The Degrees of Freedom of Compute-and-Forward

Urs Niesen Jointly with Phil Whiting

Bell Labs, Alcatel-Lucent

• *K* transmitters, messages m_1, \ldots, m_K , power constraint *P*

- K transmitters, messages m_1, \ldots, m_K , power constraint P
- Gaussian channel with constant gains $H = \{h_{\ell,k}\}$

- K transmitters, messages m_1, \ldots, m_K , power constraint P
- Gaussian channel with constant gains $H = \{h_{\ell,k}\}$
- Decode any deterministic function a_{ℓ} of the messages m_1, \ldots, m_K

- K transmitters, messages m_1, \ldots, m_K , power constraint P
- Gaussian channel with constant gains $H = \{h_{\ell,k}\}$
- Decode any deterministic function a_{ℓ} of the messages m_1, \ldots, m_K
- Invert all computed functions a₁,..., a_K to recover the messages m₁,..., m_K

• Computation capacity $C(P, H, \{a_{\ell}\})$ for fixed function $\{a_{\ell}\}$

- Computation capacity $C(P, H, \{a_{\ell}\})$ for fixed function $\{a_{\ell}\}$
- C(P, H, A) for linear function $\{a_{\ell}\}$

- Computation capacity $C(P, H, \{a_{\ell}\})$ for fixed function $\{a_{\ell}\}$
- C(P, H, A) for linear function $\{a_{\ell}\}$
- Computation capacity

$$C(P, \boldsymbol{H}) \triangleq \max_{\{\boldsymbol{a}_{\ell}\}} C(P, \boldsymbol{H}, \{\boldsymbol{a}_{\ell}\})$$

with maximization over all invertible functions $\{a_{\ell}\}$

■ Identity function A = I ⇒ C(P, H, I) is the capacity of the K-user interference channel

■ Identity function A = I ⇒ C(P, H, I) is the capacity of the K-user interference channel

 $C(P, H) \geq C(P, H, I)$

■ Identity function $A = I \Rightarrow C(P, H, I)$ is the capacity of the *K*-user interference channel (Motahari et al. 2009) $C(P, H) \ge C(P, H, I) = \frac{K}{4} \log(P) + o(\log(P))$

■ Identity function $\mathbf{A} = \mathbf{I} \Rightarrow C(P, \mathbf{H}, \mathbf{I})$ is the capacity of the *K*-user interference channel (Motahari et al. 2009) $C(P, \mathbf{H}) \ge C(P, \mathbf{H}, \mathbf{I}) \Rightarrow \lim_{P \to \infty} \frac{C(P, \mathbf{H})}{\frac{1}{2} \log(P)} \ge K/2$

- Identity function $\mathbf{A} = \mathbf{I} \Rightarrow C(P, \mathbf{H}, \mathbf{I})$ is the capacity of the *K*-user interference channel (Motahari et al. 2009) $C(P, \mathbf{H}) \ge C(P, \mathbf{H}, \mathbf{I}) \Rightarrow \lim_{P \to \infty} \frac{C(P, \mathbf{H})}{\frac{1}{2}\log(P)} \ge K/2$
- Allow cooperation among transmitters and among receivers ⇒ K × K MIMO channel

- Identity function $\mathbf{A} = \mathbf{I} \Rightarrow C(P, \mathbf{H}, \mathbf{I})$ is the capacity of the *K*-user interference channel (Motahari et al. 2009) $C(P, \mathbf{H}) \ge C(P, \mathbf{H}, \mathbf{I}) \Rightarrow \lim_{P \to \infty} \frac{C(P, \mathbf{H})}{\frac{1}{2}\log(P)} \ge K/2$
- Allow cooperation among transmitters and among receivers ⇒ $K \times K$ MIMO channel (Telatar 1999) $C(P, H) \le \max_{Q} \frac{1}{2} \log \det(I + HQH^T)$

