Lattices in AWGN Networks: What's missing?

Bobak Nazer

Boston University

BIRS 2011: Algebraic Structure in Network Information Theory

August 16, 2011

Some Disclaimers

- This talk will include some conjectures...

Some Disclaimers

- This talk will include some speculation...

Some Disclaimers

- This talk will include some speculation...
- with the aim of making it a bit more interactive.

Some Disclaimers

- This talk will include some speculation...
- with the aim of making it a bit more interactive.
- Some of this will be tied to some (local) foods.

Some Disclaimers

- This talk will include some speculation...
- with the aim of making it a bit more interactive.
- Some of this will be tied to some (local) foods.
- ISIT '11 Tutorial co-taught with Michael Gastpar now available at ISIT website (and iss.bu.edu/bobak).

Compute-and-Forward

- Two users want to send messages across the network with the help of two relays.

Compute-and-Forward

- Two users want to send messages across the network with the help of two relays.

Compute-and-Forward

- Two users want to send messages across the network with the help of two relays.
- Decode-and-Forward: Each relay decodes one message.

Compute-and-Forward

- Two users want to send messages across the network with the help of two relays.
- Decode-and-Forward: Each relay decodes one message.
- Compress-and-Forward: Relays send their observed signal to the destination without decoding.

Compute-and-Forward

Compute-and-Forward

- What if each relay could decode a linear equation?

Compute-and-Forward

- What if each relay could decode a linear equation?
- Compute-and-Forward: One relay decodes the sum of codewords. Other relay decodes the difference.

Compute-and-Forward

Compute-and-Forward IIlustration

Compute-and-Forward Illustration

$2^{n R}$ codewords each.
$2^{n 2 R}$ possible sums of codewords.

Random i.i.d. codes are not good for computation

$2^{n R}$ codewords each.
$2^{n 2 R}$ possible sums of codewords.

$2^{n R}$ codewords each.
$2^{n 2 R}$ possible sums of codewords.

Random i.i.d. codes are not good for computation

$2^{n R}$ codewords each.
$2^{n 2 R}$ possible sums of codewords.

Decoding the Sum of Lattice Codewords

Encoders use the same nested lattice codebook from Erez-Zamir '04.

Transmit lattice codewords:

$$
\begin{aligned}
& \mathbf{x}_{1}=\mathbf{t}_{1} \\
& \mathbf{x}_{2}=\mathbf{t}_{2}
\end{aligned}
$$

Decoder recovers modulo sum.

$$
\begin{aligned}
& {[\mathbf{y}] \bmod \Lambda} \\
& =\left[\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{z}\right] \bmod \Lambda \\
& =\left[\mathbf{t}_{1}+\mathbf{t}_{2}+\mathbf{z}\right] \bmod \Lambda \\
& =\left[\left[\mathbf{t}_{1}+\mathbf{t}_{2}\right] \bmod \Lambda+\mathbf{z}\right] \bmod \Lambda \quad \text { Distributive Law } \\
& =[\mathbf{v}+\mathbf{z}] \bmod \Lambda
\end{aligned}
$$

$$
R=\frac{1}{2} \log \left(\frac{P}{N}\right)
$$

Decoding the Sum of Lattice Codewords - MMSE Scaling

Encoders use the same nested lattice codebook from Erez-Zamir '04.

Transmit dithered codewords:

$$
\begin{aligned}
\mathbf{x}_{1} & =\left[\mathbf{t}_{1}+\mathbf{d}_{1}\right] \bmod \Lambda \\
\mathbf{x}_{2} & =\left[\mathbf{t}_{2}+\mathbf{d}_{2}\right] \bmod \Lambda
\end{aligned}
$$

Decoder scales by α, removes dithers, recovers modulo sum.

$$
\begin{aligned}
& {\left[\alpha \mathbf{y}-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda} \\
& =\left[\alpha\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{z}\right)-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda \\
& =\left[\mathbf{x}_{1}+\mathbf{x}_{2}-(1-\alpha)\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\alpha \mathbf{z}-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda \\
& =\left[\left[\mathbf{t}_{1}+\mathbf{t}_{2}\right] \bmod \Lambda-(1-\alpha)\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\alpha \mathbf{z}\right] \bmod \Lambda \\
& =\left[\mathbf{v}-(1-\alpha)\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\alpha \mathbf{z}\right] \bmod \Lambda
\end{aligned}
$$

Decoding the Sum of Lattice Codewords - MMSE Scaling

- Effective noise after scaling is $N_{\text {EFFEC }}=(1-\alpha)^{2} 2 P+\alpha^{2} N$.
- Minimized by setting α to be the MMSE coefficient:

$$
\alpha_{\mathrm{MMSE}}=\frac{2 P}{N+2 P}
$$

- Plugging in, we get

$$
N_{\mathrm{EFFEC}}=\frac{2 N P}{N+2 P}
$$

- Resulting rate is

$$
R=\frac{1}{2} \log \left(\frac{P}{N_{\mathrm{EFFEC}}}\right)=\frac{1}{2} \log \left(\frac{1}{2}+\frac{P}{N}\right)
$$

- What happened to the "one plus" term?

