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Outline

• Insufficiency of Linear Network Codes

• Entropy Vectors

• Group Network Codes

– Ingleton-violating groups

– partitions and Monte Carlo Markov chain methods
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Network Coding

transmitter

receiver 1 receiver 2

a

a
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b

b
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xx

• combine symbols to improve on the routing capacity

• combining a and b via modulo-2 addition, x = a + b, increases the

capacity to 2 bits (over the 1.5 bits achieved by routing)

• linear network coding: the symbols belong to a finite field and nodes

perform linear operations (Is this sufficient?)
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Matroids

• A matroid M consists of a ground set G and a rank function r(·):

2M → N ∪ {0}, such that

1. r(A) ≤ |A|

2. if A ⊆ B then r(A) ≤ r(B)

3. r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B) (submodularity)

• this generalizes the notion of rank for vector spaces

• if the ground set can be considered as a set of vectors over a finite

field, with the usual rank function, the matrix is called representable

• not all matroids are representable

• the connection to linear network codes comes from the fact that the

entropy of any collection of random variables is simply the rank of

the matrix relating the variables to the (independent) sources
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The Fano Matroid

a
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d e
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g

The Fano matroid has a representation only over GF (2)

A7 =

a b c d e f g
2
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The Fano Network

a

b c

d e

f

g

a b c

d f

e

g

wants c wants b wants a

• The sources are a, b, c and the sinks require c, b, a, respectively

• Links are unit capacity

• What is the maximum rate?
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The Fano Network Solution

a

b c

d e

f

g

a b c

d f

e

g

wants c wants b wants a

d = a + b , f = b + c , e = d + f = a + c , g = d + c = a + b + c

• Therefore the capacity is 3

• The network only has a solution on GF (2)
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The Non-Fano Matroid

a

b c

d e

f

g

The Non-Fano matroid has a representation over every field except

GF (2)

B7 =

a b c d e f g
2
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The Non-Fano Network

a

b c

d e

f

g

a b c

wants c wants b wants a

d g f

e

• The sources are a, b, c and the sinks require c, b, a, respectively

• Links are unit capacity

• What is the maximum rate?
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The Non-Fano Network Solution

a

b c

d e

f

g

a b c

wants c wants b wants a

d g f

e

d = a + b , e = a + c , f = b + c , g = a + b + c

• Therefore the capacity is 4

• The network only has a solution except on GF (2)
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A Network with No Linear Solution

wants c wants b wants a

a b c

d

e

f

g

h k j

i

wants awants bwants c

• This network has no linear coding solution with capacity 7

• The linear network coding capacity can be shown to be 70
11

< 7
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Capacity is 7

wants c wants b wants a

a b c

d

e

f

g

h k j

i

wants awants bwants c

• View a, b, c, d, e, f, g on the LHS as elements of GF (2)n and

a, b, c, h, i, j, k on the RHS as elements of GF (2n + 1), such that

d = a ⊕ b , f = b ⊕ c , e = d ⊕ f = a ⊕ c , g = d ⊕ c = a ⊕ b ⊕ c

h = a + b , i = a + c , j = b + c , k = a + b + c

• The resulting capacity is 7 n
log(2n+1)

≈ 7(1 − 1
n
2−n)
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Insufficiency of Linear Network Codes

• The above example (inspired by Dougherty, Freiling and Zeger)

shows that linear network codes cannot achieve the capacity region

of general wired networks

• This means we need nonlinear network codes

• Question: Is there a certain class of codes, or a certain structure,

that we can consider, or do we need to consider all nonlinear codes?
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Matroid Representations

• Unfortunately, determining whether a general matroid is

representable is a classical open problem in matroid theory

• However, the question of whether a matroid is binary representable

has a relatively simple answer

– the matroid must have no 4-element minor such that all pairs are

independent and all triples dependent—see matrix below
2

4

1 0 1 ?

0 1 1 ?

3

5

• Similar, albeit more complicated, conditions exist for ternary and

quaternary matroids.

• One can use these results to develop a linear programming approach

to the design of optimal linear network codes over GF (2), GF (3)

and GF (4) (the topic of another talk....)
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A Generic Network Problem

Consider the following acyclic discrete memory-less network and assume

that each source needs to transmit to its corresponding destination at

rate Ri, i = 1, 2, . . . , m:

-

-

-

-

-

-

S1

S2

Sm

X1

X2

Xm

Network

It is not terribly hard to show that (cf. Ahlswede) the rate region for

reliable communication is

R = cl



Ri, i = 1, . . . , m | Ri <
1

T

“

H(XT
i ) − H(XT

i |ST
i )

”

ff

as T → ∞
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Equivalently, if we are interested in optimizing a certain linear

combination of the rates, we must solve

lim
T→∞

sup
p(ST

i ) and network operations

m
X

i=1

αi

1

T

“

H(XT
i ) − H(XT

i |ST
i )

”

This problem is notoriously difficult, since

• it is infinite-dimensional (what is called an infinite-letter

characterization)

• for any T , the problem is highly non-convex in the p(ST
i ) and the

“network operations”

Ergo: No one does it this way!
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Entropy Vectors

Consider n discrete random variables with alphabet-size N . For any set

S ⊆ {1, . . . , n}, we have the normalized entropy hS = 1
log N

H(Xi, i ∈ S).

