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Schemes for ultrafast laser control

Frequency-domain approach: Two-pathway interference

Time-domain approach: Pump-dump, STIRAP

Optimal design approach: Optimal control theory, leaning
control

C. Brif, R. Chakrabarti and H. Rabitz, “Control of quantum phenomena:

past, present and future”, New J. Phys. 12 075008, 2010.
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Achievements

Optimization is supposed to be hard due to

Limited bandwidth and severe noise in shaped pulses;

A large number of control parameters.

What have been reported:

> 1000 excellent simulation results (since 1985);

∼ 150 successful close-loop experiments (since 1998).

Observations:

dramatic enhancement of the system yield;

robust solutions to noises exist.
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Achievements

Optimization is supposed to be hard due to

Limited bandwidth and severe noise in shaped pulses;

A large number of control parameters.

What have been reported:

> 1000 excellent simulation results (since 1985);

∼ 150 successful close-loop experiments (since 1998).

Observations:

dramatic enhancement of the system yield;

robust solutions to noises exist.

Why is it easy to find a good quantum control?
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Quantum Control Landscape: basic concepts

Definition: the graph of the mapping
from the control variables to the cost
functional.

H. Rabitz, M. Hsieh and C. Rosenthal,
Science, 303: 1998-2001, 2004;

R. Chakrabarti, H. Rabitz. Quantum

control landscapes. Int. Rev. Phys. Chem.,

26(4), 2007, 671 - 735.
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Quantum Control Landscape: basic concepts

Definition: the graph of the mapping
from the control variables to the cost
functional.

H. Rabitz, M. Hsieh and C. Rosenthal,
Science, 303: 1998-2001, 2004;

R. Chakrabarti, H. Rabitz. Quantum

control landscapes. Int. Rev. Phys. Chem.,

26(4), 2007, 671 - 735.

Critical topology: the topology of the set of critical points.

Distribution of candidate solutions — algorithmic efficiency.

Multiplicity of optimal solution set — robustness.
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What we like...
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What we dislike...
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Control landscape for Observable Preparation

Schrödinger equation for an N-level closed quantum system:

∂

∂t
ρ(t) =

1

i!

[

H0 − ε(t)µ, ρ(t)
]

, ρ(t0) = ρ0.

where ε(·) is the control field. Consider the maximization of 〈O〉 at
t = T :

J[ε(·)] = Tr{ρ[T ; ε(·)]O}, ε(·) admissible,

In principle, what does the landscape look like under unlimited
control resources?
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Control landscape at a coarse-grained scale

Projection from the dynamical control landscape

J[ε(·)] = Tr{ρ[T ; ε(·)]O}, ε(·) admissible

onto the kinematic control landscapes:

J(ρ) = Tr(ρO), ρ achievable.

J(U) = Tr(Uρ0U
†O), U achievable.

where U is the propagator at t = T .
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Control landscape at a coarse-grained scale

Projection from the dynamical control landscape

J[ε(·)] = Tr{ρ[T ; ε(·)]O}, ε(·) admissible

onto the kinematic control landscapes:

J(ρ) = Tr(ρO), ρ achievable.

J(U) = Tr(Uρ0U
†O), U achievable.

where U is the propagator at t = T . In the case that the system is
controllable

J(U) = Tr(Uρ0U
†O), U ∈ U(N).
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Question

Dynamical control landscape

high-dimensional and highly nonlinear.

Kinematic control landscape

lower-dimensional and linear/quadratic.

What can be learned about the dynamical landscape from the
kinematic one?
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Landscape Reduction

Suppose that ε(·) is a critical point of J(ε(·)):

δJ [δε(·)] = 〈∇J(U(T )), δU(T )〉 ≡ 0, ∀ δε(·).

If δε(·) )→ δU(T ) is surjective (i.e., ε(·) is regular), then δJ ≡ 0
.iff. ∇J(U(T )) = 0,

ε(·) is critical .iff. U(T ) is critical;

Moreover, ε(·) is max. (min., saddle) .iff. U(T ) is max.
(min., saddle).