Where is the "one plus"?

Set fine lattice density using:

$$
R=\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

Where is the "one plus"?

Set fine lattice density using:

$$
R=\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

Cut out codebook at power P.

Set fine lattice density using:

$$
R=\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

Cut out codebook at power P.

Set fine lattice density using:

$$
R=\frac{1}{2} \log \left(1+\frac{2 P}{N}\right)
$$

Where is the "one plus"?

Set fine lattice density using:

$$
R=\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

Set fine lattice density using:

$$
R=\frac{1}{2} \log \left(1+\frac{2 P}{N}\right)
$$

Cut out codebook at power P.

Where is the "one plus"?

Set fine lattice density using:

$$
R=\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

Cut out codebook at power P.

Set fine lattice density using:

$$
R=\frac{1}{2} \log \left(1+\frac{2 P}{N}\right)
$$

Cut out codebook at power P.

Where is the "one plus"?

Set fine lattice density using:

$$
R=\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

Cut out codebook at power P.

Set fine lattice density using:

$$
R=\frac{1}{2} \log \left(1+\frac{2 P}{N}\right)
$$

Cut out codebook at power P.

$$
\text { Resulting codebook only has } R=\frac{1}{2} \log \left(\frac{1}{2}+\frac{P}{N}\right) \text { ! }
$$

- This limitation seems inherent to nested lattice codes combined with lattice decoding.
- Also seems inherent to any scheme that treats all codewords as "the same" (e.g. ML decoding). Connected to decoding analysis in Wilson-Narayanan-Pfister-Sprintson '10.
- What about MAP decoding?
- Ice Wine Problem: Prove that the sum of codewords $\mathbf{x}_{1}+\mathbf{x}_{2}$ can be recovered from $\mathbf{y}=\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{z}$ at rate

$$
\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

- This limitation seems inherent to nested lattice codes combined with lattice decoding.
- Also seems inherent to any scheme that treats all codewords as "the same" (e.g. ML decoding). Connected to decoding analysis in Wilson-Narayanan-Pfister-Sprintson '10.
- What about MAP decoding?
- Ice Wine Problem: Prove that the sum of codewords $\mathbf{x}_{1}+\mathbf{x}_{2}$ can be recovered from $\mathbf{y}=\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{z}$ at rate

$$
\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

Or prove that this is impossible.

Where is the "one plus"?

- Loss is at most $1 / 2$ of a bit. Is this such a big deal?

Where is the "one plus"?

- Loss is at most $1 / 2$ of a bit. Is this such a big deal? Yes, especially for layering.

Where is the "one plus"?

- Loss is at most $1 / 2$ of a bit. Is this such a big deal? Yes, especially for layering.
- Consider employing a superposition of many lattice codewords.
- As the number of layers increases, the effective SNR of each layer decreases.
- Hard to analyze layered lattice codebooks outside the high SNR regime.
- Shows up in interference channels (e.g. Sridharan et al. '08)
- What if the power constraints are not equal?
- Idea from Nam-Chung-Lee '10:
- Draw the codewords from the same fine lattice $\Lambda_{\text {fine }}$.
- Use two nested coarse lattices Λ_{1} and Λ_{2} to enforce the power constraints P_{1} and P_{2}.
- What if the power constraints are not equal?
- Idea from

Nam-Chung-Lee '10:

- Draw the codewords from the same fine lattice $\Lambda_{\text {FINE }}$.
- Use two nested coarse lattices Λ_{1} and Λ_{2} to enforce the power constraints P_{1} and P_{2}.

- What if the power constraints are not equal?
- Idea from

Nam-Chung-Lee '10:

- Draw the codewords from the same fine lattice $\Lambda_{\text {FINE }}$.
- Use two nested coarse lattices Λ_{1} and Λ_{2} to enforce the power constraints P_{1} and P_{2}.

- What if the power constraints are not equal?
- Idea from

Nam-Chung-Lee '10:

- Draw the codewords from the same fine lattice $\Lambda_{\text {FINE }}$.
- Use two nested coarse lattices Λ_{1} and Λ_{2} to enforce the power constraints P_{1} and P_{2}.

- What if the power constraints are not equal?
- Idea from

Nam-Chung-Lee '10:

- Draw the codewords from the same fine lattice $\Lambda_{\text {FINE }}$.
- Use two nested coarse lattices Λ_{1} and Λ_{2} to enforce the power constraints P_{1} and P_{2}.