- Identity function $\mathbf{A} = \mathbf{I} \Rightarrow C(P, \mathbf{H}, \mathbf{I})$ is the capacity of the *K*-user interference channel (Motahari et al. 2009) $C(P, \mathbf{H}) \ge C(P, \mathbf{H}, \mathbf{I}) \Rightarrow \lim_{P \to \infty} \frac{C(P, \mathbf{H})}{\frac{1}{2} \log(P)} \ge K/2$
- Allow cooperation among transmitters and among receivers ⇒ $K \times K$ MIMO channel (Telatar 1999) $C(P, H) \leq \max_{Q} \frac{1}{2} \log \det(I + HQH^T) \Rightarrow \lim_{P \to \infty} \frac{C(P, H)}{\frac{1}{2} \log(P)} \leq K$

Nazer and Gastpar (2009)

Two transmitters, one receiver, h = (1, 0.5)

Scale output by $\beta = 2$, decode a = (2, 1)

Nazer and Gastpar (2009)

• *K* transmitters, one receiver, $\boldsymbol{h} \in \mathbb{R}^{K}$

- **•** *K* transmitters, one receiver, $h \in \mathbb{R}^{K}$
- Scale output by $\beta \in \mathbb{R}$, decode $\boldsymbol{a} \in \mathbb{Z}^{K}$

- **•** *K* transmitters, one receiver, $h \in \mathbb{R}^{K}$
- Scale output by $\beta \in \mathbb{R}$, decode $\boldsymbol{a} \in \mathbb{Z}^{K}$

$$m{C}(m{P},m{h},m{a}) \geq \max_eta rac{1}{2} \log igg(rac{m{P}}{eta^2 + m{P} \|etam{h} - m{a}\|^2} igg)$$

- **•** *K* transmitters, one receiver, $h \in \mathbb{R}^{K}$
- Scale output by $\beta \in \mathbb{R}$, decode $\boldsymbol{a} \in \mathbb{Z}^{K}$

$$C(P, h, a) \ge \frac{1}{2} \log \left(\frac{1 + P \|h\|^2}{\|a\|^2 + P(\|a\|^2 \|h\|^2 - (h^T a)^2)} \right)$$

- **•** *K* transmitters, one receiver, $h \in \mathbb{R}^{K}$
- Scale output by $\beta \in \mathbb{R}$, decode $\boldsymbol{a} \in \mathbb{Z}^{K}$

$$C(P, \boldsymbol{h}, \boldsymbol{a}) \geq \frac{1}{2} \log \left(\frac{1 + P \|\boldsymbol{h}\|^2}{\|\boldsymbol{a}\|^2 + P(\|\boldsymbol{a}\|^2 \|\boldsymbol{h}\|^2 - (\boldsymbol{h}^T \boldsymbol{a})^2)} \right) \triangleq R_L(P, \boldsymbol{h}, \boldsymbol{a})$$

- **•** *K* transmitters, *K* receivers, $\boldsymbol{H} \in \mathbb{R}^{K \times K}$
- **Decode** $\mathbf{A} \in \mathbb{Z}^{K \times K}$

- **•** *K* transmitters, *K* receivers, $\boldsymbol{H} \in \mathbb{R}^{K \times K}$
- **Decode** $\mathbf{A} \in \mathbb{Z}^{K \times K}$

$$C(P, H, A) \geq R_L(P, H, A)$$

- **•** *K* transmitters, *K* receivers, $\boldsymbol{H} \in \mathbb{R}^{K \times K}$
- **Decode** $\mathbf{A} \in \mathbb{Z}^{K \times K}$

$$\max_{\boldsymbol{A}} C(\boldsymbol{P}, \boldsymbol{H}, \boldsymbol{A}) \geq \max_{\boldsymbol{A}} R_{L}(\boldsymbol{P}, \boldsymbol{H}, \boldsymbol{A})$$

