On the quadratic finite element approximation of $1-d$ waves: propagation, observation, control and numerical implementation

Aurora MARICA
marica@bcamath.org

BCAM - Basque Center for Applied Mathematics
Derio, Basque Country, Spain

Workshop on Quantum Control

BIRS - Banff International Research Station
Banff, Alberta,Canada
April 05, 2011
joint work with Enrique ZUAZUA

The continuous model

The $1-d$ wave equation with non-homogeneous boundary conditions:

$$
\left\{\begin{array}{l}
y_{t t}(x, t)-y_{x x}(x, t)=0, x \in(0,1), t>0 \tag{1}\\
y(0, t)=0, y(1, t)=v(t), t>0, \\
y(x, 0)=y^{0}(x), y_{t}(x, 0)=y^{1}(x), x \in(0,1)
\end{array}\right.
$$

Exact controllability: $\forall\left(y^{1}, y^{0}\right) \in \mathcal{V}^{\prime}=H^{-1} \times L^{2}, \exists v \in L^{2}(0, T)$ s.t. $y(x, T)=y_{t}(x, T)=0$. The adjoint $1-d$ wave equation with homogeneous boundary conditions:

$$
\left\{\begin{array}{l}
u_{t t}(x, t)-u_{x x}(x, t)=0, x \in(0,1), t>0 \tag{2}\\
u(0, t)=u(1, t)=0, t>0, \\
u(x, T)=u^{0}(x), u_{t}(x, T)=u^{1}(x), x \in(0,1)
\end{array}\right.
$$

Well-posed in the energy space $\mathcal{V}:=H_{0}^{1} \times L^{2}$. The energy is conserved in time:

$$
\varepsilon\left(u^{0}, u^{1}\right)=\frac{1}{2}\left(\|u(\cdot, t)\|_{H_{0}^{1}}^{2}+\left\|u_{t}(\cdot, t)\right\|_{L^{2}}^{2}\right)=\frac{1}{2}\left(\left\|u^{0}\right\|_{H_{0}^{1}}^{2}+\left\|u^{1}\right\|_{L^{2}}^{2}\right) .
$$

The observability inequality holds for all solutions of (2), provided $T \geq 2$:

$$
\begin{equation*}
\varepsilon\left(u^{0}, u^{1}\right) \leq C(T) \int_{0}^{T}\left|u_{x}(1, t)\right|^{2} d t \tag{3}
\end{equation*}
$$

Hilbert Uniqueness Method (HUM): exact controllability \Leftrightarrow observability inequality
Lions J.L., Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués, Masson, 1988.

The HUM control

The HUM control v has the explicit form

$$
\begin{equation*}
v(t)=\tilde{v}(t):=\tilde{u}_{x}(1, t), \tag{4}
\end{equation*}
$$

where $\tilde{u}(x, t)$ is the solution of (2) corresponding to the minimum $\left(\tilde{u}^{0}, \tilde{u}^{1}\right) \in \mathcal{V}$ of

$$
\begin{equation*}
\mathcal{J}\left(u^{0}, u^{1}\right)=\frac{1}{2} \int_{0}^{T}\left|u_{x}(1, t)\right|^{2} d t-\left\langle\left(y^{1},-y^{0}\right),\left(u(\cdot, 0), u_{t}(\cdot, 0)\right)\right\rangle_{\nu^{\prime}, \nu} . \tag{5}
\end{equation*}
$$

Example: $y^{1} \equiv 0$ and the initial position y^{0} given by

$$
y^{0}(x)=H(x):= \begin{cases}1, & x \in[0,1 / 2) \tag{6}\\ -1, & x \in[1 / 2,1]\end{cases}
$$

for which the optimal control is

$$
\tilde{v}(t)=\tilde{v}_{H}(t)= \begin{cases}-1 / 2, & t \in(0,1 / 2] \cup(1,3 / 2], \tag{7}\\ 1 / 2, & t \in(1 / 2,1] \cup(3 / 2,2) .\end{cases}
$$

Figure: The initial position $H(x)$ (left) versus the HUM control \tilde{v}_{H} (middle) versus the solution of the controlled problem (right) (red $=1$, orange $=1 / 2$, green $=0$, cyan $=-1 / 2$ and blue $=-1$).

Linear and quadratic FEM spaces

$N \in \mathbb{N}, h=1 /(N+1)$. An uniform grid of $[0,1]$: nodes x_{j} and midpoints $x_{j+1 / 2}$.

$$
\begin{gathered}
\mathcal{U}_{1}^{h}:=\left\{u \in H_{0}^{1}(0,1) \text { s.t. }\left.u\right|_{l_{j}} \in \mathcal{P}_{1}\left(I_{j}\right), 0 \leq j \leq N\right\}=\operatorname{span}\left\{\phi_{1, j}^{h}\right\} \\
U_{2}^{h}:=\left\{u \in H_{0}^{1}(0,1) \text { s.t. }\left.u\right|_{I_{j}} \in \mathcal{P}_{2}\left(I_{j}\right), 0 \leq j \leq N\right\}=\operatorname{span}\left\{\phi_{2, j}^{h}\right\} \oplus \operatorname{span}\left\{\phi_{2, j+1 / 2}^{h}\right\}
\end{gathered}
$$

Figure: The basis functions: $\phi_{2, j}^{h}$ (left), $\phi_{2, j+1 / 2}^{h}$ (middle) and $\phi_{1, j}^{h}$ (right).

