
The Degrees of Freedom of
Compute-and-Forward

Urs Niesen
Jointly with Phil Whiting

Bell Labs, Alcatel-Lucent

Problem Setting

m1

m2 Encoder

Encoder

K transmitters, messages m1, . . . , mK , power constraint P

Problem Setting

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Encoder

Encoder

K transmitters, messages m1, . . . , mK , power constraint P

Gaussian channel with constant gains H = {hℓ,k}

Problem Setting

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

K transmitters, messages m1, . . . , mK , power constraint P

Gaussian channel with constant gains H = {hℓ,k}

Decode any deterministic function aℓ of the messages
m1, . . . , mK

Problem Setting

m1

m2

Inverter

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

K transmitters, messages m1, . . . , mK , power constraint P

Gaussian channel with constant gains H = {hℓ,k}

Decode any deterministic function aℓ of the messages
m1, . . . , mK

Invert all computed functions a1, . . . , aK to recover the
messages m1, . . . , mK

Problem Setting

m1

m2

Inverter

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

Computation capacity C(P, H, {aℓ}) for fixed function {aℓ}

Problem Setting

m1

m2

Inverter

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

Computation capacity C(P, H, {aℓ}) for fixed function {aℓ}

C(P, H, A) for linear function {aℓ}

Problem Setting

m1

m2

Inverter

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

Computation capacity C(P, H, {aℓ}) for fixed function {aℓ}

C(P, H, A) for linear function {aℓ}

Computation capacity

C(P, H) , max
{aℓ}

C(P, H, {aℓ})

with maximization over all invertible functions {aℓ}

Computation Capacity
Some Special Cases and Bounds

m1

m2

Inverter

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

Identity function A = I ⇒ C(P, H, I) is the capacity of the
K -user interference channel

Computation Capacity
Some Special Cases and Bounds

m1

m2

Inverter

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

Identity function A = I ⇒ C(P, H, I) is the capacity of the
K -user interference channel

C(P, H) ≥ C(P, H, I)

Computation Capacity
Some Special Cases and Bounds

m1

m2

Inverter

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

Identity function A = I ⇒ C(P, H, I) is the capacity of the
K -user interference channel (Motahari et al. 2009)

C(P, H) ≥ C(P, H, I) =
K
4

log(P) + o(log(P))

Computation Capacity
Some Special Cases and Bounds

m1

m2

Inverter

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

Identity function A = I ⇒ C(P, H, I) is the capacity of the
K -user interference channel (Motahari et al. 2009)

C(P, H) ≥ C(P, H, I) ⇒ lim
P→∞

C(P, H)
1
2 log(P)

≥ K/2

Computation Capacity
Some Special Cases and Bounds

m1

m2

Inverter

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

Identity function A = I ⇒ C(P, H, I) is the capacity of the
K -user interference channel (Motahari et al. 2009)

C(P, H) ≥ C(P, H, I) ⇒ lim
P→∞

C(P, H)
1
2 log(P)

≥ K/2

Allow cooperation among transmitters and among
receivers ⇒ K × K MIMO channel

Computation Capacity
Some Special Cases and Bounds

m1

m2

Inverter

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

Identity function A = I ⇒ C(P, H, I) is the capacity of the
K -user interference channel (Motahari et al. 2009)

C(P, H) ≥ C(P, H, I) ⇒ lim
P→∞

C(P, H)
1
2 log(P)

≥ K/2

Allow cooperation among transmitters and among
receivers ⇒ K × K MIMO channel (Telatar 1999)

C(P, H) ≤ max
Q

1
2 log det(I + HQHT)

Computation Capacity
Some Special Cases and Bounds

m1

m2

Inverter

z1

m1

z2

m2

h1,2

h2,1

h2,2

h1,1

Decoder

Decoder

Encoder

Encoder
a1(m1, m2)

a2(m1, m2)

Identity function A = I ⇒ C(P, H, I) is the capacity of the
K -user interference channel (Motahari et al. 2009)

C(P, H) ≥ C(P, H, I) ⇒ lim
P→∞

C(P, H)
1
2 log(P)

≥ K/2

Allow cooperation among transmitters and among
receivers ⇒ K × K MIMO channel (Telatar 1999)

C(P, H) ≤ max
Q

1
2 log det(I + HQHT) ⇒ lim

P→∞

C(P, H)
1
2 log(P)