- Encoder 1 sends $\mathbf{x}_{1}=\left[\mathbf{t}_{1}+\mathbf{d}_{1}\right] \bmod \Lambda_{1}$. Coarse lattice Λ_{1} has second moment P_{1}.
- Encoder 2 sends $\mathbf{x}_{2}=\left[\mathbf{t}_{2}+\mathbf{d}_{2}\right] \bmod \Lambda_{2}$. Coarse lattice Λ_{2} has second moment $P_{2}>P_{1}$.
- Decoder performs MMSE scaling, remove dithers, recovers $\bmod \Lambda_{2}$ sum.
$R_{1}=\frac{1}{2} \log \left(\frac{P_{1}}{P_{1}+P_{2}}+\frac{P_{1}}{N}\right)$

$$
R_{2}=\frac{1}{2} \log \left(\frac{P_{2}}{P_{1}+P_{2}}+\frac{P_{2}}{N}\right)
$$

Case Study - Hadamard Relay Network

- Equal rates $R . \mathbf{H}$ is a Hadamard matrix, $\mathbf{H H}^{T}=K \mathbf{I}$

Upper Bound

$$
\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

Compress-and-Forward

$$
\frac{1}{2} \log \left(1+\frac{P}{N} \frac{P}{N+K P}\right)
$$

Compute-and-Forward

$$
\frac{1}{2} \log \left(\frac{1}{K}+\frac{P}{N}\right)
$$

Decode-and-Forward

$$
\frac{1}{2 K} \log \left(1+\frac{K P}{N}\right)
$$

Case Study - Hadamard Relay Network

- Equal rates $R . \mathbf{H}$ is a Hadamard matrix, $\mathbf{H H}^{T}=K \mathbf{I}$

Upper Bound

$$
\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

Compress-and-Forward

$$
\frac{1}{2} \log \left(1+\frac{P}{N} \frac{P}{N+K P}\right)
$$

Compute-and-Forward

$$
\frac{1}{2} \log \left(\frac{1}{K}+\frac{P}{N}\right)
$$

Decode-and-Forward

$$
\frac{1}{2 K} \log \left(1+\frac{K P}{N}\right)
$$

Compute-and-Forward: Fading Channels

Transmitters do not know channel realization.

Encoders use the same nested lattice codebook.

Transmit dithered codewords:

$$
\mathbf{x}_{\ell}=\left[\mathbf{t}_{\ell}+\mathbf{d}_{\ell}\right] \bmod \Lambda
$$

- Decoder removes dithers and recovers integer combination

$$
\mathbf{v}=\left[\sum_{\ell=1}^{K} a_{\ell} \mathbf{t}_{\ell}\right] \bmod \Lambda
$$

- Receiver can use its knowledge of the channel gains to match the equation coefficients a_{ℓ} to the channel coefficients h_{ℓ}.

Distributive Law

- Distributive Law also holds for integer combinations. Let $a, b \in \mathbb{Z}$.

$$
\begin{aligned}
& {\left[a\left[\mathbf{x}_{1}\right] \bmod \Lambda+b\left[\mathbf{x}_{2}\right] \bmod \Lambda\right] \bmod \Lambda} \\
& =\left[a\left(\mathbf{x}_{1}-Q_{\Lambda}\left(\mathbf{x}_{1}\right)\right)+b\left(\mathbf{x}_{2}-Q_{\Lambda}\left(\mathbf{x}_{2}\right)\right)\right] \bmod \Lambda \\
& =\left[a \mathbf{x}_{1}+b \mathbf{x}_{2}-a Q_{\Lambda}\left(\mathbf{x}_{1}\right)-b Q_{\Lambda}\left(\mathbf{x}_{2}\right)\right] \bmod \Lambda \\
& =\left[a \mathbf{x}_{1}+b \mathbf{x}_{2}\right] \bmod \Lambda
\end{aligned}
$$

- Last step follows since since $a Q_{\Lambda}\left(\mathbf{x}_{1}\right)$ and $b Q_{\Lambda}\left(\mathbf{x}_{2}\right)$ are elements of the lattice Λ.

Compute-and-Forward: Fading Channels

- Transmit dithered codewords $\mathbf{x}_{\ell}=\left[\mathbf{t}_{\ell}+\mathbf{d}_{\ell}\right] \bmod \Lambda$
- Decoder removes dithers and recovers integer combination

$$
\begin{aligned}
& {\left[\mathbf{y}-\sum_{\ell=1}^{K} a_{\ell} \mathbf{d}_{\ell}\right] \bmod \Lambda} \\
& =\left[\sum_{\ell=1}^{K} h_{\ell} \mathbf{x}_{\ell}+\mathbf{z}-\sum_{\ell=1}^{K} a_{\ell} \mathbf{d}_{\ell}\right] \bmod \Lambda \\
& =\left[\sum_{\ell=1}^{K} a_{\ell}\left(\mathbf{x}_{\ell}-\mathbf{d}_{\ell}\right)+\sum_{\ell=1}^{K}\left(h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\mathbf{z}\right] \bmod \Lambda
\end{aligned}
$$

$$
=\left[\left[\sum_{\ell=1}^{K} a_{\ell} \mathbf{t}_{\ell}\right] \bmod \Lambda+\sum_{\ell=1}^{\left.\sum_{\text {Effective Noise }}^{K}\left(h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\mathbf{z}\right]} \bmod \Lambda\right. \text { Distributive Law }
$$