Linear/quaratic semi-discretization of the adjoint problem (2):

$$
\left\{\begin{array}{l}
\text { Find } u_{p}^{h}(\cdot, t) \in \mathcal{U}_{p}^{h} \text { s.t. } \frac{d^{2}}{d t^{2}}\left(u_{p}^{h}(\cdot, t), \varphi_{p}^{h}\right)_{L^{2}}+\left(u_{p}^{h}(\cdot, t), \varphi_{p}^{h}\right)_{H_{0}^{1}}=0, \forall \varphi_{p}^{h} \in U_{p}^{h}, \tag{8}\\
u_{p}^{h}(x, T)=u_{p}^{h, 0}(x), u_{p, t}^{h}(x, T)=u_{p}^{h, 1}(x), x \in(0,1),
\end{array}\right.
$$

which can be written as a system of second-order linear differential equations (ODEs):

$$
\begin{equation*}
M_{p}^{h} \mathbf{U}_{p, t t}^{h}(t)+S_{p}^{h} \mathbf{U}_{p}^{h}(t)=0, \quad \mathbf{U}_{p}^{h}(T)=\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p, t}^{h}(T)=\mathbf{U}_{p}^{h, 1}, p=1,2, \tag{9}
\end{equation*}
$$

where M_{1}^{h}, S_{1}^{h} - tri-diagonal and M_{2}^{h}, S_{2}^{h} - pentha-diagonal mass and stiffness matrices.

Discrete functional setting

Discrete analogues of $H_{0}^{1}(0,1), L^{2}(0,1)$ or $H^{-1}(0,1)$:

$$
\mathcal{H}_{p}^{h, i}:=\left\{\mathbf{F}_{p}^{h}=\left(F_{p, j / p}\right)_{1 \leq j \leq p N+p-1} \in \mathbb{C}^{p N+p-1} \text { s.t. }\left\|F_{p}^{h}\right\|_{h, i, p}<\infty\right\}, \quad i=1,0,-1 .
$$

Inner products defining the discrete spaces $\mathcal{H}_{p}^{h, i}, i=1,0,-1$:

$$
\left(\mathbf{E}_{p}^{h}, \mathbf{F}_{p}^{h}\right)_{h, i, p}:=\left(\left(M_{p}^{h}\left(S_{p}^{h}\right)^{-1}\right)^{1-i} S_{p}^{h} \mathbf{E}_{p}^{h}, \mathbf{F}_{p}^{h}\right)_{p, e}, i=1,0,-1 .
$$

Discrete energy space and its dual: $\mathcal{V}_{p}^{h}:=\mathcal{H}_{p}^{h, 1} \times \mathcal{H}_{p}^{h, 0}$ and $\mathcal{V}_{p}^{h,{ }^{\prime}}:=\mathcal{H}_{p}^{h,-1} \times \mathcal{H}_{p}^{h, 0}$.
Problem (9) is well-posed in \mathcal{V}_{p}^{h}. The total energy is conserved in time:

$$
\begin{equation*}
\varepsilon_{p}^{h}\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\frac{1}{2}\left(\left\|\mathbf{U}_{p}^{h}(t)\right\|_{h, 1, p}^{2}+\left\|\mathbf{U}_{p, t}^{h}(t)\right\|_{h, 0, p}^{2}\right)=\frac{1}{2}\left(\left\|\mathbf{U}_{p}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{U}_{p}^{h, 1}\right\|_{h, 0, p}^{2}\right) . \tag{10}
\end{equation*}
$$

Discrete observability inequality

$$
\begin{equation*}
\varepsilon_{p}^{h}\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right) \leq C_{p}^{h}(T) \int_{0}^{T}\left\|B_{p}^{h} \mathbf{U}_{p}^{h}(t)\right\|_{p, e}^{2} d t \tag{11}
\end{equation*}
$$

where

$$
B_{p, i j}:= \begin{cases}-\frac{1}{h}, & (i, j)=(p N+p-1, p N), \tag{12}\\ 0, & \text { otherwise. }\end{cases}
$$

Spectral analysis and non－uniform observability results

The solution of（9）admits the following Fourier representation

$$
\mathbf{U}_{p}^{h}(t)=\sum_{ \pm} \sum_{k=1}^{p N+p-1} \widehat{u}_{p, \pm}^{k} \exp \left(\pm i t \lambda_{p}^{h, k}\right) \varphi_{p}^{h, k}
$$

Figure：The square roots of the eigenvalues， λ_{p}^{h} ：the continuous，acoustic，optic，resonant modes and $p=1$ ．

$$
\begin{gathered}
\lambda_{1}(\eta) \sim \eta+\eta^{3} / 24+\eta^{5} / 1920, \quad \lambda_{2}^{a}(\eta) \sim \eta+\eta^{5} / 1440 . \\
C_{p}^{h}(T) \text { in (11) blows-up. !!! }
\end{gathered}
$$

Infante J．－A．，Zuazua E．，Boundary observability for the space semidiscretization of the 1－d wave equation，M2AN， 1999.

Marica A．，Zuazua E．，On the quadratic finite element approximation of $1-d$ waves：propagation， observation and control，in preparation．

Marica A．，Zuazua E．，Localized solutions and filtering mechanisms for the DG semi－discretizations of the 1－d wave equation，C．R．Acad．Sci．Paris Ser．I， 2010.

Micu S．，Uniform boundary controllability of a semi－discrete 1－D wave equation，Nūmer．Nath．， 2002.

Bi-grid filtering algorithm. Uniform observability results.

$$
\begin{aligned}
& \mathcal{B}_{1}^{h}:=\left\{\mathbf{F}_{1}^{h}=\left(F_{1, j}\right)_{1 \leq j \leq N} \text { s.t. } F_{1,2 j+1}=\left(F_{1,2 j}+F_{1,2 j+2}\right) / 2, \forall 0 \leq j \leq(N-1) / 2\right\} \\
& \mathcal{B}_{2}^{h}:=\left\{\mathbf{F}_{2}^{h}=\left(F_{2, j / 2}\right)_{1 \leq j \leq 2 N+1} \text { s.t. } F_{2, j+1 / 2}=\left(F_{2, j}+F_{2, j+1}\right) / 2, \forall 0 \leq j \leq N,\right. \\
&\text { and } \left.F_{2,2 j+1}=\left(F_{2,2 j}+F_{2,2 j+2}\right) / 2, \forall 0 \leq j \leq(N-1) / 2\right\} .
\end{aligned}
$$

Theorem

For all initial data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right) \in\left(\mathcal{B}_{p}^{h} \times \mathcal{B}_{p}^{h}\right) \cap \mathcal{V}_{p}^{h}$ in the adjoint problem (9) and for all $T \geq 2$, the observability inequality (11) holds uniformly as $h \rightarrow 0$.

