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Introduction

Consider the Schrödinger equation:

i ż = −∆z + V (x)z + βω(t)Q(x)z , x ∈ D,
z |∂D = 0,

z(0, x) = zω0 (x),

where D b Rd , ∂D ∈ C∞, d ≥ 1, V ,Q ∈ C∞(D,R) are given
functions, β is a random noise, z is the state.

Let
Ut(·, βω) : L2 → L2 be the resolving operator, i.e.,
Ut(z0, βω) = zω(t).

Definition
Probability measure µ is invariant if D(zω0 ) = µ implies
D(Ut(z0, βω)) = µ for any t > 0.
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Introduction

• Existence of an invariant measure.

• Uniqueness of the invariant measure.
• Stability and rate of convergence.

See Flandoli, Maslowski, Mattingly, Kuksin, Shirikyan, E, Sinai, Hairer,
Debussche... for the case of Navier-Stokes and Ginzburg-Landau
equations.

Theorem (V.N.)

Finite-dimensional approximations of Schrödinger equation admit a
unique invariant measure µ, and any solution converges exponentially to
µ in total variational norm.
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Control results

Beauchard, Coron, Laurent

Chambrion, Mason, Sigalotti, Boscain

Mirrahimi, Beauchard, V.N.

V.N., H. Nersisyan
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Main result

Main result
Schrödinger equation

i ż = −∆z + V (x)z + u(t)Q(x)z , x ∈ D,
z |∂D = 0,

z(0, x) = z0(x).

is globally exactly controllable in infinite time in H3 generically in V
and Q.

For any z0, z1 ∈ H3 there is a control u ∈ Hs(R+,R) and a
sequence Tn → +∞ such UTn(z0, u) ⇀ z1 in H3.
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Proof

Let U∞(z0, u) be the H3-weak ω-limit set of the trajectory
corresponding to u and z0 ∈ H3:

U∞(z0, u) := {z ∈ H3 : UTn(z0, u) ⇀ z in H3 for some Tn → +∞}.

Lemma

For any u ∈ Hs(R+,R) and z0 ∈ H3, the trajectory UTn(z0, u) is
bounded in H3.

Consider the multivalued function

U∞(·, ·) : S ∩ H3 × Hs(R+,R)→2S∩H3
,

(z0, u)→U∞(z0, u).

We apply the inverse function theorem for this multivalued
mapping.
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Proof

The linearized system is equivalent to the following moment
problem ∫ T

0
e iωmk su(s)ds = dmk , dmk ∈ `2.
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Generalization

The proof works also for the defocusing nonlinear Schrödinger
equation:

i ż = −∆z + V (x)z + |z |2pz + u(t)Q(x)z , x ∈ Td ,

where p ∈ N∗ and d ≥ 1 are such that the equation is globally well
posed in H1.

Theorem
The nonlinear Schrödinger equation is exactly controllable in
infinite time near the stationary solutions.
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Applications

Suppose that suppD(βω) = Hs(R+,R).

• If µ is an invariant measure, then suppµ = H3.
• If µ is an invariant measure, then any solution converges to µ.

Thus the random Schrödinger equation has at most one
invariant measure.
• Any solution Ut(z0, βω) is almost surely non-bounded.

Open problem
Existence of an invariant measure.
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