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Motivation

@ We want to recover a k-sparse signal = € R,
@ Given n < N linear and noisy measurements y = Az + e.

o If A has the RIP with 6, < v/2 =1 0r §(qq1)r < %57,a > 1,

Definition: Restricted Isometry Property (RIP)

The RIP constant 4y, is defined as the smallest constant such that Vz € ©f

(1= d)ll=ll3 < [[Az]l3 < (1 + 6i)ll=]]3,
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Motivation

@ We want to recover a k-sparse signal = € R,
@ Given n < N linear and noisy measurements y = Az + e.

o If A has the RIP with 6, < /2 —1 0r 11y, < %57,a > 1, then

£1-minimization recovers a stable and robust approximation x* of x.

Constrained /;-minimization

Implications
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o min flull subject to [Au—yll2 <lell2, kS n/log(N/n)
ue

o [|lz* — all2 < Collell3 + C1k~/? ||z — willx
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@ Given n < N linear and noisy measurements y = Az + e.

o If A has the RIP with 6, < /2 —1 0r 11y, < %57,a > 1, then
£1-minimization recovers a stable and robust approximation x* of x.

@ Suppose k,n and N are such that ¢;-minimization fails to recover z,

Failed recovery and prior information

e Eg. when k > k ~ n/log(N/n)
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Motivation

@ We want to recover a k-sparse signal = € R,
@ Given n < N linear and noisy measurements y = Az + e.

o If A has the RIP with 6, < /2 —1 0r 11y, < %57,a > 1, then
£1-minimization recovers a stable and robust approximation x* of x.

@ Suppose k,n and N are such that ¢;-minimization fails to recover z,

and we have prior information on the support of z.

Failed recovery and prior information

e Eg. when k > k ~ n/log(N/n)

o Eg. indices 1, 3, and 6 are non-zero.
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Motivation

e We want to recover a k-sparse signal z € R,
@ Given n < N linear and noisy measurements y = Ax + e.

o If A has the RIP with dy;, < v/2 — 1 or Oat1)k < Z—ﬂ,a > 1, then

£1-minimization recovers a stable and robust approximation x* of x.
@ Suppose k,n and N are such that ¢;-minimization fails to recover z,
and we have prior information on the support of z.

@ How do we incorporate this knowledge in the recovery algorithm while
keeping the measurement process non-adaptive?
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Signals with Prior Information

@ In many applications, it is possible to draw an estimate of the support of
the signal, for example:
o Natural images have large DCT coefficients that are localized in the low
frequency subbands.
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frequency subbands.
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o Video sequences are temporally correlated, resulting in a shared subset of
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Signals with Prior Information

@ In many applications, it is possible to draw an estimate of the support of

the signal, for example:
o Natural images have large DCT coefficients that are localized in the low

frequency subbands.
o Video sequences are temporally correlated, resulting in a shared subset of

their support.
o Other signals such as seismic data, ...
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Signals with Prior Information

@ In many applications, it is possible to draw an estimate of the support of
the signal, for example:
o Natural images have large DCT coefficients that are localized in the low

frequency subbands.
o Video sequences are temporally correlated, resulting in a shared subset of

their support.
o Other signals such as seismic data, ...
@ But, the ¢; minimization formulation is non-adaptive, i.e., aside from
sparsity, no prior information on x is used in the recovery.
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@ Suppose that = is a k-sparse signal supported on an unknown set Tj.
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o Let 7 be a known support estimate that is partially accurate.
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Problem Setup

@ Suppose that = is a k-sparse signal supported on an unknown set Tj.
o Let 7 be a known support estimate that is partially accurate.
o We want to:

@ Recover = by incorporating T in the recovery algorithm. _
@ Obtain recovery guarantees based on the size and accuracy of T.
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Problem Setup

@ Suppose that = is a k-sparse signal supported on an unknown set Tj.

o Let 7 be a known support estimate that is partially accurate.
o We want to:

@ Recover = by incorporating T in the recovery algorithm. _
@ Obtain recovery guarantees based on the size and accuracy of T.