The 2n − 1 dimensional vector obtained from these entropies, is called an

entropy vector.

Conversely, any 2n − 1 dimensional vector which can be regarded as the

entropy vector of some collection of n random variables, for some value

of N , is called entropic.

The space of entropic vectors is denoted by Γ∗
n.

Theorem 1 The closure of the space of entropic vectors, Γ̄∗
n is compact

and convex.
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Networks and Entropy

But what does all this say about our network problem?

Well, networks put two types of constraints on entropy vectors:

1. topological constraints

2. channel constraints
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Convex Formulation of the Network Problem

Theorem 2 The problem of determining the capacity of an acyclic,

memoryless wired network can be reduced to the optimization problem

max

m
X

i=1

αi (h(Xi) + h(Si) − h(Xi, Si)) ,

subject to h ∈ Γ̄∗
n and

• h(S1, . . . , Sm) =
Pm

i=1 h(Si), for sources

• h(Xout,XIn) − h(XIn) = 0, for topological constraints

• h(Xi) ≤ Ci, for channel constraints

Thus, by going to the space of entropy vectors, we have circumvented

both the infinite-letter characterization problem, as well as the

non-convexity.
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• Network information theory for wired networks is essentially the

problem of characterizing Γ̄∗
n.

Unfortunately, a characterization of Γ̄∗
n for n ≥ 4 is open.
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Entropy and Matroids

• A (poly)matroid is a set of objects along with a rank function that

satisfies submodularity

• Entropy satisfies submodularity and therefore defines a polymatroid

H(A ∪ B) + H(A ∩ B) ≤ H(A) + H(B)

• However, not all matroids are entropic

• A matroid is called representable if it can be represented by a

collection of vectors over some (finite) field

• All representable matroids are entropic, but not all entropic

matroids are representable

• When a matroid is representable, the corresponding network

problem has an optimal solution which is a linear network code

(over the field which represents the matroid)
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Entropy and Groups

Given a finite group G, and G1, . . . , Gn of its subgroups, the

2n − 1-dimensional vector whose components are

vS = log
|G|

| ∩α∈S Gα|
.

for all S ⊆ {1, . . . , n}, is entropic.

Theorem 3 (Chan and Yeung) Conversely, any entropic vector for

some collection of n random variables, can be approached to desired

accuracy, by some finite group and n of its subgroups
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Abelian Groups and the Ingleton Inequality

One may ask what types of groups are needed to characterize Γ̄∗
n? Here

is an important result.

Theorem 4 (Chan) If G is an Abelian group, then the resulting

entropy vectors satisfy the Ingleton bound

hij + hik + hil + hjk + hjl ≥ hijk + hijl + hkl + hi + hj .

The Ingleton bound was first discovered in the context of representable

matroids.

It is known that entropy can violate the Ingleton bound and so

Abelian groups are not sufficient.

Linear network codes form an Abelian group, which is again why they

are insufficient.
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Codes from Non-Abelian Groups

ab ba

a b
If a and b are chosen from a non-Abelian group, one may be able to infer

more about them from ab and ba.

a b

aba ba
2

a
2

b

There is also a larger set of signals that one may transmit.

24



'

&

$

%

Group Network Codes

• choose a finite group G

• each edge in the network corresponds to a subgroup Gi of G

• the symbols transmitted on this edge are the cosets induced by Gi

– we therefore require

log
|G|

|Gi|
≤ Ci

• if G1 and G2 are input to a node whose output is G3, we require

that G3 ⊇ G1 ∩ G2

– this determines the input-output mapping at this node, since any

two cosets of G1 and G2 will uniquely identify a coset in G3

G1

G2

G3
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But what Kind of Groups to Use?

• We know we need non-Abelian groups

• But not all non-Abelian groups are stronger than linear network

codes

• Let us search for non-Abelian groups that violate the Ingleton bound
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The Group PGL(2, p)

(2,3) (1,3)(2,4) (1,4) (1,2)(3,4)

(1,2,4,3)

1

(1,4)(2,3)

(1,3,4,2)

(1,2,4,3) (1
,2,

5,4
)

(1,5,2,3)(1,3,2,5)

(1,2)(3,5)

(1,2,5,4)

(1,3,5,2,4) (1,4,2,5,3)

(1,2,3,4,5) (1,5,4,3,2)

(1,5,3,4)

(1,4,3,5)

(2,4,5,3)

(2,3,5,4)
1

1

(1,5) (1,4)(2,5) (2,4)

(1,4,5,2)

(1,5)(2,4)

(3,4,5) (3,5,4)

1

(1,2)(3,5)