≤ K

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

Two transmitters, one receiver, h = (1, 1)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

1

1

Two transmitters, one receiver, h = (1, 1)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

1

1

Two transmitters, one receiver, h = (1, 1)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

1

1

Two transmitters, one receiver, h = (1, 1)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

1

1

Two transmitters, one receiver, h = (1, 1)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

1

1

Two transmitters, one receiver, h = (1, 1)

Decode a = (1, 1)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

1

0.5

Two transmitters, one receiver, h = (1, 0.5)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

1

0.5

Two transmitters, one receiver, h = (1, 0.5)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

1

0.5

Two transmitters, one receiver, h = (1, 0.5)

Scale output by β = 2, decode a = (2, 1)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

h1

h2

K transmitters, one receiver, h ∈ RK

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

h1

h2

K transmitters, one receiver, h ∈ RK

Scale output by β ∈ R, decode a ∈ ZK

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

h1

h2

K transmitters, one receiver, h ∈ RK

Scale output by β ∈ R, decode a ∈ ZK

C(P, h, a) ≥ max
β

1
2 log

(

P
β2 + P‖βh − a‖2

)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

h1

h2

K transmitters, one receiver, h ∈ RK

Scale output by β ∈ R, decode a ∈ ZK

C(P, h, a) ≥ 1
2 log

(

1 + P‖h‖2

‖a‖2 + P
(

‖a‖2‖h‖2 − (hT a)2
)

)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

h1

h2

K transmitters, one receiver, h ∈ RK

Scale output by β ∈ R, decode a ∈ ZK

C(P, h, a) ≥ 1
2 log

(

1 + P‖h‖2

‖a‖2 + P
(

‖a‖2‖h‖2 − (hT a)2
)

)

, RL(P, h, a)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

h1

h2

K transmitters, K receivers, H ∈ RK×K

Decode A ∈ ZK×K

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

h1

h2

K transmitters, K receivers, H ∈ RK×K

Decode A ∈ ZK×K

C(P, H, A) ≥ RL(P, H, A)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

h1

h2

K transmitters, K receivers, H ∈ RK×K

Decode A ∈ ZK×K

max
A

C(P, H, A) ≥ max
A

RL(P, H, A)

Computation Capacity
Lattice Codes Nazer and Gastpar (2009)

h1

h2

K transmitters, K receivers, H ∈ RK×K

Decode A ∈ ZK×K

C(P, H) ≥ RL(P, H)

Questions

We already know that the computation capacity satisfies

K/2 ≤ lim
P→∞

C(P, H)
1
2 log(P)

≤ K

Questions

We already know that the computation capacity satisfies

K/2 ≤ lim
P→∞

C(P, H)
1
2 log(P)

≤ K

What are the degrees of freedom of compute-and-forward

lim
P→∞

C(P, H)
1
2 log(P)

= ?

Questions

We already know that the computation capacity satisfies

K/2 ≤ lim
P→∞

C(P, H)
1
2 log(P)

≤ K

What are the degrees of freedom of compute-and-forward

lim
P→∞

C(P, H)
1
2 log(P)

= ?

What are the degrees of freedom achieved by lattice codes

lim
P→∞

RL(P, H)
1
2 log(P)

= ?

Performance of Lattice Codes

RL(P, h, a) ,
1
2

log

(

1 + P‖h‖2

‖a‖2 + P
(

‖a‖2‖h‖2 − (hT a)2
)

)

Performance of Lattice Codes

RL(P, h, a) ,
1
2

log

(

1 + P‖h‖2

‖a‖2 + P
(

‖a‖2‖h‖2 − (hT a)2
)

)

Integer channel gains H ∈ ZK×K

Performance of Lattice Codes

RL(P, h, a) ,
1
2

log

(

1 + P‖h‖2

‖a‖2 + P
(

‖a‖2‖h‖2 − (hT a)2
)

)

Integer channel gains H ∈ ZK×K ⇒ Set A = H ∈ ZK×K

lim
P→∞

RL(P, H)
1
2 log(P)

= K

Performance of Lattice Codes

RL(P, h, a) ,
1
2

log

(

1 + P‖h‖2

‖a‖2 + P
(

‖a‖2‖h‖2 − (hT a)2
)

)

Integer channel gains H ∈ ZK×K ⇒ Set A = H ∈ ZK×K

lim
P→∞

RL(P, H)
1
2 log(P)