Compute-and-Forward: Fading Channels - Effective Noise

- Effective noise due to mismatch between channel coefficients $\mathbf{h}=\left[h_{1} \cdots h_{K}\right]^{T}$ and equation coefficients $\mathbf{a}=\left[a_{1} \cdots a_{K}\right]^{T}$.

$$
\begin{aligned}
N_{\mathrm{EFFEC}} & =N+P\|\mathbf{h}-\mathbf{a}\|^{2} \\
R & =\frac{1}{2} \log \left(\frac{P}{N+P\|\mathbf{h}-\mathbf{a}\|^{2}}\right)
\end{aligned}
$$

Compute-and-Forward: Fading Channels - Effective Noise

- Effective noise due to mismatch between channel coefficients $\mathbf{h}=\left[h_{1} \cdots h_{K}\right]^{T}$ and equation coefficients $\mathbf{a}=\left[a_{1} \cdots a_{K}\right]^{T}$.

$$
\begin{aligned}
N_{\mathrm{EFFEC}} & =N+P\|\mathbf{h}-\mathbf{a}\|^{2} \\
R & =\frac{1}{2} \log \left(\frac{P}{N+P\|\mathbf{h}-\mathbf{a}\|^{2}}\right)
\end{aligned}
$$

- Can do better with MMSE scaling.

$$
\begin{aligned}
N_{\mathrm{EFFEC}} & =\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2} \\
R & =\max _{\alpha} \frac{1}{2} \log \left(\frac{P}{\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2}}\right) \\
& =\frac{1}{2} \log \left(\frac{N+P\|\mathbf{h}\|^{2}}{N\|\mathbf{a}\|^{2}+P\left(\|\mathbf{h}\|^{2}\|\mathbf{a}\|^{2}-\left(\mathbf{h}^{T} \mathbf{a}\right)^{2}\right)}\right)
\end{aligned}
$$

- See Nazer-Gastpar '11 for more details.

Compute-and-Forward: Fading Channels - Special Cases

- The rate expression simplifies in some special cases.

$$
R=\frac{1}{2} \log \left(\frac{N+P\|\mathbf{h}\|^{2}}{N\|\mathbf{a}\|^{2}+P\left(\|\mathbf{h}\|^{2}\|\mathbf{a}\|^{2}-\left(\mathbf{h}^{T} \mathbf{a}\right)^{2}\right)}\right)
$$

- Integer channels: $\mathbf{h}=\mathbf{a}$.

$$
R=\frac{1}{2} \log \left(\frac{1}{\|\mathbf{a}\|^{2}}+\frac{P}{N}\right)
$$

- Recovering a single message: Set $\mathbf{a}=\delta_{m}$, the $m^{\text {th }}$ unit vector.

$$
R=\frac{1}{2} \log \left(1+\frac{h_{m}^{2} P}{N+P \sum_{\ell \neq m} h_{\ell}^{2}}\right)
$$

Compute-and-Forward: Fading Channels - Finite Field Message

Transmitters do not know channel realization.

Encoders use the same nested lattice codebook.

Transmit dithered codewords:

$$
\mathbf{x}_{\ell}=\left[\mathbf{t}_{\ell}+\mathbf{d}_{\ell}\right] \bmod \Lambda
$$

- Due to Construction A , mapping $\mathbf{t}_{\ell}=\phi\left(\mathbf{w}_{\ell}\right)$ between messages and lattice points preserves linearity.

$$
\phi^{-1}\left(\left[\sum_{\ell=1}^{K} a_{\ell} \mathbf{t}_{\ell}\right] \bmod \Lambda\right)=\left[\sum_{\ell=1}^{K} a_{\ell} \mathbf{w}_{\ell}\right] \bmod q=\bigoplus_{\ell=1}^{K} a_{\ell} \mathbf{w}_{\ell}
$$

- Digital interface that fits well with network coding.