@ Our approach: weighted ¢; minimization.
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Weighted ¢; Minimization
Given a set of measurements y, solve
, , 1, ieT,
min ||z||1,w subject to ||[Az —y|l2 < e with w; = 2 ~
T w, 1€ T.

where 0 < w < 1 and ||z[j1w = >, wilzil, [le]|3 <e.
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Contributions

@ We adopt weighted £; minimization and derive stability and robustness
guarantees for the recovery of a signal x with partial support estimate 7.
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o weaker RIP conditions
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@ We adopt weighted £; minimization and derive stability and robustness
guarantees for the recovery of a signal x with partial support estimate 7.

o We show that if at least 50% of T is accurate, then weighted ¢,
minimization guarantees recovery with

o weaker RIP conditions
o smaller recovery error bounds.
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Contributions

@ We adopt weighted £; minimization and derive stability and robustness
guarantees for the recovery of a signal x with partial support estimate 7.
o We show that if at least 50% of T is accurate, then weighted ¢,
minimization guarantees recovery with
o weaker RIP conditions
o smaller recovery error bounds.
@ We demonstrate through extensive experiments that assigning weights
0 <w < 1 on T results in the best reconstruction performance, especially if
x is compressible.
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Related Work

@ Borries et al. '07: empirically demonstrate that z is recoverable with s
fewer measurements by setting w = 0 on a known subset of the support of
size s.
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Related Work

Borries et al. '07: empirically demonstrate that x is recoverable with s
fewer measurements by setting w = 0 on a known subset of the support of
size s.

Khajehnejad et al. '09: find a class of signals z, defined by a probabilistic
model on sparsity and by the weight vector, that can be recovered with
high probability using weighted ¢; minimization.

Vaswani et al. '10: propose weighted /; minimization with zero weights
and find weaker sufficient recovery conditions in the noise-free case.

L. Jacques '10: extended Vaswani et al.'s work to the noisy measurement
vector case.
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Weighted ¢; Minimization

Find the vector x from a set of measurements y using the support estimate T
by solving

1, ieTe,

min ||z subject to [|[Az —y|l2 <€ with w; = T
@ w, 1€T.

where 0 < w < 1 and ||z1w =D, wi|x;l.
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Stability and Robustness

o Let x be in RY and let , be its best k-term approximation, supported on
To.
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Stability and Robustness

o Let x be in RY and let , be its best k-term approximation, supported on

Tp.
o Let |T| = pk and define o = 'TlﬁTTO', and 0 <w < 1.
T$
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Stability and Robustness

o Let x be in RY and let , be its best k-term approximation, supported on
To.

o Let |f| = pk and define a = @T%Ol and 0 < w < 1.

Theorem (Main Result)

Suppose there exists an a € %Z, with a > (1 — a)p, a > 1, and that A satisfies
dak + a¥S(arnyr < ay— 1.
Then the solution z* to the weighted ¢; problem obeys

lo* = zll2 < Che + CLE™2 (wllazglly + (1 = w)llgengelh ) -

1
w+(1—w)+/ 1+p72ap)2

07:(

12/32



Introduction Weighted £7 Minimization Experimental Results
(e} 000000800 00000

Sufficient Recovery Condition

It is sufficient to have:
a—(w+(1-w)vTFp—2ap)°
at(wt+(1-w)VIFp—2ap)"

@ O(atrk < 5@ =
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Sufficient Recovery Condition

It is sufficient to have:
2
Sw) . a—(w+(1-w)vITFp—2ap)
@ J(ay1yp <O ot (ot (1—)VTFr=Za7)’

° 5(a+1)k < 6 = Z—H
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Sufficient Recovery Condition

It is sufficient to have:

] 5(a+1)k < 3(“’)

o 6(a+1)k < NON

Restricted Isometry Constant (RIC)

a—(w+(1-w)vTFp—2ap)°

at(wt+(1-w)VIFp—2ap)"

