Vanishing Results for Hall-Littlewood Polynomials

Vidya Venkateswaran (California Institute of Technology)

Classical restriction rules in the representation theory of real Lie groups:

Theorem
For any integer $n \geq 0$ and partition λ with at most n parts, we have

$$
\int_{O \in O(n)} s_{\lambda}(O) d O= \begin{cases}0, & \text { if } \lambda \neq 2 \mu \text { for any } \mu \\ 1, & \text { if } \lambda=2 \mu \text { for some } \mu\end{cases}
$$

(where the integral is with respect to Haar measure on the orthogonal group). Similarly, for n even, we have

$$
\int_{S \in S p(n)} s_{\lambda}(S) d S= \begin{cases}0, & \text { if } \lambda \neq \mu^{2} \text { for any } \mu \\ 1, & \text { if } \lambda=\mu^{2} \text { for some } \mu\end{cases}
$$

(where the integral is with respect to Haar measure on the symplectic group).

Rephrase identities using eigenvalue densities for the orthogonal and symplectic groups. Symplectic integral can be rephrased as

$$
\int_{T} s_{\lambda}\left(z_{1}^{ \pm 1}, z_{2}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right) \prod_{1 \leq i \leq n}\left|z_{i}-z_{i}^{-1}\right|^{2} \prod_{1 \leq i<j \leq n}\left|z_{i}+z_{i}^{-1}-z_{j}-z_{j}^{-1}\right|^{2} d T
$$

where

$$
\begin{aligned}
T & =\left\{\left(z_{1}, \ldots, z_{n}\right):\left|z_{1}\right|=\cdots=\left|z_{n}\right|=1\right\} \\
d T & =\prod_{j} \frac{d z_{j}}{2 \pi \sqrt{-1} z_{j}}
\end{aligned}
$$

are the n-torus and Haar measure, respectively. The orthogonal group case is similar, but more involved.
E. Rains, M. Vazirani: (q, t)-generalizations of these vanishing integrals:

Theorem (Rains-Vazirani '07)
For $n \geq 0, I(\lambda) \leq 2 n,|q|,|t|<1$, the integral

$$
\int_{T} P_{\lambda}\left(\ldots, z_{i}^{ \pm 1}, \ldots ; q, t\right) \prod_{1 \leq i \leq n} \frac{\left(z_{i}^{ \pm 2} ; q\right)}{\left(t z_{i}^{ \pm 2} ; q\right)} \prod_{1 \leq i<j \leq n} \frac{\left(z_{i}^{ \pm 1} z_{j}^{ \pm 1} ; q\right)}{\left(t z_{i}^{ \pm 1} z_{j}^{ \pm 1} ; q\right)} d T
$$

vanishes unless $\lambda=\mu^{2}$ for some μ.
Proof uses Hecke algebra techniques, fails for $q=0$.

Definition

The Hall-Littlewood polynomial $P_{\lambda}\left(x_{1}, \ldots, x_{n} ; t\right)$ indexed by λ is

$$
\frac{1}{v_{\lambda}(t)} \sum_{\omega \in S_{n}} \omega\left(x^{\lambda} \prod_{1 \leq i<j \leq n} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right),
$$

where we write x^{λ} for $x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}$ and ω acts on the subscripts of the x_{i}. The normalization $1 / v_{\lambda}(t)$ has the effect of making the coefficient of x^{λ} equal to unity.