Conclusion: critical topology preserved from the dynamical to the
kinematic picture if all admissible controls are regular.
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Conditions for kinematic landscape critical points

Take the parametrization U → Ue isA in U(N) for any A† = A and
take the derivative of J:

dJ

ds

∣

∣

∣

s=0
= Tr(iA[Uρ0U

†,O]) = 0, ∀A† = A.

Critical Condition: [Uρ0U†
,O] = 0.

In particular, when ρ and O are nondegenerate, the critical U
simultaneously diagonalizes ρ(T ) and O. a

aH. Rabitz, M. Hsieh, C. Rosenthal, J. Chem. Phys., 124, 204107
(2006).
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Only one local maximum submanifold;
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Further Hessian analysis shows that:

Only one local maximum submanifold;

One minimum and a number (< N!) of saddle submanifolds;

Degeneracies in ρ0 and O lead to fewer and larger critical
submanifolds. (R. Wu, H. Rabitz and M. Hsieh, J. Phys. A., 41,

015006, 2008)
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Critical topology of kinematic control landscapes

Further Hessian analysis shows that:

Only one local maximum submanifold;

One minimum and a number (< N!) of saddle submanifolds;

Degeneracies in ρ0 and O lead to fewer and larger critical
submanifolds. (R. Wu, H. Rabitz and M. Hsieh, J. Phys. A., 41,

015006, 2008)

Conclusion:

no false traps (local suboptima) exist to impede the search
for optimal controls;

Robustness of optimal controls on the “flat top” (maximum
submanifold).
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Control landscape for unitary gate fidelity

Fidelity defined as the distance from a desired quantum gate:

J(U) = ‖U −W ‖2 = 2N − 2ReTr(W †U), U ∈ U(N).

Critical condition: W †U = U†W .

only one local minimal submanifold;
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only one local minimal submanifold;
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the topology is universal for all W ∈ U(N).
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Control landscape for unitary gate fidelity

Fidelity defined as the distance from a desired quantum gate:

J(U) = ‖U −W ‖2 = 2N − 2ReTr(W †U), U ∈ U(N).

Critical condition: W †U = U†W .

only one local minimal submanifold;

one maximal and N − 1 saddle submanifolds;

the topology is universal for all W ∈ U(N).

Conclusion: no false traps(local suboptima) exist to impede the
search for optimal controls.
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How about open quantum systems?

In reality, environmental interactions are
always present:

H = HS ⊗ Iλ + IN ⊗ HE + HSE
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Kinematic Control Landscape for Open Quantum Systems

Definition

J({Kj}) =
∑

j Tr(Kjρ0K
†
j O),

∑λ
j=1 K

†
j Kj = IN .
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Kinematic Control Landscape for Open Quantum Systems

Definition

J({Kj}) =
∑

j Tr(Kjρ0K
†
j O),

∑λ
j=1 K

†
j Kj = IN .

Assumptions

all Kraus maps are achievable;

all admissible controls are regular.
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Landscape Lifting for J({Kj}) =
∑

j Tr(Kjρ0K
†
j O)
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Landscape Lifting for J({Kj}) =
∑

j Tr(Kjρ0K
†
j O)

The equity
∑

j K
†
j Kj = IN implies that the following K is the first

N columns of some enlarged unitary matrix:

K =







K1
...
Kλ






= U







IN
...
0N






, U =







K1 · · · ∗
...

... ∗
Kλ · · · ∗






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Landscape Lifting for J({Kj}) =
∑

j Tr(Kjρ0K
†
j O)

The equity
∑

j K
†
j Kj = IN implies that the following K is the first

N columns of some enlarged unitary matrix:

K =







K1
...
Kλ






= U







IN
...
0N






, U =







K1 · · · ∗
...