= K

Rational channel gains H ∈ QK×K

Performance of Lattice Codes

RL(P, h, a) ,
1
2

log

(

1 + P‖h‖2

‖a‖2 + P
(

‖a‖2‖h‖2 − (hT a)2
)

)

Integer channel gains H ∈ ZK×K ⇒ Set A = H ∈ ZK×K

lim
P→∞

RL(P, H)
1
2 log(P)

= K

Rational channel gains H ∈ QK×K ⇒ Set A = qH ∈ ZK×K

lim
P→∞

RL(P, H)
1
2 log(P)

= K

Performance of Lattice Codes

RL(P, h, a) ,
1
2

log

(

1 + P‖h‖2

‖a‖2 + P
(

‖a‖2‖h‖2 − (hT a)2
)

)

Integer channel gains H ∈ ZK×K ⇒ Set A = H ∈ ZK×K

lim
P→∞

RL(P, H)
1
2 log(P)

= K

Rational channel gains H ∈ QK×K ⇒ Set A = qH ∈ ZK×K

lim
P→∞

RL(P, H)
1
2 log(P)

= K

Real channel gains H ∈ RK×K

Performance of Lattice Codes

RL(P, h, a) ,
1
2

log

(

1 + P‖h‖2

‖a‖2 + P
(

‖a‖2‖h‖2 − (hT a)2
)

)

Integer channel gains H ∈ ZK×K ⇒ Set A = H ∈ ZK×K

lim
P→∞

RL(P, H)
1
2 log(P)

= K

Rational channel gains H ∈ QK×K ⇒ Set A = qH ∈ ZK×K

lim
P→∞

RL(P, H)
1
2 log(P)

= K

Real channel gains H ∈ RK×K ⇒ ?

Performance of Lattice Codes

Two transmitters, one receiver, h = (1, h2)

Performance of Lattice Codes

Two transmitters, one receiver, h = (1, h2)

Optimize over coefficients a ∈ Z2 \ {0}

Performance of Lattice Codes

P = 10dB

h2

0 11
2

1
3

2
3

1
4

3
4

1

0.8

0.6

0.4

Two transmitters, one receiver, h = (1, h2)

Optimize over coefficients a ∈ Z2 \ {0}

maxa RL(P, h, a)
1
2 log(1 + ‖h‖2P)

Performance of Lattice Codes

P = 20dB

h2

0 11
2

1
3

2
3

1
4

3
4

1

0.8

0.6

0.4

Two transmitters, one receiver, h = (1, h2)

Optimize over coefficients a ∈ Z2 \ {0}

maxa RL(P, h, a)
1
2 log(1 + ‖h‖2P)

Performance of Lattice Codes

P = 30dB

h2

0 11
2

1
3

2
3

1
4

3
4

1

0.8

0.6

0.4

Two transmitters, one receiver, h = (1, h2)

Optimize over coefficients a ∈ Z2 \ {0}

maxa RL(P, h, a)
1
2 log(1 + ‖h‖2P)

Performance of Lattice Codes

P = 40dB

h2

0 11
2

1
3

2
3

1
4

3
4

1

0.8

0.6

0.4

Two transmitters, one receiver, h = (1, h2)

Optimize over coefficients a ∈ Z2 \ {0}

maxa RL(P, h, a)
1
2 log(1 + ‖h‖2P)

Performance of Lattice Codes

P = 50dB

h2

0 11
2

1
3

2
3

1
4

3
4

1

0.8

0.6

0.4

Two transmitters, one receiver, h = (1, h2)

Optimize over coefficients a ∈ Z2 \ {0}

maxa RL(P, h, a)
1
2 log(1 + ‖h‖2P)

Performance of Lattice Codes

Theorem 1

For any K ≥ 2 and almost every H ∈ RK×K

lim
P→∞

RL(H, P)
1
2 log(P)

≤
2

1 + 1/K
≤ 2.

Performance of Lattice Codes

Theorem 1

For any K ≥ 2 and almost every H ∈ RK×K

lim
P→∞

RL(H, P)
1
2 log(P)

≤
2

1 + 1/K
≤ 2.

Compare to:

MIMO upper bound of K on the degrees of freedom of
compute-and-forward

Performance of Lattice Codes

Theorem 1

For any K ≥ 2 and almost every H ∈ RK×K

lim
P→∞

RL(H, P)
1
2 log(P)

≤
2

1 + 1/K
≤ 2.

