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Subspace Codes for Network Coding

Koetter and Kschischang show subspace codes are valuable for error
correction of network coding.

A subspace code is a non-empty collection C of subspaces of F
n
q .

Constant-dimension subspace codes: all the codewords
(subspaces) have fixed dimension l.

The subspace distance between U and V is

dS(U, V ) = dim(U + V ) − dim(U ∩ V )



Background

Rank-Metric-

Automorphism

Groups

Equivalence of

Matrix Codes

Matrix-

Automorphism

Groups

Work in

Progress

Subspace Code Construction

Matrix code: A subset T ⊆ F
l×m
q .

Lifted matrix code: A constant-dimension subspace code where
all the RREF matrices corresponding to each codeword have the
same pivot locations, and the non-pivot locations are filled by
the entries of a matrix from a matrix code.
E.g. C = {rowspan[I|A] : A ∈ T } for some code T ⊆ F

l×m
q .

Silva, Kschischang, and Koetter show that the subspace
distance between U = rowspan[I|A] and V = rowspan[I|B] is

dS(U, V ) = 2 rank(A − B)
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Subspace Code Construction Cont’d

Rank-metric code: a block code over Fqm , where each codeword
x is associated with a matrix ǫB(x); row i of ǫB(x) is the
expansion of xi w.r.t. a fixed basis B for Fqm over Fq.

Lifted rank-metric code: lifting of the matrix expansion of a
rank-metric code.

The rank-metric distance between two vectors x and y is

dR(x,y) = dim〈x − y〉Fq
= rank(ǫB(x) − ǫB(y)).
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Equivalence of Rank-Metric Codes

Any invertible Fqm -linear map f : F
n
qm → F

n
qm that preserves rank

weight is called a rank-metric equivalence map.

Theorem (Berger)

The set of rank-metric equivalence maps GRM (Fn
qm) is generated by

the non-zero Fqm-scalar multiplications and the linear group

GLn(Fq). The group is isomorphic to the product

(F∗
qm/F

∗
q) × GLn(Fq).

Note: For f ∈ GRM (Fn
qm), we represent f by an ordered pair (α, A)

for some α ∈ F
∗
qm , A ∈ GLn(Fq).

The rank-metric automorphism group AutRM (C) of a code C ⊆ F
n
qm

is the set of rank-metric equivalence maps f ∈ GRM (Fn
qm) satisfying

f(C) = C.
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Gabidulin codes

The [n, k, n− k + 1]qm rank-metric code Ck,g,qm with generator
matrix

G =
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where the entries of g = [g1, . . . , gn] ∈ F
n
qm are linearly

independent over Fq, is called a Gabidulin code.

Gabidulin codes are qm-ary analogues of Reed-Solomon codes
that are optimal for the rank metric.

Used in the first subspace code construction by Koetter and
Kschischang; also used in the GPT public-key cryptosystem.



Background

Rank-Metric-

Automorphism

Groups

Equivalence of

Matrix Codes

Matrix-

Automorphism

Groups

Work in

Progress

Rank-Metric-Automorphism Group
of Gabidulin Codes

Theorem

Let k ≤ n ≤ m. Let g = [g1, . . . , gn] ∈ F
n
qm have entries that are

linearly independent over Fq, and let Ck,g,qm be the Gabidulin code

of dimension k generated by g. Let d be the largest integer such that

〈g1, . . . , gn〉Fq
is a vector space over Fqd ⊆ Fqm . Then

1 d divides gcd(n, m).

2 AutRM(Ck,g,qm ) =
{(

α, ǫg ([βg1, . . . , βgn])
⊤

)

: α ∈ F
∗
qm , β ∈ F

∗

qd

}

.
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Equivalence of Matrix Codes

A matrix-equivalence map is an invertible Fq-linear map
f : F

n×m
q → F

n×m
q that preserves rank weight.

Theorem

Let f ∈ GMat(F
n×m
q ) be a matrix-equivalence map.

If n 6= m, then there exist A ∈ GLn(Fq), B ∈ GLm(Fq) such that

f(M) = AMB for all M ∈ F
n×m
q .

If n = m, then there exist A, B ∈ GLn(Fq) such that either

f(M) = AMB for all M ∈ F
n×m
q , or

f(M) = AM⊤B for all M ∈ F
n×m
q .

Note: When n 6= m,

GMat(F
n×m
q ) ∼= GLn(Fq) × PGLm(Fq),

and so we can choose a representative for f ∈ GMat(F
n×m
q ) of the form

(A,B) where A ∈ GLn(Fq) and B ∈ GLm(Fq).
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Matrix-Automorphism Group
of Gabidulin Codes

The matrix-automorphism group AutMat(C) of a code C ⊆ F
n×m
q is

the set of matrix-equivalence maps that fix C.

Theorem

Let k ≤ n < m and B = {b1, . . . , bm} be a basis for Fqm over Fq.

Let g = [g1, . . . , gn] ∈ F
n
qm have entries that are linearly independent

over Fq, and let ǫB(Ck,g,qm ) be the matrix expansion of the

Gabidulin code of dimension k generated by g. Let d be maximal

such that 〈g1, . . . , gn〉Fq
is a vector space over Fqd ⊆ Fqm . Then

1 d divides gcd(n, m).

2 AutMat(ǫB(Ck,g,qm )) ⊇
{

(ǫg ([αg1, . . . , αgn]) , ǫB([βb1, . . . , βbm])) : α ∈ F
∗

qd , β ∈ F
∗
qm

}

.
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Work in Progress

Determine if either the matrix equivalence maps provide better
protection against cryptanalysis than the permutation
equivalence map currently used in the GPT public-key
cryptosystem.

Use these notions of equivalence to enumerate all inequivalent
self-dual matrix codes.

Extend the notion of equivalence to subspace codes and
determine the automorphism groups of various families of
subspace codes.
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