__ a—1
a+1
0.95 . . . . . . . . .
Y —©S—a=01
09f T —8—a=03[]
\ a=05
0.85¢ 46— a=07]]
—7— a=0.
08l a=09
075t 1
07 1
0.65 — 1
,B/B(
0.6 o —57 1
L
0.58f —
05 1
045 . . . . . . . . .
01 02 03 04 05 06 07 08 09 1

Weights (w)
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Sufficient Recovery Condition

It is sufficient to have:
a—(wt+(1—w)yIFp—2ap)

) .=
® datir < O = ) Vi 5an)

o 6(a+1)k < 6 = Zi—ﬂ

o Take for example: §1) = 0.6667, and w = 0.5, p = 1,
o if & = 0.7, then §¢) = 0.7279.
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Sufficient Recovery Condition

It is sufficient to have:
a—(wt+(1—w)yIFp—2ap)

) .=
® datir < O = ) Vi 5an)

o 6(a+1)k < 6 = Zi—ﬂ

o Take for example: §1) = 0.6667, and w = 0.5, p = 1,

o if = 0.7, then ') = 0.7279.
o if @ = 0.3, then §“) = 0.6151.
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Error Bound Constants

Measurement noise constant C{:
o Cl— 2(14 (w4 (1 —w)yT+p—_2ap) /\a)
V1= 0@k — wu_m\\//alﬂ_mpv 1+ Oar
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Error Bound Constants

Measurement noise constant C{:
2(1+ (w+ (1 —w)VIT+p—2ap) /Va)
V1= 0@k — wu_m\\//alﬂ_mpv 1+ Oar

o Cl=

OCO

2(1+1/+/a)

V1= 0tk — ﬁ\/l + Oak
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Error Bound Constants
Measurement noise constant C{:
o 2(1+ (w+ (1 —w)VIT+p—2ap) /Va)
° L= wt(1—w)/Ifp—2ap
V1I=0@rnr — Ve V14 0k

oo 2041/a)
V1= 0@k — ﬁ\/l + dak

@ Take for example: Cy = 5.6048, and w = 0.5, p =1,
o if  =0.7, then C{) = 4.9178.
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Error Bound Constants
Measurement noise constant C{:
o 2(1+ (w+ (1 —w)VIT+p—2ap) /Va)
° L= wt(1—w)/Ifp—2ap
V1I=0@rnr — Ve V14 0k

o Oy = 2(1+1/v/a)
V1 =0tk — VI + dak

@ Take for example: Cy = 5.6048, and w = 0.5, p =1,

o if  =0.7, then C{) = 4.9178.
o if @ = 0.3, then C)) = 6.2734.
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Error Bound Constants
Signal compressibility constant C1:
2072 (\/T=8(ar1)k + VI + Oak)
T Oaray — Hm o gy

e C] =
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Error Bound Constants
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Error Bound Constants

Signal compressibility constant C1:
202 (/T = 8(ar1)k + VI + dak)

VT = Oary — HO=lme2an T
0 C) = 20~ "2 (/T = Sasry + VI + dar)

V1= 0k = zVI+ dan

o Take for example: C; = 3.4629, and w = 0.5, p =1,
o if a = 0.7, then C7] = 3.1480.
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Error Bound Constants

Signal compressibility constant C1:
202 (/T = 8(ar1)k + VI + dak)

VT = Oary — HO=lme2an T
0 C) = 20~ "2 (/T = Sasry + VI + dar)

V1= 0k = zVI+ dan

o Take for example: C; = 3.4629, and w = 0.5, p =1,

o if a = 0.7, then C7] = 3.1480.
o if a = 0.3, then C! = 3.7693.
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Recovery of Sparse Signals

@ SNR averaged over 20 experiments for k-sparse signals = with £ = 40, and
N = 500.
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Recovery of Sparse Signals

@ SNR averaged over 20 experiments for k-sparse signals = with & = 40, and
N = 500.

@ The noise free case:

@=03
160 : : : . .
140 —&—0=0 1
—S—a=03
—S—a=05
120 —
e a=07
—e— =1
100 —
z £ @ 4
& &
&0 —
4 —
x —
q . . . . . d . . . .
%0 100 120 140 160 180 20 5 00 20 140 180 160 200
number of measurements n number of measurements n
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Recovery of Sparse Signals

@ SNR averaged over 20 experiments for k-sparse signals = with & = 40, and
N = 500.