Uniform observability results for the fully discrete conservative scheme:

$$
\mathbf{U}_{p}^{h, k+1}-2 \mathbf{U}_{p}^{h, k}+\mathbf{U}_{p}^{h, k-1}+(\delta t)^{2}\left(M^{h}\right)^{-1} S^{h}\left(\mathbf{U}_{p}^{h, k+1}+\mathbf{U}_{p}^{h, k-1}\right) / 2=0
$$

Ervedoza S., Zheng C., Zuazua E., On the observability of time-discrete conservative linear systems, J. Functional Analysis, 254(12)(2008), 3037-3078.

Ignat L., Zuazua E., Convergence of a two-grid algorithm for the control of the wave equation, J.Eur.Math.Soc., 2009.

Loreti P., Mehrenberger M., An Ingham type proof for a two-grid observability theorem, EAIM: COCV, 2008.

Marica A., Zuazua E., On the quadratic finite element approximation of $1-d$ waves: propagation, observation and control, in preparation.

Negreanu M., Zuazua E., Convergence of a multigrid method for the contro\#lability of a $1=d$ wave

On the discrete control problem

For a particular solution $\tilde{\mathbf{U}}_{p}^{h}(t)$ of the adjoint problem (9), consider the non-homogeneous problem

$$
\begin{equation*}
M_{p}^{h} \mathbf{Y}_{p, t t}^{h}(t)+S_{p}^{h} \mathbf{Y}_{p}^{h}(t)=-\left(B_{p}^{h}\right)^{*} B_{p}^{h} \tilde{\mathbf{U}}_{p}^{h}(t), \quad \mathbf{Y}_{p}^{h}(0)=\mathbf{Y}_{p}^{h, 0}, \quad \mathbf{Y}_{p, t}^{h}(0)=\mathbf{Y}_{p}^{h, 1} . \tag{13}
\end{equation*}
$$

The discrete quadratic functional:

$$
\begin{equation*}
\partial_{p}^{h}\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\frac{1}{2} \int_{0}^{T}\left\|B_{p}^{h} \mathbf{U}_{p}^{h}(t)\right\|_{p, e}^{2} d t-\left\langle\left(\mathbf{Y}_{p}^{h, 1},-\mathbf{Y}_{p}^{h, 0}\right),\left(\mathbf{U}_{p}^{h}(0), \mathbf{U}_{p, t}^{h}(0)\right)\right\rangle_{v_{p}^{h,}, v_{p}^{h}}, \tag{14}
\end{equation*}
$$

$\mathbf{U}_{p}^{h}(t)$ being the solution of the adjoint problem (9) with initial data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)$.
The uniform observability inequality (11) in the class of initial data $\mathcal{B}_{p}^{h} \times \mathcal{B}_{h}^{p}$ implies

- the coercivity of \mathscr{J}_{p}^{h}
- the convergence of the last component of $B_{p}^{h} \tilde{\mathbf{U}}_{p}^{h}(t)$ to the continuous optimal control \tilde{v}.
$\tilde{\mathbf{H}}_{p}^{h}:=\left(\tilde{H}_{p, j / p}\right)_{1 \leq j \leq p N+p-1}$, where $\tilde{H}_{p, j / p}=\left(H, \phi_{p, j / p}^{h}\right)_{L^{2}}$, for all $1 \leq j \leq p N+p-1$.
The numerical approximation of $H(x)$ we consider is $\mathbf{Y}_{p}^{h, 0}=\mathbf{H}_{p}^{h}:=\left(M_{p}^{h}\right)^{-1} \tilde{\mathbf{H}}_{p}^{h}$. Some projections:

$$
\begin{gathered}
\mathbf{H}_{1, l o}^{h}=\sum_{k=1}^{(N-1) / 2}\left(\mathbf{H}_{1}^{h}, \varphi_{1}^{h, k}\right)_{h, 0,1} \varphi_{1}^{h, k}, \quad \mathbf{H}_{1, h i}^{h}=\sum_{k=(N+1) / 2}^{N}\left(\mathbf{H}_{1}^{h}, \varphi_{1}^{h, k}\right)_{h, 0,1} \varphi_{1}^{h, k}, \\
\mathbf{H}_{2, l o}^{h, \alpha}=\sum_{k=1}^{(N-1) / 2}\left(\mathbf{H}_{2}^{h}, \varphi_{2}^{h, \alpha, k}\right)_{h, 0,2} \varphi_{2}^{h, \alpha, k}, \quad \mathbf{H}_{2, h i}^{h, \alpha}=\sum_{k=(N+1) / 2}^{N}\left(\mathbf{H}_{2}^{h}, \varphi_{2}^{h, \alpha, k}\right)_{h, 0,2} \varphi_{2}^{h, \alpha, k}, \alpha \in\{a, o\} .
\end{gathered}
$$

(a) \mathbf{H}_{1}^{h}

(e) \mathbf{H}_{2}^{h}

(b) $\mathbf{H}_{1, l o}^{h}$

(f) $\mathbf{H}_{2, l o}^{h, a}$

(c) $\mathbf{H}_{1, h i}^{h}$

(g) $H_{2, h i}^{h, a}$

(d) $\mathbf{H}_{2, l o}^{h, o}$

(h) $\mathbf{H}_{2, h i}^{h, o}$

Figure: The discrete Heaviside functions \mathbf{H}_{p}^{h} and their projections.

Figure: The Fourier coefficients of \mathbf{H}_{p}^{h} for $p=1$ (left), $p=2$ (center, blue=acoustic, red=optic), $p=2$ - the optic branch (right).

Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right) \in \mathcal{V}_{p}^{h}$, for example the trivial one. This step yields the solution $\mathbf{U}_{p, 0}^{h}(t)$.

Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right) \in \mathcal{V}_{p}^{h}$, for example the trivial one. This step yields the solution $\mathbf{U}_{p, 0}^{h}(t)$.
Step 2. Compute the first gradient $\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right):=\nabla \mathcal{J}_{p}^{h}\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right)$ by solving (13) with initial data $\left(\mathbf{Y}_{p, 0}^{h, 0}, \mathbf{Y}_{p, 0}^{h, 1}\right)$ and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{U}_{p, 0}^{h}(t)$. This produces the solution $\mathbf{Y}_{p, 0}^{h}(t)$. Then $\mathbf{G}_{p, 0}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, 0, t}^{h}(T)$ and $\mathbf{G}_{p, 0}^{h, 1}=\mathbf{Y}_{p, 0}^{h}(T)$.

Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right) \in \mathcal{V}_{p}^{h}$, for example the trivial one. This step yields the solution $\mathbf{U}_{p, 0}^{h}(t)$.
Step 2. Compute the first gradient $\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right):=\nabla \mathcal{J}_{p}^{h}\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right)$ by solving (13) with initial data $\left(\mathbf{Y}_{p, 0}^{h, 0}, \mathbf{Y}_{p, 0}^{h, 1}\right)$ and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{U}_{p, 0}^{h}(t)$. This produces the solution $\mathbf{Y}_{p, 0}^{h}(t)$. Then $\mathbf{G}_{p, 0}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, 0, t}^{h}(T)$ and $\mathbf{G}_{p, 0}^{h, 1}=\mathbf{Y}_{p, 0}^{h}(T)$.
Step 3. If $\left(\left\|\mathbf{G}_{p, 0}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, 0}^{h, 1}\right\|_{h, 0, p}^{2}\right)^{1 / 2} \geq \epsilon$, compute the first descent direction $\left(\mathbf{D}_{p, 0}^{h, 0}, \mathbf{D}_{p, 0}^{h, 1}\right)=-\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right)$.

Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right) \in \mathcal{V}_{p}^{h}$, for example the trivial one. This step yields the solution $\mathbf{U}_{p, 0}^{h}(t)$.
Step 2. Compute the first gradient $\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right):=\nabla \mathcal{J}_{p}^{h}\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right)$ by solving (13) with initial data $\left(\mathbf{Y}_{p, 0}^{h, 0}, \mathbf{Y}_{p, 0}^{h, 1}\right)$ and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{U}_{p, 0}^{h}(t)$. This produces the solution $\mathbf{Y}_{p, 0}^{h}(t)$. Then $\mathbf{G}_{p, 0}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, 0, t}^{h}(T)$ and $\mathbf{G}_{p, 0}^{h, 1}=\mathbf{Y}_{p, 0}^{h}(T)$.
Step 3. If $\left(\left\|\mathbf{G}_{p, 0}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, 0}^{h, 1}\right\|_{h, 0, p}^{2}\right)^{1 / 2} \geq \epsilon$, compute the first descent direction
$\left(\mathbf{D}_{p, 0}^{h, 0}, \mathbf{D}_{p, 0}^{h, 1}\right)=-\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right)$.
Step 4. Given $\left(\mathbf{U}_{p, n}^{h, 0}, \mathbf{U}_{p, n}^{h, 1}\right),\left(\mathbf{G}_{p, n}^{h, 0}, \mathbf{G}_{p, n}^{h, 1}\right)$ and $\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ in \mathcal{V}_{p}^{h}, compute them $n+1$:

Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right) \in \mathcal{V}_{p}^{h}$, for example the trivial one. This step yields the solution $\mathbf{U}_{p, 0}^{h}(t)$.
Step 2. Compute the first gradient $\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right):=\nabla \mathcal{J}_{p}^{h}\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right)$ by solving (13) with initial data $\left(\mathbf{Y}_{p, 0}^{h, 0}, \mathbf{Y}_{p, 0}^{h, 1}\right)$ and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{U}_{p, 0}^{h}(t)$. This produces the solution $\mathbf{Y}_{p, 0}^{h}(t)$. Then $\mathbf{G}_{p, 0}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, 0, t}^{h}(T)$ and $\mathbf{G}_{p, 0}^{h, 1}=\mathbf{Y}_{p, 0}^{h}(T)$.
Step 3. If $\left(\left\|\mathbf{G}_{p, 0}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, 0}^{h, 1}\right\|_{h, 0, p}^{2}\right)^{1 / 2} \geq \epsilon$, compute the first descent direction
$\left(\mathbf{D}_{p, 0}^{h, 0}, \mathbf{D}_{p, 0}^{h, 1}\right)=-\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right)$.
Step 4. Given $\left(\mathbf{U}_{p, n}^{h, 0}, \mathbf{U}_{p, n}^{h, 1}\right),\left(\mathbf{G}_{p, n}^{h, 0}, \mathbf{G}_{p, n}^{h, 1}\right)$ and $\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ in \mathcal{V}_{p}^{h}, compute them $n+1$:
Step 4.a. Solve (9) with data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ and denote the solution by $\mathbf{D}_{p, n}^{h}(t)$.

Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right) \in \mathcal{V}_{p}^{h}$, for example the trivial one. This step yields the solution $\mathbf{U}_{p, 0}^{h}(t)$.
Step 2. Compute the first gradient $\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right):=\nabla \mathcal{J}_{p}^{h}\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right)$ by solving (13) with initial data $\left(\mathbf{Y}_{p, 0}^{h, 0}, \mathbf{Y}_{p, 0}^{h, 1}\right)$ and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{U}_{p, 0}^{h}(t)$. This produces the solution $\mathbf{Y}_{p, 0}^{h}(t)$. Then $\mathbf{G}_{p, 0}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, 0, t}^{h}(T)$ and $\mathbf{G}_{p, 0}^{h, 1}=\mathbf{Y}_{p, 0}^{h}(T)$.
Step 3. If $\left(\left\|\mathbf{G}_{p, 0}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, 0}^{h, 1}\right\|_{h, 0, p}^{2}\right)^{1 / 2} \geq \epsilon$, compute the first descent direction
$\left(\mathbf{D}_{p, 0}^{h, 0}, \mathbf{D}_{p, 0}^{h, 1}\right)=-\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right)$.
Step 4. Given $\left(\mathbf{U}_{p, n}^{h, 0}, \mathbf{U}_{p, n}^{h, 1}\right),\left(\mathbf{G}_{p, n}^{h, 0}, \mathbf{G}_{p, n}^{h, 1}\right)$ and $\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ in \mathcal{V}_{p}^{h}, compute them $n+1$:
Step 4.a. Solve (9) with data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ and denote the solution by $\mathbf{D}_{p, n}^{h}(t)$.
Step 4.b. Solve (13) with trivial initial data and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{D}_{p, n}^{h}(t)$ and denote the solution by $\mathbf{Y}_{p, n+1}^{h}(t)$. Take $\mathbf{Z}_{p, n}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, n+1, t}^{h}(T)$ and $\mathbf{Z}_{p, n}^{h, 1}=\mathbf{Y}_{p, n+1}^{h}(T)$.

Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right) \in \mathcal{V}_{p}^{h}$, for example the trivial one. This step yields the solution $\mathbf{U}_{p, 0}^{h}(t)$.
Step 2. Compute the first gradient $\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right):=\nabla \mathcal{J}_{p}^{h}\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right)$ by solving (13) with initial data $\left(\mathbf{Y}_{p, 0}^{h, 0}, \mathbf{Y}_{p, 0}^{h, 1}\right)$ and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{U}_{p, 0}^{h}(t)$. This produces the solution $\mathbf{Y}_{p, 0}^{h}(t)$. Then $\mathbf{G}_{p, 0}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, 0, t}^{h}(T)$ and $\mathbf{G}_{p, 0}^{h, 1}=\mathbf{Y}_{p, 0}^{h}(T)$.
Step 3. If $\left(\left\|\mathbf{G}_{p, 0}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, 0}^{h, 1}\right\|_{h, 0, p}^{2}\right)^{1 / 2} \geq \epsilon$, compute the first descent direction
$\left(\mathbf{D}_{p, 0}^{h, 0}, \mathbf{D}_{p, 0}^{h, 1}\right)=-\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right)$.
Step 4. Given $\left(\mathbf{U}_{p, n}^{h, 0}, \mathbf{U}_{p, n}^{h, 1}\right),\left(\mathbf{G}_{p, n}^{h, 0}, \mathbf{G}_{p, n}^{h, 1}\right)$ and $\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ in \mathcal{V}_{p}^{h}, compute them $n+1$:
Step 4.a. Solve (9) with data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ and denote the solution by $\mathbf{D}_{p, n}^{h}(t)$.
Step 4.b. Solve (13) with trivial initial data and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{D}_{p, n}^{h}(t)$ and denote the solution by $\mathbf{Y}_{p, n+1}^{h}(t)$. Take $\mathbf{Z}_{p, n}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, n+1, t}^{h}(T)$ and $\mathbf{Z}_{p, n}^{h, 1}=\mathbf{Y}_{p, n+1}^{h}(T)$.
Step 4.c. Set $\rho_{p, n}:=-\frac{\left\|\mathbf{G}_{p, n}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, n}^{h, 1}\right\|_{h, 0, p}^{2}}{\left(\mathbf{Z}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 0}\right)_{h, 1, p}+\left(\mathbf{Z}_{p, n}^{h, 1}, \mathbf{D}_{p, n}^{h, 1}\right)_{h, 0, p}}$.

Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right) \in \mathcal{V}_{p}^{h}$, for example the trivial one. This step yields the solution $\mathbf{U}_{p, 0}^{h}(t)$.
Step 2. Compute the first gradient $\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right):=\nabla \mathcal{J}_{p}^{h}\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right)$ by solving (13) with initial data $\left(\mathbf{Y}_{p, 0}^{h, 0}, \mathbf{Y}_{p, 0}^{h, 1}\right)$ and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{U}_{p, 0}^{h}(t)$. This produces the solution $\mathbf{Y}_{p, 0}^{h}(t)$. Then $\mathbf{G}_{p, 0}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, 0, t}^{h}(T)$ and $\mathbf{G}_{p, 0}^{h, 1}=\mathbf{Y}_{p, 0}^{h}(T)$.
Step 3. If $\left(\left\|\mathbf{G}_{p, 0}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, 0}^{h, 1}\right\|_{h, 0, p}^{2}\right)^{1 / 2} \geq \epsilon$, compute the first descent direction
$\left(\mathbf{D}_{p, 0}^{h, 0}, \mathbf{D}_{p, 0}^{h, 1}\right)=-\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right)$.
Step 4. Given $\left(\mathbf{U}_{p, n}^{h, 0}, \mathbf{U}_{p, n}^{h, 1}\right),\left(\mathbf{G}_{p, n}^{h, 0}, \mathbf{G}_{p, n}^{h, 1}\right)$ and $\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ in \mathcal{V}_{p}^{h}, compute them $n+1$:
Step 4.a. Solve (9) with data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ and denote the solution by $\mathbf{D}_{p, n}^{h}(t)$.
Step 4.b. Solve (13) with trivial initial data and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{D}_{p, n}^{h}(t)$ and denote the solution by $\mathbf{Y}_{p, n+1}^{h}(t)$. Take $\mathbf{Z}_{p, n}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, n+1, t}^{h}(T)$ and $\mathbf{Z}_{p, n}^{h, 1}=\mathbf{Y}_{p, n+1}^{h}(T)$.
Step 4.c. Set $\rho_{p, n}:=-\frac{\left\|\mathbf{G}_{p, n}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, 1}^{h, 1}\right\|_{h, 0, p}^{2}}{\left(\mathbf{Z}_{p, n}^{h, 0} \mathbf{D}_{p, n}^{h, n}\right)_{h, 1, p}+\left(\mathbf{Z}_{p, n}^{h, 1}, \mathbf{D}_{p, n}^{h, 1}\right)_{h, 0, p}}$.
Step 4.d. $\left(\mathbf{U}_{p, n+1}^{h, 0}, \mathbf{U}_{p, n+1}^{h, 1}\right):=\left(\mathbf{U}_{p, n}^{h, 0}, \mathbf{U}_{p, n}^{h, 1}\right)+\rho_{p, n}\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$.

Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right) \in \mathcal{V}_{p}^{h}$, for example the trivial one. This step yields the solution $\mathbf{U}_{p, 0}^{h}(t)$.
Step 2. Compute the first gradient $\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right):=\nabla \mathcal{J}_{p}^{h}\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right)$ by solving (13) with initial data $\left(\mathbf{Y}_{p, 0}^{h, 0}, \mathbf{Y}_{p, 0}^{h, 1}\right)$ and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{U}_{p, 0}^{h}(t)$. This produces the solution $\mathbf{Y}_{p, 0}^{h}(t)$. Then $\mathbf{G}_{p, 0}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, 0, t}^{h}(T)$ and $\mathbf{G}_{p, 0}^{h, 1}=\mathbf{Y}_{p, 0}^{h}(T)$.
Step 3. If $\left(\left\|\mathbf{G}_{p, 0}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, 0}^{h, 1}\right\|_{h, 0, p}^{2}\right)^{1 / 2} \geq \epsilon$, compute the first descent direction
$\left(\mathbf{D}_{p, 0}^{h, 0}, \mathbf{D}_{p, 0}^{h, 1}\right)=-\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right)$.
Step 4. Given $\left(\mathbf{U}_{p, n}^{h, 0}, \mathbf{U}_{p, n}^{h, 1}\right),\left(\mathbf{G}_{p, n}^{h, 0}, \mathbf{G}_{p, n}^{h, 1}\right)$ and $\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ in \mathcal{V}_{p}^{h}, compute them $n+1$:
Step 4.a. Solve (9) with data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ and denote the solution by $\mathbf{D}_{p, n}^{h}(t)$.
Step 4.b. Solve (13) with trivial initial data and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{D}_{p, n}^{h}(t)$ and denote the solution by $\mathbf{Y}_{p, n+1}^{h}(t)$. Take $\mathbf{Z}_{p, n}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, n+1, t}^{h}(T)$ and $\mathbf{Z}_{p, n}^{h, 1}=\mathbf{Y}_{p, n+1}^{h}(T)$.
Step 4.c. Set $\rho_{p, n}:=-\frac{\left\|\mathbf{G}_{p, n}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, 1}^{h, 1}\right\|_{h, 0, p}^{2}}{\left(\mathbf{Z}_{p, n}^{h, 0} \mathbf{D}_{p, n}^{h, n}\right)_{h, 1, p}+\left(\mathbf{Z}_{p, n}^{h, 1}, \mathbf{D}_{p, n}^{h, 1}\right)_{h, 0, p}}$.
Step 4.d. $\left(\mathbf{U}_{p, n+1}^{h, 0}, \mathbf{U}_{p, n+1}^{h, 1}\right):=\left(\mathbf{U}_{p, n}^{h, 0}, \mathbf{U}_{p, n}^{h, 1}\right)+\rho_{p, n}\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$.
Step 4.e. $\left(\mathbf{G}_{p, n+1}^{h, 0}, \mathbf{G}_{p, n+1}^{h, 1}\right):=\left(\mathbf{G}_{p, n}^{h, 0}, \mathbf{G}_{p, n}^{h, 1}\right)+\rho_{p, n}\left(\mathbf{Z}_{p, n}^{h, 0}, \mathbf{Z}_{p, n}^{h, 1}\right)$.

Conjugate gradient algorithm without filtering

Step 1. Solve the adjoint problem (9) with arbitrary data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right) \in \mathcal{V}_{p}^{h}$, for example the trivial one. This step yields the solution $\mathbf{U}_{p, 0}^{h}(t)$.
Step 2. Compute the first gradient $\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right):=\nabla \mathcal{J}_{p}^{h}\left(\mathbf{U}_{p, 0}^{h, 0}, \mathbf{U}_{p, 0}^{h, 1}\right)$ by solving (13) with initial data $\left(\mathbf{Y}_{p, 0}^{h, 0}, \mathbf{Y}_{p, 0}^{h, 1}\right)$ and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{U}_{p, 0}^{h}(t)$. This produces the solution $\mathbf{Y}_{p, 0}^{h}(t)$. Then $\mathbf{G}_{p, 0}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, 0, t}^{h}(T)$ and $\mathbf{G}_{p, 0}^{h, 1}=\mathbf{Y}_{p, 0}^{h}(T)$.
Step 3. If $\left(\left\|\mathbf{G}_{p, 0}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, 0}^{h, 1}\right\|_{h, 0, p}^{2}\right)^{1 / 2} \geq \epsilon$, compute the first descent direction
$\left(\mathbf{D}_{p, 0}^{h, 0}, \mathbf{D}_{p, 0}^{h, 1}\right)=-\left(\mathbf{G}_{p, 0}^{h, 0}, \mathbf{G}_{p, 0}^{h, 1}\right)$.
Step 4. Given $\left(\mathbf{U}_{p, n}^{h, 0}, \mathbf{U}_{p, n}^{h, 1}\right),\left(\mathbf{G}_{p, n}^{h, 0}, \mathbf{G}_{p, n}^{h, 1}\right)$ and $\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ in \mathcal{V}_{p}^{h}, compute them $n+1$:
Step 4.a. Solve (9) with data $\left(\mathbf{U}_{p}^{h, 0}, \mathbf{U}_{p}^{h, 1}\right)=\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$ and denote the solution by $\mathbf{D}_{p, n}^{h}(t)$.
Step 4.b. Solve (13) with trivial initial data and $\tilde{\mathbf{U}}_{p}^{h}(t)=\mathbf{D}_{p, n}^{h}(t)$ and denote the solution by $\mathbf{Y}_{p, n+1}^{h}(t)$. Take $\mathbf{Z}_{p, n}^{h, 0}=-\left(S_{p}^{h}\right)^{-1} M_{p}^{h} \mathbf{Y}_{p, n+1, t}^{h}(T)$ and $\mathbf{Z}_{p, n}^{h, 1}=\mathbf{Y}_{p, n+1}^{h}(T)$.
Step 4.c. Set $\rho_{p, n}:=-\frac{\left\|\mathbf{G}_{p, n}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, n}^{h, 1}\right\|_{h, 0, p}^{2}}{\left(Z_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 0}\right)_{h, 1, p}+\left(\mathbf{Z}_{p, n}^{h, 1}, \mathbf{D}_{p, n}^{h,)_{n}}\right)_{h, 0, p}}$.
Step 4.d. $\left(\mathbf{U}_{p, n+1}^{h, 0}, \mathbf{U}_{p, n+1}^{h, 1}\right):=\left(\mathbf{U}_{p, n}^{h, 0}, \mathbf{U}_{p, n}^{h, 1}\right)+\rho_{p, n}\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$.
Step 4.e. $\left(\mathbf{G}_{p, n+1}^{h, 0}, \mathbf{G}_{p, n+1}^{h, 1}\right):=\left(\mathbf{G}_{p, n}^{h, 0}, \mathbf{G}_{p, n}^{h, 1}\right)+\rho_{p, n}\left(\mathbf{Z}_{p, n}^{h, 0}, \mathbf{Z}_{p, n}^{h, 1}\right)$.
Step 4.f. $\left(\mathbf{D}_{p, n+1}^{h, 0}, \mathbf{D}_{p, n+1}^{h, 1}\right):=-\left(\mathbf{G}_{p, n+1}^{h, 0}, \mathbf{G}_{p, n+1}^{h, 1}\right)+\frac{\left\|\mathbf{G}_{p, n+1}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, n+1}^{h, 1}\right\|_{h, 0, p}^{2}}{\left\|\mathbf{G}_{p, n}^{h, 0}\right\|_{h, 1, p}^{2}+\left\|\mathbf{G}_{p, n}^{h, 1}\right\|_{h, 0, p}^{2}}\left(\mathbf{D}_{p, n}^{h, 0}, \mathbf{D}_{p, n}^{h, 1}\right)$.