Compare to:

MIMO upper bound of K on the degrees of freedom of
compute-and-forward

Decode-and-forward lower bound of K/2 on the degrees of
freedom compute-and-forward

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR?

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR? ⇒ Yes!

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR? ⇒ Yes!

Theorem 2

For any K ≥ 2 and almost every H ∈ RK×K

lim
P→∞

C(H, P)
1
2 log(P)

= K .

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR? ⇒ Yes!

Theorem 2

For any K ≥ 2 and almost every H ∈ RK×K

lim
P→∞

C(H, P)
1
2 log(P)

= K .

Compute-and-forward achieves MIMO upper bound of K
degrees of freedom

Invertible functions can be encoded/decoded distributedly
at same asymptotic rate as the centralized scheme

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR? ⇒ Yes!

Theorem 2

For any K ≥ 2 and almost every H ∈ RK×K

lim
P→∞

C(H, P)
1
2 log(P)

= K .

Compute-and-forward achieves MIMO upper bound of K
degrees of freedom

Invertible functions can be encoded/decoded distributedly
at same asymptotic rate as the centralized scheme

Compute-and-forward achieves twice the degrees of
freedom of decode-and-forward

Degrees of Freedom of Compute-and-Forward

Is compute-and-forward useful at high SNR? ⇒ Yes!

Theorem 2

For any K ≥ 2 and almost every H ∈ RK×K

−O
(

logK 2/(1+K 2)(P)
)

≤ C(H, P) − 1
2K log(P) ≤ O(1).

Compute-and-forward achieves MIMO upper bound of K
degrees of freedom

Invertible functions can be encoded/decoded distributedly
at same asymptotic rate as the centralized scheme

Compute-and-forward achieves twice the degrees of
freedom of decode-and-forward

Lower Bound in Theorem 2

Channel computes noisy linear combinations with real
coefficients

Lower Bound in Theorem 2

Channel computes noisy linear combinations with real
coefficients

Lattice codes transform this into a system computing
noiseless linear combinations with integer coefficients

Lower Bound in Theorem 2

Channel computes noisy linear combinations with real
coefficients

Lattice codes transform this into a system computing
noiseless linear combinations with integer coefficients

The achievable scheme in Theorem 2 opts instead to
implement these two functions separately

Lower Bound in Theorem 2

Channel computes noisy linear combinations with real
coefficients

Lattice codes transform this into a system computing
noiseless linear combinations with integer coefficients

The achievable scheme in Theorem 2 opts instead to
implement these two functions separately

Use signal alignment to transform real linear combinations
into integer linear combinations

Lower Bound in Theorem 2

Channel computes noisy linear combinations with real
coefficients

Lattice codes transform this into a system computing
noiseless linear combinations with integer coefficients

The achievable scheme in Theorem 2 opts instead to
implement these two functions separately

Use signal alignment to transform real linear combinations
into integer linear combinations

Use a linear outer code to transform noisy linear
combinations into noiseless linear combinations

Lower Bound in Theorem 2
Outline

Channel computes noisy linear combinations with real
coefficients

h1,1m1 + h1,2m2 + z1

Lower Bound in Theorem 2
Outline

Channel computes noisy linear combinations with real
coefficients

h1,1m1 + h1,2m2 + z1

Use signal alignment to transform real linear combinations
into integer linear combinations

a1,1m1 + a1,2m2 + z1

Lower Bound in Theorem 2
Outline

Channel computes noisy linear combinations with real
coefficients

h1,1m1 + h1,2m2 + z1

Use signal alignment to transform real linear combinations
into integer linear combinations

a1,1m1 + a1,2m2 + z1

⇒ Split each message into several submessages
⇒ Use tools from Diophantine approximation

Lower Bound in Theorem 2
Outline

Channel computes noisy linear combinations with real
coefficients

h1,1m1 + h1,2m2 + z1

Use signal alignment to transform real linear combinations
into integer linear combinations

a1,1m1 + a1,2m2 + z1

⇒ Split each message into several submessages
⇒ Use tools from Diophantine approximation

Use a linear outer code to transform noisy linear
combinations into noiseless linear combinations

a1,1m1 + a1,2m2

Lower Bound in Theorem 2
Preliminaries

Groshev’s Theorem

For any ε > 0, and almost all (h1, h2, . . . , hK) ∈ RK ,

min
qi∈Z

∣

∣h1q1 + . . . + hK qK
∣

∣ ≥ Ω
(

(maxi |qi |)
1−K−ε

)

.