- *K* transmitters, *K* receivers, $\boldsymbol{H} \in \mathbb{R}^{K \times K}$
- **Decode** $\mathbf{A} \in \mathbb{Z}^{K \times K}$

$$C(P, H) \geq R_L(P, H)$$

Questions

We already know that the computation capacity satisfies

$$K/2 \leq \lim_{P
ightarrow \infty} rac{C(P,oldsymbol{H})}{rac{1}{2}\log(P)} \leq K$$

Questions

We already know that the computation capacity satisfies

$${\mathcal{K}}/{2} \leq \lim_{{\mathcal{P}}
ightarrow \infty} rac{C({\mathcal{P}},{\boldsymbol{H}})}{rac{1}{2}\log({\mathcal{P}})} \leq {\mathcal{K}}$$

What are the degrees of freedom of compute-and-forward

$$\lim_{P\to\infty}\frac{C(P,\boldsymbol{H})}{\frac{1}{2}\log(P)}=?$$

Questions

We already know that the computation capacity satisfies

$${\mathcal{K}}/{2} \leq \lim_{{\mathcal{P}}
ightarrow \infty} rac{C({\mathcal{P}},{\boldsymbol{H}})}{rac{1}{2}\log({\mathcal{P}})} \leq {\mathcal{K}}$$

What are the degrees of freedom of compute-and-forward

$$\lim_{P\to\infty}\frac{C(P,\boldsymbol{H})}{\frac{1}{2}\log(P)}=?$$

What are the degrees of freedom achieved by lattice codes

$$\lim_{P\to\infty}\frac{R_L(P,\boldsymbol{H})}{\frac{1}{2}\log(P)}=?$$
$$R_L(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1 + P \|\boldsymbol{h}\|^2}{\|\boldsymbol{a}\|^2 + P(\|\boldsymbol{a}\|^2 \|\boldsymbol{h}\|^2 - (\boldsymbol{h}^T \boldsymbol{a})^2)} \right)$$

$$R_L(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1 + P \|\boldsymbol{h}\|^2}{\|\boldsymbol{a}\|^2 + P(\|\boldsymbol{a}\|^2 \|\boldsymbol{h}\|^2 - (\boldsymbol{h}^T \boldsymbol{a})^2)} \right)$$

Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$R_L(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1 + P \|\boldsymbol{h}\|^2}{\|\boldsymbol{a}\|^2 + P(\|\boldsymbol{a}\|^2 \|\boldsymbol{h}\|^2 - (\boldsymbol{h}^T \boldsymbol{a})^2)} \right)$$

■ Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K} \Rightarrow \text{Set } \boldsymbol{A} = \boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$\lim_{P\to\infty}\frac{R_L(P,\boldsymbol{H})}{\frac{1}{2}\log(P)}=K$$

$$R_L(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1 + P \|\boldsymbol{h}\|^2}{\|\boldsymbol{a}\|^2 + P(\|\boldsymbol{a}\|^2 \|\boldsymbol{h}\|^2 - (\boldsymbol{h}^T \boldsymbol{a})^2)} \right)$$

■ Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K} \Rightarrow$ Set $\boldsymbol{A} = \boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$\lim_{P\to\infty}\frac{R_L(P,\boldsymbol{H})}{\frac{1}{2}\log(P)}=K$$

Rational channel gains $\boldsymbol{H} \in \mathbb{Q}^{K \times K}$

$$R_L(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1 + P \|\boldsymbol{h}\|^2}{\|\boldsymbol{a}\|^2 + P(\|\boldsymbol{a}\|^2 \|\boldsymbol{h}\|^2 - (\boldsymbol{h}^T \boldsymbol{a})^2)} \right)$$

Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K} \Rightarrow \text{Set } \boldsymbol{A} = \boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$\lim_{P\to\infty}\frac{R_L(P,\boldsymbol{H})}{\frac{1}{2}\log(P)}=K$$

a Rational channel gains $\boldsymbol{H} \in \mathbb{Q}^{K \times K} \Rightarrow \text{Set } \boldsymbol{A} = q \boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$\lim_{P\to\infty}\frac{R_L(P,\boldsymbol{H})}{\frac{1}{2}\log(P)}=K$$

$$R_L(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1 + P \|\boldsymbol{h}\|^2}{\|\boldsymbol{a}\|^2 + P(\|\boldsymbol{a}\|^2 \|\boldsymbol{h}\|^2 - (\boldsymbol{h}^T \boldsymbol{a})^2)} \right)$$

Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K} \Rightarrow \text{Set } \boldsymbol{A} = \boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$\lim_{P\to\infty}\frac{R_L(P,\boldsymbol{H})}{\frac{1}{2}\log(P)}=K$$

a Rational channel gains $\boldsymbol{H} \in \mathbb{Q}^{K \times K} \Rightarrow \text{Set } \boldsymbol{A} = q \boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$\lim_{P\to\infty}\frac{R_L(P,\boldsymbol{H})}{\frac{1}{2}\log(P)}=K$$

Real channel gains $\boldsymbol{H} \in \mathbb{R}^{K \times K}$

$$R_L(P, \boldsymbol{h}, \boldsymbol{a}) \triangleq \frac{1}{2} \log \left(\frac{1 + P \|\boldsymbol{h}\|^2}{\|\boldsymbol{a}\|^2 + P(\|\boldsymbol{a}\|^2 \|\boldsymbol{h}\|^2 - (\boldsymbol{h}^T \boldsymbol{a})^2)} \right)$$

Integer channel gains $\boldsymbol{H} \in \mathbb{Z}^{K \times K} \Rightarrow \text{Set } \boldsymbol{A} = \boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$\lim_{P\to\infty}\frac{R_L(P,\boldsymbol{H})}{\frac{1}{2}\log(P)}=K$$

a Rational channel gains $\boldsymbol{H} \in \mathbb{Q}^{K \times K} \Rightarrow \text{Set } \boldsymbol{A} = q \boldsymbol{H} \in \mathbb{Z}^{K \times K}$

$$\lim_{P\to\infty}\frac{R_L(P,\boldsymbol{H})}{\frac{1}{2}\log(P)}=K$$

Real channel gains $\boldsymbol{H} \in \mathbb{R}^{K \times K} \Rightarrow ?$

Two transmitters, one receiver, $h = (1, h_2)$

- Two transmitters, one receiver, $h = (1, h_2)$
- Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^2 \setminus \{\boldsymbol{0}\}$

- Two transmitters, one receiver, $h = (1, h_2)$
- Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^2 \setminus \{\boldsymbol{0}\}$

 $\frac{\max_{\boldsymbol{a}} R_L(P, \boldsymbol{h}, \boldsymbol{a})}{\frac{1}{2} \log(1 + \|\boldsymbol{h}\|^2 P)}$

Two transmitters, one receiver, $h = (1, h_2)$

• Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^2 \setminus \{\boldsymbol{0}\}$

 $\frac{\max_{\boldsymbol{a}} R_L(P, \boldsymbol{h}, \boldsymbol{a})}{\frac{1}{2} \log(1 + \|\boldsymbol{h}\|^2 P)}$

Two transmitters, one receiver, $h = (1, h_2)$

• Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^2 \setminus \{\boldsymbol{0}\}$

$$\frac{\max_{\boldsymbol{a}} R_L(P, \boldsymbol{h}, \boldsymbol{a})}{\frac{1}{2} \log(1 + \|\boldsymbol{h}\|^2 P)}$$

Two transmitters, one receiver, $h = (1, h_2)$

• Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^2 \setminus \{\boldsymbol{0}\}$

$$\frac{\max_{\boldsymbol{a}} R_L(P, \boldsymbol{h}, \boldsymbol{a})}{\frac{1}{2} \log(1 + \|\boldsymbol{h}\|^2 P)}$$

