Q ≈ P1/2K satisfy power constraint
and can remove noise
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Signal Alignment

Consider a simple interference channel without noise

y1 = x1 + x2

y2 = x1 + hx2

Set

x1/A = q11 + hq12 + . . .

x2/A = q21 + hq22 + . . .

This is received as

y1/A = (q11 + q21) + h(q12 + q22) + . . .

y2/A = q11 + h(q21 + q12) + h2q22 + . . .

Groshev’s Theorem to separate equations

Linear outer code to drive probability of error to zero
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Summary

Compute-and-forward as communication strategy for
wireless networks

Lattice codes achieve at most 2 degrees of freedom over a
K × K channel

However, a different implementation of
compute-and-forward achieves K degrees of freedom

Matches MIMO upper bound of K degrees of freedom

Compute-and-forward achieves twice the degrees of
freedom of decode-and-forward