Lower Bound in Theorem 2
Preliminaries

Groshev’s Theorem

For any ε > 0, and almost all (h1, h2, . . . , hK) ∈ RK ,

min
qi∈Z

∣

∣h1q1 + . . . + hK qK
∣

∣ ≥ Ω
(

(maxi |qi |)
1−K−ε

)

.

Let xk = Aqk with qk ∈ {−Q,−Q + 1, . . . , Q − 1, Q}

Lower Bound in Theorem 2
Preliminaries

Groshev’s Theorem

For any ε > 0, and almost all (h1, h2, . . . , hK) ∈ RK ,

min
qi∈Z

∣

∣h1q1 + . . . + hK qK
∣

∣ ≥ Ω
(

(maxi |qi |)
1−K−ε

)

.

Let xk = Aqk with qk ∈ {−Q,−Q + 1, . . . , Q − 1, Q}

Assume we observe y = h1x1 + . . . + hK xK + z

Lower Bound in Theorem 2
Preliminaries

Groshev’s Theorem

For any ε > 0, and almost all (h1, h2, . . . , hK) ∈ RK ,

min
qi∈Z

∣

∣h1q1 + . . . + hK qK
∣

∣ ≥ Ω
(

(maxi |qi |)
1−K−ε

)

.

Let xk = Aqk with qk ∈ {−Q,−Q + 1, . . . , Q − 1, Q}

Assume we observe y = h1x1 + . . . + hK xK + z

Minimum distance between (x1, . . . , xK) 6= (x ′
1, . . . , x ′

K)

Lower Bound in Theorem 2
Preliminaries

Groshev’s Theorem

For any ε > 0, and almost all (h1, h2, . . . , hK) ∈ RK ,

min
qi∈Z

∣

∣h1q1 + . . . + hK qK
∣

∣ ≥ Ω
(

(maxi |qi |)
1−K−ε

)

.

Let xk = Aqk with qk ∈ {−Q,−Q + 1, . . . , Q − 1, Q}

Assume we observe y = h1x1 + . . . + hK xK + z

Minimum distance between (x1, . . . , xK) 6= (x ′
1, . . . , x ′

K)
∣

∣

∣

∑K
k=1hk (xk − x ′

k)
∣

∣

∣

Lower Bound in Theorem 2
Preliminaries

Groshev’s Theorem

For any ε > 0, and almost all (h1, h2, . . . , hK) ∈ RK ,

min
qi∈Z

∣

∣h1q1 + . . . + hK qK
∣

∣ ≥ Ω
(

(maxi |qi |)
1−K−ε

)

.

Let xk = Aqk with qk ∈ {−Q,−Q + 1, . . . , Q − 1, Q}

Assume we observe y = h1x1 + . . . + hK xK + z

Minimum distance between (x1, . . . , xK) 6= (x ′
1, . . . , x ′

K)
∣

∣

∣

∑K
k=1hk (xk − x ′

k)
∣

∣

∣
= A

∣

∣

∣

∑K
k=1hk (qk − q′

k)
∣

∣

∣

Lower Bound in Theorem 2
Preliminaries

Groshev’s Theorem

For any ε > 0, and almost all (h1, h2, . . . , hK) ∈ RK ,

min
qi∈Z

∣

∣h1q1 + . . . + hK qK
∣

∣ ≥ Ω
(

(maxi |qi |)
1−K−ε

)

.

Let xk = Aqk with qk ∈ {−Q,−Q + 1, . . . , Q − 1, Q}

Assume we observe y = h1x1 + . . . + hK xK + z

Minimum distance between (x1, . . . , xK) 6= (x ′
1, . . . , x ′

K)
∣

∣

∣

∑K
k=1hk (xk − x ′

k)
∣

∣

∣
= A

∣

∣

∣

∑K
k=1hk (qk − q′

k)
∣

∣

∣
& AΩ(Q1−K)

Lower Bound in Theorem 2
Preliminaries

Groshev’s Theorem

For any ε > 0, and almost all (h1, h2, . . . , hK) ∈ RK ,

min
qi∈Z

∣

∣h1q1 + . . . + hK qK
∣

∣ ≥ Ω
(

(maxi |qi |)
1−K−ε

)

.

