

Background

Rank-Metric-Automorphism Groups

Equivalence of Matrix Codes

Matrix-Automorphism Groups

Work in Progress

Equivalence for Rank-Metric and Matrix Codes with Applications to Network Coding

Katherine Morrison

Department of Mathematics University of Nebraska

Algebraic Structure in Network Information Theory August 17, 2011

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Nebraska

Subspace Codes for Network Coding

Background

Rank-Metric-Automorphism Groups

Equivalence of Matrix Codes

Matrix-Automorphism Groups

Work in Progress Koetter and Kschischang show subspace codes are valuable for error correction of network coding.

- A subspace code is a non-empty collection C of subspaces of \mathbb{F}_{q}^{n} .
- Constant-dimension subspace codes: all the codewords (subspaces) have fixed dimension *l*.
- The subspace distance between U and V is

 $d_S(U,V) = \dim(U+V) - \dim(U \cap V)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nebraska Subspace Code Construction

Background

Rank-Metric-Automorphism Groups

Equivalence of Matrix Codes

Matrix-Automorphism Groups

Work in Progress

- Matrix code: A subset $T \subseteq \mathbb{F}_q^{l \times m}$.
- Lifted matrix code: A constant-dimension subspace code where all the RREF matrices corresponding to each codeword have the same pivot locations, and the non-pivot locations are filled by the entries of a matrix from a matrix code.

E.g. $C = \{ \operatorname{rowspan}[I|A] : A \in T \}$ for some code $T \subseteq \mathbb{F}_q^{l \times m}$.

• Silva, Kschischang, and Koetter show that the subspace distance between $U = \operatorname{rowspan}[I|A]$ and $V = \operatorname{rowspan}[I|B]$ is

$$d_S(U, V) = 2 \operatorname{rank}(A - B)$$

Nebraska Subspace Code Construction Cont'd

Background

- Rank-Metric-Automorphism Groups
- Equivalence of Matrix Codes
- Matrix-Automorphism Groups
- Work in Progress

- Rank-metric code: a block code over F_{qm}, where each codeword x is associated with a matrix ε_B(x); row i of ε_B(x) is the expansion of x_i w.r.t. a fixed basis B for F_{qm} over F_q.
- Lifted rank-metric code: lifting of the matrix expansion of a rank-metric code.
- $\bullet\,$ The rank-metric distance between two vectors ${\bf x}$ and ${\bf y}$ is

$$d_R(\mathbf{x}, \mathbf{y}) = \dim \langle \mathbf{x} - \mathbf{y} \rangle_{\mathbb{F}_q} = \operatorname{rank}(\epsilon_{\mathcal{B}}(\mathbf{x}) - \epsilon_{\mathcal{B}}(\mathbf{y})).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equivalence of Rank-Metric Codes

Background

Rank-Metric-Automorphism Groups

Equivalence of Matrix Codes

Matrix-Automorphism Groups

Work in Progress Any invertible \mathbb{F}_{q^m} -linear map $f : \mathbb{F}_{q^m}^n \to \mathbb{F}_{q^m}^n$ that preserves rank weight is called a rank-metric equivalence map.

Theorem (Berger)

The set of rank-metric equivalence maps $G_{RM}(\mathbb{F}_{q^m}^n)$ is generated by the non-zero \mathbb{F}_{q^m} -scalar multiplications and the linear group $\operatorname{GL}_n(\mathbb{F}_q)$. The group is isomorphic to the product $(\mathbb{F}_{q^m}^*/\mathbb{F}_q^*) \times \operatorname{GL}_n(\mathbb{F}_q)$.

Note: For $f \in G_{RM}(\mathbb{F}_{q^m}^n)$, we represent f by an ordered pair (α, A) for some $\alpha \in \mathbb{F}_{q^m}^*$, $A \in \mathrm{GL}_n(\mathbb{F}_q)$.

The rank-metric automorphism group $Aut_{RM}(C)$ of a code $C \subseteq \mathbb{F}_{q^m}^n$ is the set of rank-metric equivalence maps $f \in G_{RM}(\mathbb{F}_{q^m}^n)$ satisfying f(C) = C.

Gabidulin codes

Background

Rank-Metric-Automorphism Groups

Equivalence of Matrix Codes

Matrix-Automorphism Groups

Work in Progress • The $[n, k, n-k+1]_{q^m}$ rank-metric code C_{k,\mathbf{g},q^m} with generator matrix

$$G = \begin{bmatrix} g_1, & g_2, & \dots, & g_n \\ g_1^{q^1}, & g_2^{q^1}, & \dots, & g_n^{q^1} \\ \vdots & \vdots & \vdots & \vdots \\ g_1^{q^{(k-1)}}, & g_2^{q^{(k-1)}}, & \dots, & g_n^{q^{(k-1)}} \end{bmatrix}$$

where the entries of $\mathbf{g} = [g_1, \dots, g_n] \in \mathbb{F}_{q^m}^n$ are linearly independent over \mathbb{F}_q , is called a Gabidulin code.

- Gabidulin codes are q^m -ary analogues of Reed-Solomon codes that are optimal for the rank metric.
- Used in the first subspace code construction by Koetter and Kschischang; also used in the GPT public-key cryptosystem.