Compute-and-Forward: Fading Channels - Illustration

All users pick the same nested lattice code:

Compute-and-Forward: Fading Channels - Illustration

Choose messages over field $\mathbf{w}_{\ell} \in \mathbb{F}_{q}^{k}$:

Compute-and-Forward: Fading Channels - Illustration

Map \mathbf{w}_{ℓ} to lattice point $\mathbf{t}_{\ell}=\phi\left(\mathbf{w}_{\ell}\right)$:

Compute-and-Forward: Fading Channels - Illustration

Transmit lattice points over the channel:

Compute-and-Forward: Fading Channels - Illustration

Transmit lattice points over the channel:

Compute-and-Forward: Fading Channels - Illustration

Lattice codewords are scaled by channel coefficients:

Compute-and-Forward: Fading Channels - Illustration
Scaled codewords added together plus noise:

Compute-and-Forward: Fading Channels - Illustration
Scaled codewords added together plus noise:

Compute-and-Forward: Fading Channels - Illustration

Extra noise penalty for non-integer channel coefficients:

Effective noise: $N+P\|\mathbf{h}-\mathbf{a}\|^{2}$

Compute-and-Forward: Fading Channels - Illustration

Scale output by α to reduce non-integer noise penalty:

Effective noise: $\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2}$

Compute-and-Forward: Fading Channels - Illustration

Scale output by α to reduce non-integer noise penalty:

Effective noise: $\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2}$

Compute-and-Forward: Fading Channels - Illustration

Decode to closest lattice point:

Effective noise: $\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2}$

Compute-and-Forward: Fading Channels - Illustration

Compute sum of lattice points modulo the coarse lattice:

Effective noise: $\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2}$

Compute-and-Forward: Fading Channels - Illustration

Map back to equation of message symbols over the field:

Effective noise: $\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2}$

Computation over Fading Channels - Multiple Receivers

- Equal rates R. No channel state information (CSI) at transmitters.
- Receivers use their CSI to select coefficients, decode linear equation

$$
\mathbf{u}_{k}=\bigoplus_{\ell=1}^{K} a_{k \ell} \mathbf{w}_{\ell}
$$

- Reliable decoding possible if

$$
R<\min _{k: a_{k \ell} \neq 0} \frac{1}{2} \log \left(\frac{N+P\left\|\mathbf{h}_{k}\right\|^{2}}{N\left\|\mathbf{a}_{k}\right\|^{2}+P\left(\left\|\mathbf{h}_{k}\right\|^{2}\left\|\mathbf{a}_{k}\right\|^{2}-\left(\mathbf{h}_{k}^{T} \mathbf{a}_{k}\right)^{2}\right)}\right)
$$

Relay either decodes some linear function of messages or an individual message.

- Three transmitters that do not know the fading coefficients.
- Average rate plotted for i.i.d. Gaussian fading.

Computation over Fading Channels - No CSIT

- Receiver observes $\mathbf{y}=\mathbf{x}_{1}+h \mathbf{x}_{2}+\mathbf{z}$.
- Recovers $a \mathbf{w}_{1} \oplus b \mathbf{w}_{2}$ for $a, b \neq 0$.

10dB

Computation over Fading Channels - No CSIT

- Receiver observes $\mathbf{y}=\mathbf{x}_{1}+h \mathbf{x}_{2}+\mathbf{z}$.
- Recovers $a \mathbf{w}_{1} \oplus b \mathbf{w}_{2}$ for $a, b \neq 0$.

20 dB

Computation over Fading Channels - No CSIT

- Receiver observes $\mathbf{y}=\mathbf{x}_{1}+h \mathbf{x}_{2}+\mathbf{z}$.
- Recovers $a \mathbf{w}_{1} \oplus b \mathbf{w}_{2}$ for $a, b \neq 0$.

30 dB

Computation over Fading Channels - No CSIT

- Receiver observes $\mathbf{y}=\mathbf{x}_{1}+h \mathbf{x}_{2}+\mathbf{z}$.
- Recovers $a \mathbf{w}_{1} \oplus b \mathbf{w}_{2}$ for $a, b \neq 0$.

40dB

Computation over Fading Channels - No CSIT

- Receiver observes $\mathbf{y}=\mathbf{x}_{1}+h \mathbf{x}_{2}+\mathbf{z}$.
- Recovers $a \mathbf{w}_{1} \oplus b \mathbf{w}_{2}$ for $a, b \neq 0$.

50dB

Can we fill in the valleys?

- Compute-and-forward does well at rational coefficients and poorly at irrational coefficients.
- This is the opposite of the behavior observed in "real interference alignment" (Motahari et al. '09).
- As demonstrated in the previous talk, we can do better using superposition. This alters the effective channel gains.
- Next talk covers this issue in depth at high SNR.
- How about finite SNR? Similar issues as encountered in static interference channels.