@ The noisy measurement vector case

o =07 o=03

L L L L L 0 L L L L L
80 100 120 140 160 180 200 B0 100 120 140 160 180 200
number of measurements n number of measurements n
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Recovery of Compressible Signals

@ SNR averaged over 10 experiments for signals x whose coefficients decay
like 7P where j € {1,..N} and p = 1.5. We take n = 100 and N = 500.
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Recovery of Compressible Signals

@ SNR averaged over 10 experiments for signals x whose coefficients decay
like 7P where j € {1,..N} and p = 1.5. We take n = 100 and N = 500.

@ The noise free case:
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Recovery of Compressible Signals

@ SNR averaged over 10 experiments for signals x whose coefficients decay
like 7P where j € {1,..N} and p = 1.5. We take n = 100 and N = 500.

@ The noisy measurement vector case

=07 =03

SNR

7 L L L L L L L 168 L L L L L L L
] 10 12 14 16 18 20 2 24 8 1n 12 14 16 18 20 2 24

Support estimate size Support estimate size
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Discussion

@ Intermediate values of the weight w = 0.5 result in the highest SNR even
when a < 0.5.
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@ Intermediate values of the weight w = 0.5 result in the highest SNR even
when a < 0.5.

@ Recall the recovery error bound

lz* — 2 < Ch(w)e + C(w)k~/? (WIIxTOcIIl + (1= w2 geqr;
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Discussion

@ Intermediate values of the weight w =~ 0.5 result in the highest SNR even
when o < 0.5.

@ Recall the recovery error bound

lz* — 2 < Ch(w)e + C(w)k~/? (WIIxTOcIIl + (1= w2 geqr;

).

@ As w goes to zero,

o the constant C](w) increases
o the term wlzrg |1 + (1 - W)foﬂmT(‘)iHl decreases

@ There exists 0 < w < 1 that minimizes their product.
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Video Compressed Sensing Example

@ A video sequence is a collection of images acquired at periodic instances in
time.
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Video Compressed Sensing Example
@ A video sequence is a collection of images acquired at periodic instances in
time.

@ For each video frame j, collect n; CCD readings sampled randomly from

the CCD array.

L~
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Video Compressed Sensing Example

@ A video sequence is a collection of images acquired at periodic instances in
time.

@ For each video frame j, collect n; CCD readings sampled randomly from
the CCD array.

o Use weighted ¢; minimization to recover x; with JN“J =V, 10UV, .

S

‘ min, ||x|]; s.t. Ax =1y, H__‘ ming||x|lyy s.t. Ax =y, ’_@,
Vo

A

minglxllyy st Ax=y,
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Video Compressed Sensing Results

e ng=N/2, nj=N/22forj=1,2,...
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Some Implications

@ Weighted /1 minimization can recover less sparse signals than standard /;
when enough prior information is available.
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Some Implications

Weighted ¢; minimization can recover less sparse signals than standard ¢,
when enough prior information is available.

We showed that the recovery is stable and robust.

We also showed that if at least 50% of the support estimate is accurate,
then the recovery is guaranteed with weaker RIP conditions and
smaller error bounds.
Some questions:
o How/when can we find the support estimate 17
o Can we draw a more accurate 7" after solving the weighted ¢; minimization

problem?
e How would an iterative weighted ¢; algorithm with fixed weights perform?
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Work in Progress - Partial Support Recovery (1)

Let z € RY be k-sparse and suppose the measurement matrix A is such that ¢;
minimization cannot recover .
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Let z € RY be k-sparse and suppose the measurement matrix A is such that ¢;
minimization cannot recover .

o If for some ko < k, A has 044 1)k, < %
@ And if = decays such that there exists an sg < kg where
|z(s0)| = (mo + Dllzrglli, To = supp(z|k,)
@ Then
supp(zs,) € supp(zgl,),

where x( is the solution to the ¢; minimization problem.
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Work in Progress - Partial Support Recovery (2)