- Two transmitters, one receiver, $h = (1, h_2)$
- Optimize over coefficients $\boldsymbol{a} \in \mathbb{Z}^2 \setminus \{\boldsymbol{0}\}$

 $\frac{\max_{\boldsymbol{a}} R_L(P, \boldsymbol{h}, \boldsymbol{a})}{\frac{1}{2} \log(1 + \|\boldsymbol{h}\|^2 P)}$

Theorem 1

$$\lim_{P\to\infty}\frac{R_L(\boldsymbol{H},P)}{\frac{1}{2}\log(P)}\leq \frac{2}{1+1/K}\leq 2.$$

Theorem 1

For any $K \ge 2$ and almost every $\mathbf{H} \in \mathbb{R}^{K \times K}$

$$\lim_{P \to \infty} \frac{R_L(\boldsymbol{H}, P)}{\frac{1}{2}\log(P)} \leq \frac{2}{1 + 1/K} \leq 2.$$

Compare to:

 MIMO upper bound of K on the degrees of freedom of compute-and-forward

Theorem 1

For any $K \geq 2$ and almost every $\mathbf{H} \in \mathbb{R}^{K \times K}$

$$\lim_{P \to \infty} \frac{R_L(\boldsymbol{H}, P)}{\frac{1}{2}\log(P)} \leq \frac{2}{1 + 1/K} \leq 2.$$

Compare to:

- MIMO upper bound of K on the degrees of freedom of compute-and-forward
- Decode-and-forward lower bound of K/2 on the degrees of freedom compute-and-forward

Is compute-and-forward useful at high SNR?

Is compute-and-forward useful at high SNR? \Rightarrow Yes!

Is compute-and-forward useful at high SNR? \Rightarrow Yes!

Theorem 2

$$\lim_{P\to\infty}\frac{C(\boldsymbol{H},P)}{\frac{1}{2}\log(P)}=K.$$

Is compute-and-forward useful at high SNR? \Rightarrow Yes!

Theorem 2

$$\lim_{P\to\infty}\frac{C(\boldsymbol{H},P)}{\frac{1}{2}\log(P)}=K.$$

- Compute-and-forward achieves MIMO upper bound of K degrees of freedom
- Invertible functions can be encoded/decoded distributedly at same asymptotic rate as the centralized scheme

Is compute-and-forward useful at high SNR? \Rightarrow Yes!

Theorem 2

$$\lim_{P\to\infty}\frac{C(\boldsymbol{H},P)}{\frac{1}{2}\log(P)}=K.$$

- Compute-and-forward achieves MIMO upper bound of K degrees of freedom
- Invertible functions can be encoded/decoded distributedly at same asymptotic rate as the centralized scheme
- Compute-and-forward achieves twice the degrees of freedom of decode-and-forward

Is compute-and-forward useful at high SNR? \Rightarrow Yes!

Theorem 2

$$-Oig(\log^{\mathcal{K}^2/(1+\mathcal{K}^2)}(\mathcal{P})ig) \leq C(\mathcal{H},\mathcal{P}) - rac{1}{2}K\log(\mathcal{P}) \leq O(1).$$

- Compute-and-forward achieves MIMO upper bound of K degrees of freedom
- Invertible functions can be encoded/decoded distributedly at same asymptotic rate as the centralized scheme
- Compute-and-forward achieves twice the degrees of freedom of decode-and-forward

Channel computes noisy linear combinations with real coefficients

- Channel computes noisy linear combinations with real coefficients
- Lattice codes transform this into a system computing noiseless linear combinations with integer coefficients

- Channel computes noisy linear combinations with real coefficients
- Lattice codes transform this into a system computing noiseless linear combinations with integer coefficients
- The achievable scheme in Theorem 2 opts instead to implement these two functions separately