Successive Cancellation

- Receiver observes $\mathbf{y}=\sum_{\ell=1}^{L} h_{\ell} \mathbf{x}_{\ell}+\mathbf{z}$

Successive cancellation:

- Decode \mathbf{x}_{i}.
- Calculate $\mathbf{y}-h_{i} \mathbf{x}_{i}$.
- Receiver now has

$$
\sum_{\ell \neq i} h_{\ell} \mathbf{x}_{\ell}+\mathbf{z}
$$

Successive Gancellation Computation

- Receiver observes $\mathbf{y}=\sum_{\ell=1}^{L} h_{\ell} \mathbf{x}_{\ell}+\mathbf{z}$

Successive cancellation:

- Decode \mathbf{x}_{i}.
- Calculate $\mathbf{y}-h_{i} \mathbf{x}_{i}$.
- Receiver now has

$$
\sum_{\ell \neq i} h_{\ell} \mathbf{x}_{\ell}+\mathbf{z}
$$

Successive computation:

- Decode $\sum_{\ell=1}^{L} a_{\ell} \mathbf{x}_{\ell}$.
- Calculate $\mathbf{y}+\beta \sum_{\ell=1}^{L} a_{\ell} \mathbf{x}_{\ell}$.
- Receiver now has

$$
\sum_{\ell=1}^{L}\left(h_{\ell}+\beta a_{\ell}\right) \mathbf{x}_{\ell}+\mathbf{z}
$$

Successive Computation

- So far, we have only decoded a modulo sum of the lattice points:

$$
\left[\sum_{\ell} a_{\ell} \mathbf{t}_{\ell}\right] \bmod \Lambda
$$

Successive Computation

- So far, we have only decoded a modulo sum of the lattice points:

$$
\left[\sum_{\ell} a_{\ell} \mathbf{t}_{\ell}\right] \bmod \Lambda
$$

- First, add back in the dithers to get the modulo sum of codewords:

$$
\left[\left[\sum_{\ell} a_{\ell} \mathbf{t}_{\ell}\right] \bmod \Lambda+\left[\sum_{\ell} a_{\ell} \mathbf{d}_{\ell}\right] \bmod \Lambda\right] \bmod \Lambda=\left[\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}\right] \bmod \Lambda
$$

Successive Computation

- So far, we have only decoded a modulo sum of the lattice points:

$$
\left[\sum_{\ell} a_{\ell} \mathbf{t}_{\ell}\right] \bmod \Lambda
$$

- First, add back in the dithers to get the modulo sum of codewords:

$$
\left[\left[\sum_{\ell} a_{\ell} \mathbf{t}_{\ell}\right] \bmod \Lambda+\left[\sum_{\ell} a_{\ell} \mathbf{d}_{\ell}\right] \bmod \Lambda\right] \bmod \Lambda=\left[\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}\right] \bmod \Lambda
$$

- Subtract this from y to expose the coarse lattice point nearest to the real sum:

$$
\mathbf{y}-\left[\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}\right] \bmod \Lambda=Q_{\Lambda}\left(\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}\right)+\sum_{\ell}\left(h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\mathbf{z}
$$

Successive Computation

- So far, we have only decoded a modulo sum of the lattice points:

$$
\left[\sum_{\ell} a_{\ell} \mathbf{t}_{\ell}\right] \bmod \Lambda
$$

- First, add back in the dithers to get the modulo sum of codewords:

$$
\left[\left[\sum_{\ell} a_{\ell} \mathbf{t}_{\ell}\right] \bmod \Lambda+\left[\sum_{\ell} a_{\ell} \mathbf{d}_{\ell}\right] \bmod \Lambda\right] \bmod \Lambda=\left[\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}\right] \bmod \Lambda
$$

- Subtract this from y to expose the coarse lattice point nearest to the real sum:

$$
\mathbf{y}-\left[\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}\right] \bmod \Lambda=Q_{\Lambda}\left(\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}\right)+\sum_{\ell}\left(h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\mathbf{z}
$$

- Coarse lattice point easier to decode than fine lattice point:

$$
Q_{\Lambda}\left(Q_{\Lambda}\left(\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}\right)+\sum_{\ell}\left(h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\mathbf{z}\right)=Q_{\Lambda}\left(\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}\right) \quad \text { w.h.p. }
$$

Successive Computation Illustration

We have the modulo sum.

Effective noise: $\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2}$

Successive Computation Illustration

Subtract modulo sum from the received signal.

Effective noise: $\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2}$

Successive Computation Illustration

Decode to the closest coarse lattice point.

Effective noise: $\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2}$

Successive Computation Illustration

Decode to the closest coarse lattice point.

Effective noise: $\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2}$

Successive Computation Illustration

Now we can infer the real sum.

Effective noise: $\alpha^{2} N+P\|\alpha \mathbf{h}-\mathbf{a}\|^{2}$

Successive Computation

- Finally, we get back the real sum:

$$
\left[\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}\right] \bmod \Lambda+Q_{\Lambda}\left(\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}\right)=\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}
$$

- What can we do with this?
- Change the effective channel gains and decode a new equation.
- Recover some existing results on interference alignment.