(1,3)(4,5)(2,5)(3,4)

(1,5,)(2,4)(1,4)(2,3)

(1,2)(4,5)

(1,2)(3,4) (1,2)(4,5)

$G_1$

$G_4$$G_3$

$G_2$

(1
,4,

5,2
)(1,3,4,2)

• We have found the smallest Ingleton-violating group to be the

projective linear group PGL(2, 5) with 120 elements

• Its generalizations, PGL(2, p), for p ≥ 5, all violate Ingleton, as does

the general linear group GL(2, p).
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• Good news: in some sense, these are the simplest non-Abelian

groups. Bad news: subgroups are hard to characterize

• Have also looked at solvable groups. These are stronger than linear

network codes, though we have not found ones that violate Ingleton.

Their subgroups are easier to characterize.

While this may be somewhat encouraging, we are still a ways from

constructing good group codes. Is there anything else we can do?

28



'

&

$

%

Where is This All Coming From?

Ans: Stat Mech and Typical Sequences

• Suppose we have T particles that can be in one of N states with

probability pi, i = 1, 2, . . . , N .

• Then the typical micro-states will be those for which

Ti = Tpi.

• The entropy is simply the log of the number of microstates

log
T !

T1!T2! . . . TN !
, Ti = Tpi,

N
X

i=1

Ti = T.

One can think of the numerator as the size of the symmetric group ST of

T elements and the denominator as the size of a certain subgroup of ST .
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Entropy and Partitions

1 2 3

2’ 3’1’
8

<

:

T1 = 3 , T2 = 4 , T3 = 2

h1 = log 9!
3!4!2!

= log 1260 = 10.3bits

8

<

:

T1′ = 4 , T2′ = 2 , T3′ = 3

h2 = log 9!
4!2!3!

= log 1260 = 10.3bits

8

<

:

T11′ = 3 , T21′ = 1 , T22′ = 2 , T23′ = 1 , T33′ = 2

h12 = log 9!
3!1!2!1!2!

= log 15120 = 13.9bits
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Staking Out the Entropy Region

• Take a set of size T and for each random variable partition it into N

sets

• The entropies and joint entropies can be computed from the

partitions and their various intersections

• By making local changes to the partitions, we can move from one

entropy vector to the next

• As T and N grow, one can stake out the entire entropic region to

desired accuracy

• This idea can be used to perform random walks on entropy vectors

and thereby MCMC methods for entropy optimization
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Maximizing the Ingleton Bound via MCMC

I = hij + hik + hil + hjk + hjl − hkl − hijk − hijl − hi − hj

0 500 1000 1500 2000 2500 3000 3500 4000
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025
Ingleton violation index vs. MCMC iteration, θ = 50,000, N = 2

vi
ol

at
io

n 
in

de
x

iteration

Figure 1: I < 0 is the Ingleton bound. Maximizing it with T = 100

and N = 2 using Monte Carlo Markov chain simulation achieved

.025. The best prior Ingleton-bound violating instance was .0072.
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Optimizing Information Flow in Networks

The same optimization can be done in networks, provided we respect the

network topology.

G1, P1

G2, P2

G3, P3

G3 ⊇ G1 ∩ G2 , P3 ⊆ P1 ∩ P2

• For example, the sum rate can be optimized in a distributed fashion

• Each edge randomly changes its partition based on information

received by the sinks
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Example - The Vamos Network

abcd

ab
w

x bc

ycd

z

aabcad

bcd
d

wants b wants a wants bc wants d wants c

• Constructed from the Vamos matroid—thesmallest

non-representable matroid—8 elements and U(2, 4) and F7 minors

• Maximum rate unknown; known to be less than 60
11
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• Dougherty et al give a six-dimensional linear vector solution with

capacity 5.

• However, using an MCMC method, we have been able to find a

nonlinear binary solution with capacity 5 (here the search space has

size 1012)
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Vamos capacity vs. MCMC iteration

su
m
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e

iteration
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Non-Pappus Matroid and Network

Figure 2: Another example of a nonrepresentable matroid.

The capacity of the corresponding network is unknown.
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scalar nonlinear search − alphabet size = 2

Figure 3: Nonlinear code N = 2, C = 0.6667.
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Figure 4: Nonlinear code N = 3, C = 0.8228.
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Figure 5: Linear code N = 2, C = 0.6667.
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Figure 6: Linear code N = 3, C = 0.6667.
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Conclusion

• Showed that linear network codes are insufficient for achieving the

capacity of general wired networks

• Used the connection to entropic vectors to show that one needs

group network codes to achieve capacity

– each edge corresponds to a subgroup; symbols are cosets; outputs

should be supergroups of the intersection of input groups

• Identified the smallest Ingleton-bound-violating group, PGL(2, 5).

– the projective and general linear groups are all stronger than

linear network codes

• Developed a distributed MCMC method (via random walks over

partitions) for the design of optimal linear and nonlinear codes over

small alphabet sizes
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