- Channel computes noisy linear combinations with real coefficients
- Lattice codes transform this into a system computing noiseless linear combinations with integer coefficients
- The achievable scheme in Theorem 2 opts instead to implement these two functions separately
- Use signal alignment to transform real linear combinations into integer linear combinations

- Channel computes noisy linear combinations with real coefficients
- Lattice codes transform this into a system computing noiseless linear combinations with integer coefficients
- The achievable scheme in Theorem 2 opts instead to implement these two functions separately
- Use signal alignment to transform real linear combinations into integer linear combinations
- Use a linear outer code to transform noisy linear combinations into noiseless linear combinations

Channel computes noisy linear combinations with real coefficients

 $h_{1,1}m_1 + h_{1,2}m_2 + z_1$

Channel computes noisy linear combinations with real coefficients

$$h_{1,1}m_1 + h_{1,2}m_2 + z_1$$

Use signal alignment to transform real linear combinations into integer linear combinations

 $a_{1,1}m_1 + a_{1,2}m_2 + z_1$

Channel computes noisy linear combinations with real coefficients

$$h_{1,1}m_1 + h_{1,2}m_2 + z_1$$

Use signal alignment to transform real linear combinations into integer linear combinations

$$a_{1,1}m_1 + a_{1,2}m_2 + z_1$$

- \Rightarrow Split each message into several submessages
- \Rightarrow Use tools from Diophantine approximation

Channel computes noisy linear combinations with real coefficients

$$h_{1,1}m_1 + h_{1,2}m_2 + z_1$$

Use signal alignment to transform real linear combinations into integer linear combinations

 $a_{1,1}m_1 + a_{1,2}m_2 + z_1$

- \Rightarrow Split each message into several submessages
- \Rightarrow Use tools from Diophantine approximation
- Use a linear outer code to transform noisy linear combinations into noiseless linear combinations

Groshev's Theorem

For any $\varepsilon > 0$, and almost all $(h_1, h_2, \dots, h_K) \in \mathbb{R}^K$,

$$\min_{q_i \in \mathbb{Z}} \left| h_1 q_1 + \ldots + h_K q_K \right| \ge \Omega \big((\max_i |q_i|)^{1-K-\varepsilon} \big)$$

Groshev's Theorem

For any $\varepsilon > 0$, and almost all $(h_1, h_2, \dots, h_K) \in \mathbb{R}^K$, $\min_{q_i \in \mathbb{Z}} |h_1 q_1 + \dots + h_K q_K| \ge \Omega((\max_i |q_i|)^{1-K-\varepsilon}).$

• Let
$$x_k = Aq_k$$
 with $q_k \in \{-Q, -Q+1, \dots, Q-1, Q\}$

Groshev's Theorem

For any $\varepsilon > 0$, and almost all $(h_1, h_2, \dots, h_K) \in \mathbb{R}^K$, $\min_{q_i \in \mathbb{Z}} |h_1 q_1 + \dots + h_K q_K| \ge \Omega((\max_i |q_i|)^{1-K-\varepsilon}).$

- Let $x_k = Aq_k$ with $q_k \in \{-Q, -Q+1, \dots, Q-1, Q\}$
- Assume we observe $y = h_1 x_1 + \ldots + h_K x_K + z$

Groshev's Theorem

For any $\varepsilon > 0$, and almost all $(h_1, h_2, \dots, h_K) \in \mathbb{R}^K$, $\min_{q_i \in \mathbb{Z}} |h_1 q_1 + \dots + h_K q_K| \ge \Omega((\max_i |q_i|)^{1-K-\varepsilon}).$

- Let $x_k = Aq_k$ with $q_k \in \{-Q, -Q+1, \dots, Q-1, Q\}$
- Assume we observe $y = h_1 x_1 + \ldots + h_K x_K + z$
- Minimum distance between $(x_1, \ldots, x_K) \neq (x'_1, \ldots, x'_K)$
Groshev's Theorem