Alignment via Successive Computation

- Assume each receiver observes $\mathbf{y}_{k}=h \mathbf{x}_{k}+\sum_{\ell \neq k} \mathbf{x}_{\ell}+\mathbf{z}_{k}$.
- Decode equation of the form $p \mathbf{x}_{k}+\sum_{\ell \neq k} q \mathbf{x}_{\ell}$.
- Rate $\frac{1}{2} \log \left(\frac{\mathrm{SNR}}{q^{2}+\mathrm{SNR}|q h-p|^{2}}\right) \leq \frac{1}{2} \log \left(\frac{\mathrm{SNR}}{q^{2}+\mathrm{SNR} / q^{2}}\right)$
- Plug in $q \approx \mathrm{SNR}^{1 / 4}$ to get $R \approx \frac{1}{4} \log (P)$.
- Calculate $\mathbf{y}_{k}-\frac{p}{q} \mathbf{x}_{k}+\sum_{\ell \neq k} \mathbf{x}_{\ell}=\left(h-\frac{p}{q}\right) \mathbf{x}_{k}+\mathbf{z}_{k}$
- By Khinchin's Theorem, residual channel coefficient allows $R \approx \frac{1}{4} \log (P)$.

Dirty Paper Coding

s is interference known noncausally to the encoder.

Assume s i.i.d. Gaussian, very large variance P_{S}.

Erez-Shamai-Zamir '05:

Encoder subtracts α s, dithers, and takes $\bmod \Lambda$.

$$
\mathbf{x}=[\mathbf{t}-\alpha \mathbf{s}+\mathbf{d}] \bmod \Lambda
$$

Decoder scales by α, removes dither, takes $\bmod \Lambda$, and recovers \mathbf{t}. Interference is cancelled.

$$
\begin{aligned}
{[\alpha \mathbf{y}-\mathbf{d}] \bmod \Lambda } & =[\mathbf{x}+\alpha \mathbf{s}-\mathbf{d}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda \\
& =[[\mathbf{t}-\alpha \mathbf{s}+\mathbf{d}] \bmod \Lambda+\alpha \mathbf{s}-\mathbf{d}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda \\
& =[\mathbf{t}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda
\end{aligned}
$$

Dirty Paper Coding

s is interference known noncausally to the encoder.

Assume s i.i.d. Gaussian, very large variance P_{S}.

Erez-Shamai-Zamir '05:

Encoder subtracts α s, dithers, and takes $\bmod \Lambda$.

$$
\mathbf{x}=[\mathbf{t}-\alpha \mathbf{s}+\mathbf{d}] \bmod \Lambda
$$

Decoder scales by α, removes dither, takes $\bmod \Lambda$, and recovers \mathbf{t}. Interference is cancelled.

$$
\begin{aligned}
{[\alpha \mathbf{y}-\mathbf{d}] \bmod \Lambda } & =[\mathbf{x}+\alpha \mathbf{s}-\mathbf{d}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda \\
& =[[\mathbf{t}-\alpha \mathbf{s}+\mathbf{d}] \bmod \Lambda+\alpha \mathbf{s}-\mathbf{d}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda \\
& =[\mathbf{t}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda
\end{aligned}
$$

Dirty Paper Coding

s is interference known noncausally to the encoder.

Assume s i.i.d. Gaussian, very large variance P_{S}.

Erez-Shamai-Zamir '05:

Encoder subtracts α s, dithers, and takes $\bmod \Lambda$.

$$
\mathbf{x}=[\mathbf{t}-\alpha \mathbf{s}+\mathbf{d}] \bmod \Lambda
$$

Decoder scales by α, removes dither, takes $\bmod \Lambda$, and recovers \mathbf{t}. Interference is cancelled.

$$
\begin{aligned}
{[\alpha \mathbf{y}-\mathbf{d}] \bmod \Lambda } & =[\mathbf{x}+\alpha \mathbf{s}-\mathbf{d}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda \\
& =[[\mathbf{t}-\alpha \mathbf{s}+\mathbf{d}] \bmod \Lambda+\alpha \mathbf{s}-\mathbf{d}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda \\
& =[\mathbf{t}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda
\end{aligned}
$$

Dirty Paper Coding

s is interference known noncausally to the encoder.

Assume s i.i.d. Gaussian, very large variance P_{S}.

Erez-Shamai-Zamir '05:

Encoder subtracts $\alpha \mathrm{s}$, dithers, and takes $\bmod \Lambda$.

$$
\mathbf{x}=[\mathbf{t}-\alpha \mathbf{s}+\mathbf{d}] \bmod \Lambda
$$

Decoder scales by α, removes dither, takes $\bmod \Lambda$, and recovers \mathbf{t}. Interference is cancelled.

$$
\begin{aligned}
{[\alpha \mathbf{y}-\mathbf{d}] \bmod \Lambda } & =[\mathbf{x}+\alpha \mathbf{s}-\mathbf{d}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda \\
& =[[\mathbf{t}-\alpha \mathbf{s}+\mathbf{d}] \bmod \Lambda+\alpha \mathbf{s}-\mathbf{d}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda \\
& =[\mathbf{t}+\mathbf{z}-(1-\alpha) \mathbf{x}] \bmod \Lambda
\end{aligned}
$$

Dirty Gaussian Multiple-Access Channel

Philosof-Zamir-Erez-Khisti '11:

- Encoder 1 knows interference \mathbf{s}_{1}.
- Encoder 2 knows interference \mathbf{s}_{2}.
- Need to cancel out interference in a distributed fashion.
- Assume i.i.d. Gaussian interference with very large variance P_{S}. Random i.i.d. methods yield rate that goes to 0 as P_{S} goes to infinity.