Let xk = Aqk with qk ∈ {−Q,−Q + 1, . . . , Q − 1, Q}

Assume we observe y = h1x1 + . . . + hK xK + z

Minimum distance between (x1, . . . , xK) 6= (x ′
1, . . . , x ′

K)
∣

∣

∣

∑K
k=1hk (xk − x ′

k)
∣

∣

∣
= A

∣

∣

∣

∑K
k=1hk (qk − q′

k)
∣

∣

∣
& AΩ(Q1−K)

For A ≈ P(K−1)/2K and Q ≈ P1/2K satisfy power constraint
and can remove noise

Lower Bound in Theorem 2
Signal Alignment

Consider a simple interference channel without noise

y1 = x1 + x2

y2 = x1 + hx2

Lower Bound in Theorem 2
Signal Alignment

Consider a simple interference channel without noise

y1 = x1 + x2

y2 = x1 + hx2

Set

x1/A = q11

x2/A = q21

Lower Bound in Theorem 2
Signal Alignment

Consider a simple interference channel without noise

y1 = x1 + x2

y2 = x1 + hx2

Set

x1/A = q11

x2/A = q21

This is received as

y1/A = (q11 + q21)

y2/A = q11 + hq21

Lower Bound in Theorem 2
Signal Alignment

Consider a simple interference channel without noise

y1 = x1 + x2

y2 = x1 + hx2

Set

x1/A = q11 + hq12

x2/A = q21 + hq22

This is received as

y1/A = (q11 + q21)

y2/A = q11 + hq21

Lower Bound in Theorem 2
Signal Alignment

Consider a simple interference channel without noise

y1 = x1 + x2

y2 = x1 + hx2

Set

x1/A = q11 + hq12

x2/A = q21 + hq22

This is received as

y1/A = (q11 + q21) + h(q12 + q22)

y2/A = q11 + h(q21 + q12) + h2q22

Lower Bound in Theorem 2
Signal Alignment

Consider a simple interference channel without noise

y1 = x1 + x2

y2 = x1 + hx2

Set

x1/A = q11 + hq12 + . . .

x2/A = q21 + hq22 + . . .

This is received as

y1/A = (q11 + q21) + h(q12 + q22) + . . .

y2/A = q11 + h(q21 + q12) + h2q22 + . . .

Lower Bound in Theorem 2
Signal Alignment

Consider a simple interference channel without noise

y1 = x1 + x2

y2 = x1 + hx2

Set

x1/A = q11 + hq12 + . . .

x2/A = q21 + hq22 + . . .

This is received as

y1/A = (q11 + q21) + h(q12 + q22) + . . .

y2/A = q11 + h(q21 + q12) + h2q22 + . . .

Groshev’s Theorem to separate equations

Lower Bound in Theorem 2
Signal Alignment

Consider a simple interference channel without noise

y1 = x1 + x2

y2 = x1 + hx2

Set

x1/A = q11 + hq12 + . . .

x2/A = q21 + hq22 + . . .

This is received as

y1/A = (q11 + q21) + h(q12 + q22) + . . .

y2/A = q11 + h(q21 + q12) + h2q22 + . . .

Groshev’s Theorem to separate equations

Linear outer code to drive probability of error to zero

Summary

Compute-and-forward as communication strategy for
wireless networks

Summary

Compute-and-forward as communication strategy for
wireless networks

Lattice codes achieve at most 2 degrees of freedom over a
K × K channel

Summary

Compute-and-forward as communication strategy for
wireless networks

Lattice codes achieve at most 2 degrees of freedom over a
K × K channel

However, a different implementation of
compute-and-forward achieves K degrees of freedom

Summary

Compute-and-forward as communication strategy for
wireless networks

Lattice codes achieve at most 2 degrees of freedom over a
K × K channel

However, a different implementation of
compute-and-forward achieves K degrees of freedom

Matches MIMO upper bound of K degrees of freedom

Summary

Compute-and-forward as communication strategy for
wireless networks

Lattice codes achieve at most 2 degrees of freedom over a
K × K channel

However, a different implementation of
compute-and-forward achieves K degrees of freedom

Matches MIMO upper bound of K degrees of freedom

Compute-and-forward achieves twice the degrees of
freedom of decode-and-forward