For any $\varepsilon > 0$, and almost all $(h_1, h_2, \dots, h_K) \in \mathbb{R}^K$, $\min_{q_i \in \mathbb{Z}} |h_1 q_1 + \dots + h_K q_K| \ge \Omega((\max_i |q_i|)^{1-K-\varepsilon}).$

- Let $x_k = Aq_k$ with $q_k \in \{-Q, -Q+1, \dots, Q-1, Q\}$
- Assume we observe $y = h_1 x_1 + \ldots + h_K x_K + z$
- Minimum distance between $(x_1, \ldots, x_K) \neq (x'_1, \ldots, x'_K)$

$$\left|\sum_{k=1}^{K}h_k(x_k-x'_k)\right|$$

Groshev's Theorem

For any $\varepsilon > 0$, and almost all $(h_1, h_2, \dots, h_K) \in \mathbb{R}^K$, $\min_{q_i \in \mathbb{Z}} |h_1 q_1 + \dots + h_K q_K| \ge \Omega((\max_i |q_i|)^{1-K-\varepsilon}).$

- Let $x_k = Aq_k$ with $q_k \in \{-Q, -Q + 1, \dots, Q 1, Q\}$
- Assume we observe $y = h_1 x_1 + \ldots + h_K x_K + z$
- Minimum distance between $(x_1, \ldots, x_K) \neq (x'_1, \ldots, x'_K)$

$$\left|\sum_{k=1}^{K}h_k(x_k-x'_k)\right|=A\left|\sum_{k=1}^{K}h_k(q_k-q'_k)\right|$$

Groshev's Theorem

For any $\varepsilon > 0$, and almost all $(h_1, h_2, \dots, h_K) \in \mathbb{R}^K$, $\min_{q_i \in \mathbb{Z}} |h_1 q_1 + \dots + h_K q_K| \ge \Omega((\max_i |q_i|)^{1-K-\varepsilon}).$

- Let $x_k = Aq_k$ with $q_k \in \{-Q, -Q + 1, \dots, Q 1, Q\}$
- Assume we observe $y = h_1 x_1 + \ldots + h_K x_K + z$
- Minimum distance between $(x_1, \ldots, x_K) \neq (x'_1, \ldots, x'_K)$

$$\left|\sum_{k=1}^{K}h_k(\mathbf{x}_k-\mathbf{x}'_k)\right|=A\left|\sum_{k=1}^{K}h_k(q_k-q'_k)\right|\gtrsim A\Omega(\mathsf{Q}^{1-K})$$

Groshev's Theorem

For any $\varepsilon > 0$, and almost all $(h_1, h_2, \dots, h_K) \in \mathbb{R}^K$, $\min_{q_i \in \mathbb{Z}} |h_1 q_1 + \dots + h_K q_K| \ge \Omega((\max_i |q_i|)^{1-K-\varepsilon}).$

- Let $x_k = Aq_k$ with $q_k \in \{-Q, -Q+1, \dots, Q-1, Q\}$
- Assume we observe $y = h_1 x_1 + \ldots + h_K x_K + z$
- Minimum distance between $(x_1, \ldots, x_K) \neq (x'_1, \ldots, x'_K)$

$$\sum_{k=1}^{K} h_k(\mathbf{x}_k - \mathbf{x}'_k) \Big| = A \Big| \sum_{k=1}^{K} h_k(q_k - q'_k) \Big| \gtrsim A\Omega(\mathbf{Q}^{1-K})$$

For $A \approx P^{(K-1)/2K}$ and $Q \approx P^{1/2K}$ satisfy power constraint and can remove noise