Numerical results (I)

(a) Solution for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1}^{h}, \mathbf{Y}_{1}^{h, 1}=0$

(c) Solution for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1, l o}^{h}, \mathbf{Y}_{1}^{h, 1}=0$

(e) Solution for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1, h i}^{h}, \mathbf{Y}_{1}^{h, 1}=0$
(d) Control for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1, l o}^{h}, \mathbf{Y}_{1}^{h, 1}=0$

(b) Control for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1}^{h}, \mathbf{Y}_{1}^{h, 1}=0$

(f) Control for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1, h \overline{1}}^{h} \mathbf{Y}_{1}^{h, 1} \equiv 0$

Figure: Solutions of the controlled problem (13) and the corresponding numerical controls for $p=2$ arising by minimizing \mathcal{J}_{2}^{h} over the whole space \mathcal{V}_{2}^{h}.

(a) Solution for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2, h i}^{h, a}, \mathbf{Y}_{2}^{h, 1}=0$

(c) Solution for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2,1 \circ}^{h, o}, \mathbf{Y}_{2}^{h, 1}=0$

(e) Solution for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2, h i}^{h, o}, \mathbf{Y}_{2}^{h, 1}=0$
(d) Control for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2, I o}^{h, o}, \mathbf{Y}_{2}^{h, 1}=0$

(b) Control for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2, h i}^{h, a}, \mathbf{Y}_{2}^{h, 1}=0$

(f) Control for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2, h i}^{h, o}, \mathbf{Y}_{2}^{h, 1}=0$

Figure: Typical solution of the adjoint problem (9) corresponding to the minimizer $\left(\tilde{\mathbf{U}}_{p}^{h, 0}, \tilde{\mathbf{U}}_{p}^{h, 1}\right)$ of \mathcal{J}_{p}^{h} over \mathcal{V}_{p}^{h} (left) $\operatorname{or} \operatorname{over}\left(\mathcal{B}_{p}^{h} \times \mathcal{B}_{p}^{h}\right) \times \mathcal{V}_{p}^{h}($ right $)$.

Implementation of the conjugate gradient with filtering

Modifications on Step 2: $\mathbf{F}_{2}^{h, 0}=-M_{2}^{h} \mathbf{Y}_{2,0, t}^{h}(T)$ and $\mathbf{F}_{2}^{h, 1}=M_{2}^{h} \mathbf{Y}_{2,0}^{h}(T)$.
The Gateaux derivative of \mathcal{J}_{2}^{h} at $\left(\mathbf{U}_{2,0}^{h, 0}, \mathbf{U}_{2,0}^{h, 1}\right)$ is:
$\partial_{2}^{h,{ }^{\prime}}\left(\mathbf{U}_{2,0}^{h, 0}, \mathbf{U}_{2,0}^{h, 1}\right)\left(\mathbf{U}_{2}^{h, 0}, \mathbf{U}_{2}^{h, 1}\right)=\left(\mathbf{F}_{2}^{h, 0}, \mathbf{U}_{2}^{h, 0}\right)_{2, e}+\left(\mathbf{F}_{2}^{h, 1}, \mathbf{U}_{2}^{h, 1}\right)_{2, e}=\left(\mathbf{G}_{2,0}^{h, 0}, \mathbf{U}_{2}^{h, 0}\right)_{h, 1,2}+\left(\mathbf{G}_{2,0}^{h, 1}, \mathbf{U}_{2}^{h, 1}\right)_{h, 0,2}$.
First restriction operator $\Pi:\left(\Pi \mathrm{E}_{2}^{h}\right)_{j}=E_{2,2 j}$, for all $1 \leq j \leq(N-1) / 2$.
When both $\left(\mathbf{U}_{2}^{h, 0}, \mathbf{U}_{2}^{h, 1}\right)$ and $\left(\mathbf{G}_{2,0}^{h, 0}, \mathbf{G}_{2,0}^{h, 1}\right)$ belong to $\mathcal{B}_{2}^{h} \times \mathcal{B}_{2}^{h}$

$$
\left(\mathbf{G}_{2,0}^{h, 0}, \mathbf{U}_{2}^{h, 0}\right)_{h, 1,2}+\left(\mathbf{G}_{2}^{h, 1}, \mathbf{U}_{2}^{h, 1}\right)_{h, 0,2}=\left(\Pi \mathbf{G}_{2,0}^{h, 0}, \Pi \mathbf{U}_{2}^{h, 0}\right)_{2 h, 1,1}+\left(\Pi \mathbf{G}_{2,0}^{h, 1}, \Pi \mathbf{U}_{2}^{h, 1}\right)_{2 h, 0,1} .
$$