... ∗
Kλ · · · ∗







J(K ) = Tr{U(ρ0 ⊗ |1〉〈1|)U†(O ⊗ Iλ)}! J(U)

Auxiliary control landscape for “system”+“environment”.
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ε(·) K U

J[ε(·)] J(K ) J(U)

S−equation K=U(IN⊗|1〉〈1|)

dynamical kinematic kinematic(lifted)



Motivation Basic Concepts Topological Analysis of Quantum Control Landscapes Open questions Concluding Remarks

Landscape Mapping

ε(·) K U

J[ε(·)] J(K ) J(U)
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Landscape Mapping

ε(·) K U

J[ε(·)] J(K ) J(U)

S−equation

controllable/regular

K=U(IN⊗|1〉〈1|)

surjective

dynamical kinematic kinematic(lifted)
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Landscape Mapping

ε(·) K U

J[ε(·)] J(K ) J(U)

S−equation

controllable/regular

K=U(IN⊗|1〉〈1|)

surjective

dynamical kinematic kinematic(lifted)

topologically equivalent
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Landscape Topology for open quantum systems
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Owing to the equivalence with a closed-system control landscape:

Again, no false traps exist;

Stronger controllability assumed, but not on the environment;

Significant increase in # critical submanifolds (∼ (λN)!);
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Landscape Topology for open quantum systems

Owing to the equivalence with a closed-system control landscape:

Again, no false traps exist;

Stronger controllability assumed, but not on the environment;

Significant increase in # critical submanifolds (∼ (λN)!);

R. Wu, A. Pechen et al., J. Math. Phys., 49, 022108, 2008.

A. Pechen, D. Prokhorenko, et al., J. Phys. A: Math. Theor. 41, 045205

(2008)
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Open question: the role of controllability?

Almost all quantum systems are controllable (C. Altafini, J. Math.
Phys. 43, 2051 (2002).) BUT...
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Gate fidelity landscape J = ‖Tr(W †U)‖2, U ∈ SU(2) ⊂ U(8).
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Open question: the role of controllability?

The loss of controllability leads to traps !
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Open question: the role of controllability?

The loss of controllability leads to traps !

Ruggedness ↗ when the controllability ↘;

Even worse when the target is not reachable.

The role of Controllability beyond Yes-or-No

not only the existence of “wanted” controls but also nonexistence
of “unwanted” controls

R. Wu, M. Hsieh and H. Rabitz, “The role of controllability in optimizing

quantum dynamics”, arXiv:0910.4702, 2010.
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Open question: the role of singularity?

Look at the critical condition for ε(·):

δJ = 〈∇J(U(T )), δU(T )〉 ≡ 0,

where δU(T ) is dependent on δε(·).
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Open question: the role of singularity?

Look at the critical condition for ε(·):

δJ = 〈∇J(U(T )), δU(T )〉 ≡ 0,

where δU(T ) is dependent on δε(·).

The mapping δε(·) )→ δU(T ) can be singular.
(R. Wu, J. Dominy, T.-S. Ho, H. Rabitz, arXiv:0907.2354).

Invisible critical points in the kinematic picture !
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Open question: the role of singularity?

Singular controls may become traps, e.g. zero field;
P. Fouquieres, S. Schirmer, arXiv:1004.3492

A. Pechen and D. Tannor, Phys. Rev. Lett. 106, 120402 (2011)
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However, never encountered in our numerical simulations. (K.
Moore, et al, arXiv:1006.1829, arXiv:1006:3702)
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Open question: the role of singularity?

Singular controls may become traps, e.g. zero field;
P. Fouquieres, S. Schirmer, arXiv:1004.3492

A. Pechen and D. Tannor, Phys. Rev. Lett. 106, 120402 (2011)

However, never encountered in our numerical simulations. (K.
Moore, et al, arXiv:1006.1829, arXiv:1006:3702)

Important in time optimal control (Lapert et al, PRL 2010) !
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Search efforts scaling with the system dimension and objectives,
e.g., N, ρ, O or W ?
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Concluding Remarks

Trap-free landscape features can obtained from the kinematic
picture;

Singularity may generate traps, but they are not likely to be
encountered in practice;

A strong support for evident laboratory successes;

Open up perspectives in developing more efficient algorithms
(e.g., gradient and evolutionary-strategy algorithms are going
on in Princeton laboratory).
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THANK YOU !
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