Consider a simple interference channel without noise

$$y_1 = x_1 + x_2$$
$$y_2 = x_1 + hx_2$$

Consider a simple interference channel without noise

$$y_1 = x_1 + x_2$$
$$y_2 = x_1 + hx_2$$

Set

$$x_1/A = q_{11}$$

 $x_2/A = q_{21}$

Consider a simple interference channel without noise

$$y_1 = x_1 + x_2$$
$$y_2 = x_1 + hx_2$$

Set

$$x_1/A = q_{11}$$

 $x_2/A = q_{21}$

This is received as

 $y_1/A = (q_{11} + q_{21})$ $y_2/A = q_{11} + hq_{21}$

Consider a simple interference channel without noise

$$y_1 = x_1 + x_2$$
$$y_2 = x_1 + hx_2$$

Set

$$x_1/A = q_{11} + hq_{12}$$

 $x_2/A = q_{21} + hq_{22}$

This is received as

$$y_1/A = (q_{11} + q_{21})$$

 $y_2/A = q_{11} + hq_{21}$

Consider a simple interference channel without noise

$$y_1 = x_1 + x_2$$
$$y_2 = x_1 + hx_2$$

Set

$$x_1/A = q_{11} + hq_{12}$$

 $x_2/A = q_{21} + hq_{22}$

This is received as

$$y_1/A = (q_{11} + q_{21}) + h(q_{12} + q_{22})$$
$$y_2/A = q_{11} + h(q_{21} + q_{12}) + h^2 q_{22}$$

Consider a simple interference channel without noise

$$y_1 = x_1 + x_2$$
$$y_2 = x_1 + hx_2$$

Set

$$x_1/A = q_{11} + hq_{12} + \dots$$

 $x_2/A = q_{21} + hq_{22} + \dots$

This is received as

$$y_1/A = (q_{11} + q_{21}) + h(q_{12} + q_{22}) + \dots$$

 $y_2/A = q_{11} + h(q_{21} + q_{12}) + h^2 q_{22} + \dots$

Consider a simple interference channel without noise

$$y_1 = x_1 + x_2$$
$$y_2 = x_1 + hx_2$$

Set

$$x_1/A = q_{11} + hq_{12} + \dots$$

 $x_2/A = q_{21} + hq_{22} + \dots$

This is received as

$$y_1/A = (q_{11} + q_{21}) + h(q_{12} + q_{22}) + \dots$$

 $y_2/A = q_{11} + h(q_{21} + q_{12}) + h^2 q_{22} + \dots$

Groshev's Theorem to separate equations

Consider a simple interference channel without noise

$$y_1 = x_1 + x_2$$
$$y_2 = x_1 + hx_2$$

Set

$$x_1/A = q_{11} + hq_{12} + \dots$$

 $x_2/A = q_{21} + hq_{22} + \dots$

This is received as

$$y_1/A = (q_{11} + q_{21}) + h(q_{12} + q_{22}) + \dots$$

 $y_2/A = q_{11} + h(q_{21} + q_{12}) + h^2 q_{22} + \dots$

Groshev's Theorem to separate equationsLinear outer code to drive probability of error to zero

Compute-and-forward as communication strategy for wireless networks

- Compute-and-forward as communication strategy for wireless networks
- Lattice codes achieve at most 2 degrees of freedom over a K × K channel

- Compute-and-forward as communication strategy for wireless networks
- Lattice codes achieve at most 2 degrees of freedom over a K × K channel
- However, a different implementation of compute-and-forward achieves K degrees of freedom

- Compute-and-forward as communication strategy for wireless networks
- Lattice codes achieve at most 2 degrees of freedom over a K × K channel
- However, a different implementation of compute-and-forward achieves K degrees of freedom
- Matches MIMO upper bound of K degrees of freedom

- Compute-and-forward as communication strategy for wireless networks
- Lattice codes achieve at most 2 degrees of freedom over a K × K channel
- However, a different implementation of compute-and-forward achieves K degrees of freedom
- Matches MIMO upper bound of K degrees of freedom
- Compute-and-forward achieves twice the degrees of freedom of decode-and-forward