The second restriction operator Γ

$$
\left(\Gamma E_{2}^{h}\right)_{j}=E_{2,2 j}+3\left(E_{2,2 j+1 / 2}+E_{2,2 j-1 / 2}\right) / 4+\left(E_{2,2 j+1}+E_{2,2 j-1}\right) / 2+\left(E_{2,2 j+3 / 2}+E_{2,2 j-3 / 2}\right) / 4
$$

$$
\left(\mathbf{F}_{2}^{h, 0}, \mathbf{U}_{2}^{h, 0}\right)_{2, e}+\left(\mathbf{F}_{2}^{h, 1}, \mathbf{U}_{2}^{h, 1}\right)_{2, e}=\left(\left(S_{1}^{2 h}\right)^{-1} \Gamma \mathbf{F}_{2}^{h, 0}, \Pi \mathbf{U}_{2}^{h, 0}\right)_{2 h, 1,1}+\left(\left(M_{1}^{2 h}\right)^{-1} \Gamma \mathbf{F}_{2}^{h, 1}, \Pi \mathbf{U}_{2}^{h, 1}\right)_{2 h, 0,1}
$$

The two components of the gradient are explicitly given by

$$
\mathbf{G}_{2,0}^{h, 0}=\Pi^{-1}\left(S_{1}^{2 h}\right)^{-1} \Gamma \mathbf{F}_{2}^{h, 0} \text { and } \mathbf{G}_{2,0}^{h, 1}=\Pi^{-1}\left(M_{1}^{2 h}\right)^{-1} \Gamma \mathbf{F}_{2}^{h, 1}
$$

where Π^{-1} is the inverse of the restriction operator Π defined as the linear interpolation on a grid of size $h / 2$ of a function defined on a grid of size $2 h$.

Numerical results (II)

(a) Solution for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1}^{h}, \mathbf{Y}_{1}^{h, 1}=0$

(c) Solution for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1,10}^{h}, \mathbf{Y}_{1}^{h, 1}=0$

(e) Solution for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1, h i}^{h}, \mathbf{Y}_{1}^{h, 1}=0$
(d) Control for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1, l o}^{h}, \mathbf{Y}_{1}^{h, 1}=0$

(b) Control for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1}^{h}, \mathbf{Y}_{1}^{h, 1}=0$

(f) Control for $\mathbf{Y}_{1}^{h, 0}=\mathbf{H}_{1, h \overline{\overline{I V}^{\prime}}}^{h} \mathbf{Y}_{1}^{h, 1} \equiv 0$

Figure: Solutions of the controlled problem (13) and the corresponding numerical controls for $p=2$ arising by minimizing \mathcal{J}_{2}^{h} over the whole space \mathcal{V}_{2}^{h}.

(a) Solution for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2, h i}^{h, a}, \mathbf{Y}_{2}^{h, 1}=0$
(b) Control for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2, h i}^{h, a}, \mathbf{Y}_{2}^{h, 1}=0$

(c) Solution for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2, l o}^{h, o}, \mathbf{Y}_{2}^{h, 1}=0$
(d) Control for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2, / o}^{h, o}, \mathbf{Y}_{2}^{h, 1}=0$

(e) Solution for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2, h i}^{h, o}, \mathbf{Y}_{2}^{h, 1}=0$
(f) Control for $\mathbf{Y}_{2}^{h, 0}=\mathbf{H}_{2, h i}^{h, o}, \mathbf{Y}_{2}^{h, 1}=0$

Conclusions and open problems

In this talk:

- we show numerically the high frequency pathological effects of the P_{2} approximation of the boundary controllability problem for the $1-d$ wave equation we discovered from a theoretical point of view in [4].
- we also illustrate the efficiency of our bi-grid filtering algorithm in recovering the convergence of the numerical controls and compare our numerical results with the ones for the P_{1} approximation.
- our conclusion is that after restricting the space over which we minimize the discrete functionals to the bi-grid one, we obtain more accurate controls for the quadratic approximation than for the linear one.
- the same analysis can be done for the DG method in [3].
- the filtering technique can be generalized to higher order finite elements approximation of waves ($p \geq 3$) on uniform meshes, a higher and higher accuracy of the numerical controls being expected.
Open problems:
- the high frequency effects of the numerical approximations on irregular meshes is a completely unknown open problem.
- higher-order FEM and DG approximations for other models like the Schrödinger equation.

Conclusions and open problems

In this talk:

- we show numerically the high frequency pathological effects of the P_{2} approximation of the boundary controllability problem for the $1-d$ wave equation we discovered from a theoretical point of view in [4].
- we also illustrate the efficiency of our bi-grid filtering algorithm in recovering the convergence of the numerical controls and compare our numerical results with the ones for the P_{1} approximation.
- our conclusion is that after restricting the space over which we minimize the discrete functionals to the bi-grid one, we obtain more accurate controls for the quadratic approximation than for the linear one.
- the same analysis can be done for the DG method in [3].
- the filtering technique can be generalized to higher order finite elements approximation of waves ($p \geq 3$) on uniform meshes, a higher and higher accuracy of the numerical controls being expected.
Open problems:
- the high frequency effects of the numerical approximations on irregular meshes is a completely unknown open problem.
- higher-order FEM and DG approximations for other models like the Schrödinger equation.

> Thank you very much for your attention!