Dirty Gaussian Multiple-Access Channel

Subtract (part of) the interference signals ahead of time:

$$
\begin{aligned}
\mathbf{x}_{1} & =\left[\mathbf{t}_{1}-\alpha \mathbf{s}_{1}+\mathbf{d}_{1}\right] \bmod \Lambda \\
\mathbf{x}_{2} & =\left[\mathbf{t}_{2}-\alpha \mathbf{s}_{2}+\mathbf{d}_{2}\right] \bmod \Lambda
\end{aligned}
$$

Decoder removes dithers:

$$
\begin{aligned}
& {\left[\alpha \mathbf{y}-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda} \\
& =\left[\alpha\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{s}_{1}+\mathbf{s}_{2}+\mathbf{z}\right)-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda \\
& \left.=\left[\mathbf{x}_{1}+\mathbf{x}_{2}+\alpha\left(\mathbf{s}_{1}+\mathbf{s}_{2}\right)-(1-\alpha)\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\alpha \mathbf{z}\right)-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda \\
& =\left[\mathbf{t}_{1}+\mathbf{t}_{2}+(1-\alpha)\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\alpha \mathbf{z}\right] \bmod \Lambda
\end{aligned}
$$

Select $\alpha=2 P /(2 P+N)$ to obtain

$$
R_{1}+R_{2} \leq \frac{1}{2} \log \left(\frac{1}{2}+\frac{P}{N}\right)
$$

Maple Syrup Problem: Prove this is the best possible

Dirty Gaussian Multiple-Access Channel

Subtract (part of) the interference signals ahead of time:

$$
\begin{aligned}
\mathbf{x}_{1} & =\left[\mathbf{t}_{1}-\alpha \mathbf{s}_{1}+\mathbf{d}_{1}\right] \bmod \Lambda \\
\mathbf{x}_{2} & =\left[\mathbf{t}_{2}-\alpha \mathbf{s}_{2}+\mathbf{d}_{2}\right] \bmod \Lambda
\end{aligned}
$$

Decoder removes dithers:

$$
\begin{aligned}
& {\left[\alpha \mathbf{y}-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda} \\
& =\left[\alpha\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{s}_{1}+\mathbf{s}_{2}+\mathbf{z}\right)-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda \\
& \left.=\left[\mathbf{x}_{1}+\mathbf{x}_{2}+\alpha\left(\mathbf{s}_{1}+\mathbf{s}_{2}\right)-(1-\alpha)\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\alpha \mathbf{z}\right)-\mathbf{d}_{1}-\mathbf{d}_{2}\right] \bmod \Lambda \\
& =\left[\mathbf{t}_{1}+\mathbf{t}_{2}+(1-\alpha)\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\alpha \mathbf{z}\right] \bmod \Lambda
\end{aligned}
$$

Select $\alpha=2 P /(2 P+N)$ to obtain

$$
R_{1}+R_{2} \leq \frac{1}{2} \log \left(\frac{1}{2}+\frac{P}{N}\right)
$$

Maple Syrup Problem: Prove this is the best possible (or find a better acheivable scheme).

AWGN Techniques

- Superposition (Shlomo's Talk)
- Fading
- Successive Cancellation
- Dirty Paper Coding
- Joint Decoding (Uri's Talk)
- List Decoding (Natasha's Talk)

AWGN Techniques

- Superposition (Shlomo's Talk)
- Fading
- Successive Cancellation
- Dirty Paper Coding
- Joint Decoding (Uri's Talk)
- List Decoding (Natasha's Talk)
- Timbit Problem: Are there are any AWGN encoding/decoding techniques that are not available to lattice codes? That is, is there a (simple, linear, AWGN, etc.) network where lattices are outperformed by i.i.d. random codes?

AWGN Techniques

- Superposition (Shlomo's Talk)
- Fading
- Successive Cancellation
- Dirty Paper Coding
- Joint Decoding (Uri's Talk)
- List Decoding (Natasha's Talk)
- Timbit Problem: Are there are any AWGN encoding/decoding techniques that are not available to lattice codes? That is, is there a (simple, linear, AWGN, etc.) network where lattices are outperformed by i.i.d. random codes?
- Outer bounds?