Let z € RY be k-sparse and suppose the measurement matrix A is such that ¢;
minimization cannot recover .

e For some kg < k; < k, denote by T} = supp(z|x,) and T} = supp(zi |, )
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Work in Progress - Partial Support Recovery (2)

Let z € RY be k-sparse and suppose the measurement matrix A is such that ¢;
minimization cannot recover .

o For some ko < ki < k, denote by T = supp(z|g, ) and T, = supp(z§|x,)
o If A has
a— (w4 (1—w)/1+p-—2ap)
Oat1)ks < ;
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where0<w<1,a:%, andp:|T1\
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Work in Progress - Partial Support Recovery (2)

Let z € RY be k-sparse and suppose the measurement matrix A is such that ¢;
minimization cannot recover .

o For some ko < ki < k, denote by Ty = supp(z|z,) and T1 = supp(z|x, )

o If A has
5 <a—(w+(1—w)\/1+p—2ap)
etk ™ T w+ (1 —w) /It p-2ap)

whereO<w<1,a:‘T1Tﬂ, andp:|T1\

[T

@ And if = decays such that there exists an s; < ki where
lz(s1)] 2 m(wllzzellh + A = w)l[wgeqzell) + [lzrell

@ Then
supp(x|s,) € supp(«7|x, ),

where 7 is the solution to the weighted ¢; minimization problem with
support estimate 77 .
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Work in Progress - Partial Support Recovery (3)

Let z € RY be k-sparse and suppose the measurement matrix A is such that ¢;
minimization cannot recover .

o If > 0.5 and w < 1, then s1 > sy.
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Work in Progress - Partial Support Recovery (3)

Let z € RY be k-sparse and suppose the measurement matrix A is such that ¢;
minimization cannot recover .

o If > 0.5 and w < 1, then 51 > sg.

@ Assuming x decays according to weak ¢, the above condition requires
p =3

@ More conditions on signal decay are required to ensure s; > sg.

@ The derived conditions are very pessimistic compared to the experimental
results!

o But what if we keep iterating?
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lterative weighted ¢; algorithm (work in progress)

@ Solve an initial £; minimization problem to obtain a support estimate.
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lterative weighted ¢; algorithm (work in progress)

@ Solve an initial £; minimization problem to obtain a support estimate.

@ Solve weighted /1 minimization with weight equal to 0.5 on the previous
support estimate.

© Obtain a new support estimate.

@ Solve weighted ¢; minimization with

e weight equal to 0 on the intersection of the two support estimates
e weight equal to 0.5 on the new support estimate.

@ lterate until convergence.
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000000000 00000

lterative weighted ¢; algorithm (work in progress)

Input b = Ax

Output z(*)

Initialize p = 0.99, k = nlog(N/n)/2, wi = 0.5, wy = 0,
T=0T,=0 Q=0
1=0,t=0,59=02%=0

while ||z — 2=, < Tol||z!~ ||, do

t=t+1

W=1

Q = supp(z =V )
To =T N

W, = w1, Wr, = ws

+® = argmin ||ul|; w s.t. Au=b
u

[ =min|A] st [l2[l2 > plle @]

s = min{l, k}
Ty = supp(zV],)
end while
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lterative weighted ¢; algorithm (work in progress)
N = 1000
AN =110, N=1000 HN= 115 HIN =14
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lterative weighted ¢; algorithm (work in progress)
N = 2000
AN =110, N=2000 HN= 115 HIN =14
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Conclusion

@ It is not necessary to apply weights inversely proportional to the coefficient
magnitude of the signal.
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@ It is not necessary to apply weights inversely proportional to the coefficient
magnitude of the signal.

@ Signal classes are very strict, experiments indicate more general classes are
available.
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Conclusion

@ It is not necessary to apply weights inversely proportional to the coefficient
magnitude of the signal.

@ Signal classes are very strict, experiments indicate more general classes are
available.

@ Consider compressible signals and noisy measurements.
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Thank you!
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