Rank-Metric-Automorphism Group of Gabidulin Codes

Background

Rank-Metric-Automorphism Groups

Equivalence of Matrix Codes

Matrix-Automorphism Groups

Work in Progress

Theorem

Let $k \leq n \leq m$. Let $\mathbf{g} = [g_1, \ldots, g_n] \in \mathbb{F}_{q^m}^n$ have entries that are linearly independent over \mathbb{F}_{q} , and let C_{k,\mathbf{g},q^m} be the Gabidulin code of dimension k generated by \mathbf{g} . Let d be the largest integer such that $\langle g_1, \ldots, g_n \rangle_{\mathbb{F}_q}$ is a vector space over $\mathbb{F}_{q^d} \subseteq \mathbb{F}_{q^m}$. Then

• d divides gcd(n,m).

$$\begin{aligned} \mathbf{A}ut_{RM}(C_{k,\mathbf{g},q^m}) &= \\ \left\{ \left(\alpha, \epsilon_{\mathbf{g}} \left(\left[\beta g_1, \dots, \beta g_n \right] \right)^\top \right) : \alpha \in \mathbb{F}_{q^m}^*, \ \beta \in \mathbb{F}_{q^d}^* \right\}. \end{aligned}$$

Nebraska Lincoln

Equivalence of Matrix Codes

A matrix-equivalence map is an invertible \mathbb{F}_q -linear map $f: \mathbb{F}_q^{n \times m} \to \mathbb{F}_q^{n \times m}$ that preserves rank weight.

Theorem

Rank-Metric-Automorphism Groups

Background

Equivalence of Matrix Codes

Matrix-Automorphism Groups

Work in Progress Let $f \in G_{Mat}(\mathbb{F}_q^{n \times m})$ be a matrix-equivalence map. If $n \neq m$, then there exist $A \in GL_n(\mathbb{F}_q)$, $B \in GL_m(\mathbb{F}_q)$ such that

•
$$f(M) = AMB$$
 for all $M \in \mathbb{F}_q^{n \times m}$

If n = m, then there exist $A, B \in \operatorname{GL}_n(\mathbb{F}_q)$ such that either

•
$$f(M) = AMB$$
 for all $M \in \mathbb{F}_q^{n imes m}$, or

•
$$f(M) = AM^{\top}B$$
 for all $M \in \mathbb{F}_q^{n \times m}$

Note: When $n \neq m$,

 $G_{Mat}(\mathbb{F}_q^{n \times m}) \cong \mathrm{GL}_n(\mathbb{F}_q) \times \mathrm{PGL}_m(\mathbb{F}_q),$

and so we can choose a representative for $f \in G_{Mat}(\mathbb{F}_q^{n \times m})$ of the form (A, B) where $A \in \operatorname{GL}_n(\mathbb{F}_q)$ and $B \in \operatorname{GL}_m(\mathbb{F}_q)_2$, we have $A \in \operatorname{GL}_n(\mathbb{F}_q)$ and $B \in \operatorname{GL}_m(\mathbb{F}_q)_2$.

Matrix-Automorphism Group of Gabidulin Codes

The matrix-automorphism group $Aut_{Mat}(C)$ of a code $C \subseteq \mathbb{F}_q^{n \times m}$ is the set of matrix-equivalence maps that fix C.

Theorem

Equivalence of Matrix Codes

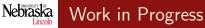
Background Rank-Metric-Automorphism

Groups

Matrix-Automorphism Groups

Work in Progress Let $k \leq n < m$ and $\mathcal{B} = \{b_1, \ldots, b_m\}$ be a basis for \mathbb{F}_{q^m} over \mathbb{F}_q . Let $\mathbf{g} = [g_1, \ldots, g_n] \in \mathbb{F}_{q^m}^n$ have entries that are linearly independent over \mathbb{F}_q , and let $\epsilon_{\mathcal{B}}(C_{k,\mathbf{g},q^m})$ be the matrix expansion of the Gabidulin code of dimension k generated by \mathbf{g} . Let d be maximal such that $\langle g_1, \ldots, g_n \rangle_{\mathbb{F}_q}$ is a vector space over $\mathbb{F}_{q^d} \subseteq \mathbb{F}_{q^m}$. Then d divides $\gcd(n, m)$. Aut_{Mat}($\epsilon_{\mathcal{B}}(C_{k,\mathbf{g},q^m})$) \supseteq

 $\left\{ \left(\epsilon_{\mathbf{g}} \left(\left[\alpha g_1, \dots, \alpha g_n \right] \right), \epsilon_{\mathcal{B}} \left(\left[\beta b_1, \dots, \beta b_m \right] \right) \right) : \alpha \in \mathbb{F}_{q^d}^*, \ \beta \in \mathbb{F}_{q^m}^* \right\}.$



Background

- Rank-Metric-Automorphism Groups
- Equivalence of Matrix Codes
- Matrix-Automorphism Groups
- Work in Progress

- Determine if either the matrix equivalence maps provide better protection against cryptanalysis than the permutation equivalence map currently used in the GPT public-key cryptosystem.
- Use these notions of equivalence to enumerate all inequivalent self-dual matrix codes.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Extend the notion of equivalence to subspace codes and determine the automorphism groups of various families of subspace codes.