- Gives a $\mathbb{Z}[t]$-basis for $\mathbb{Z}[t]\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$
- At $t=0$ recover Schur functions
- Macdonald polynomial reduces to Hall-Littlewood polynomial at $q=0$

Our results:

- develop a combinatorial technique for proving Rains,Vazirani's results (and some new identities) at Hall-Littlewood level
- allows us to compute nonzero values, rational functions in t
- orthogonal group cases: can introduce an extra parameter, obtain t-generalizations of identities studied by Forrester, Rains (involving Pfaffians)
- prove some conjectures of Rains in the case $q=0$

Symplectic case:
Theorem (V. '10)
Let $I(\lambda) \leq 2 n$, then

$$
\begin{gathered}
\frac{1}{\int \tilde{\Delta}_{K}^{(n)}(\pm \sqrt{t}, 0,0) d T} \int P_{\lambda}\left(x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1} ; t\right) \tilde{\Delta}_{K}^{(n)}(\pm \sqrt{t}, 0,0) d T \\
= \begin{cases}\frac{[n]_{t}!}{v_{\mu}\left(t^{2}\right)}, & \text { if } \lambda=\mu^{2} \text { for some } \mu \\
0, & \text { otherwise. }\end{cases}
\end{gathered}
$$

$O^{+}(2 n)$ case:

Theorem (V. '10)

Let $I(\lambda) \leq 2 n$, then

$$
\begin{gathered}
\frac{1}{\int \tilde{\Delta}_{K}^{(n)}(\pm 1, \pm \sqrt{t}) d T} \int P_{\lambda}^{(2 n)}\left(x_{i}^{ \pm 1} ; t\right) \tilde{\Delta}_{K}^{(n)}(\pm 1, \pm \sqrt{t}) \prod_{i=1}^{n}\left(1-\alpha x_{i}^{ \pm 1}\right) d T \\
=\frac{[2 n]!}{v_{\lambda}(t)}\left[(-\alpha)^{\# \text { odd parts of } \lambda}+(-\alpha)^{\# \text { even parts of } \lambda]}\right.
\end{gathered}
$$

In both cases, $\tilde{\Delta}_{K}^{(n)}$ is the symmetric Koornwinder density:

$$
\begin{aligned}
& \tilde{\Delta}_{k}^{(n)}(x ; a, b, c, d ; t) \\
= & \frac{1}{2^{n} n!} \prod_{1 \leq i \leq n} \frac{1-x_{i}^{ \pm 2}}{\left(1-a x_{i}^{ \pm 1}\right)\left(1-b x_{i}^{ \pm 1}\right)\left(1-c x_{i}^{ \pm 1}\right)\left(1-d x_{i}^{ \pm 1}\right)} \prod_{1 \leq i<j \leq n} \frac{1-x_{i}^{ \pm 1} x_{j}^{ \pm 1}}{1-t x_{i}^{ \pm 1} x_{j}^{ \pm 1}} .
\end{aligned}
$$

Definition

Let $H_{m}(z ; t)$ denote the Rogers-Szegő polynomial

$$
H_{m}(z ; t)=\sum_{i=0}^{m} z^{i}\left[\begin{array}{c}
m \\
i
\end{array}\right]_{t}
$$

where

$$
\left[\begin{array}{c}
m \\
i
\end{array}\right]_{t}= \begin{cases}\frac{[m]!}{[m-i]![i]!}, & \text { if } m \geq i>0 \\
1, & \text { if } i=0 \\
0, & \text { otherwise }\end{cases}
$$

is the t-binomial coefficient. Rogers-Szegő polynomials satisfy the following second-order recurrence:

$$
H_{m}(z ; t)=(1+z) H_{m-1}(z ; t)-\left(1-t^{m-1}\right) z H_{m-2}(z ; t) .
$$

Recent Littlewood summation identity of Warnaar:
Theorem (Warnaar '07)
We have the following formal identity:

$$
\begin{aligned}
\sum_{\lambda} P_{\lambda}(x ; t)\left[\left(\prod_{i>0} H_{m_{2 i}(\lambda)}(\alpha \beta ; t) \prod_{i \geq 0}\right.\right. & \left.\left.H_{m_{2 i+1}(\lambda)}(\beta / \alpha ; t)\right)(-\alpha)^{\# \text { of odd parts of } \lambda}\right] \\
& =\prod_{j<k} \frac{1-t x_{j} x_{k}}{1-x_{j} x_{k}} \prod_{j} \frac{\left(1-\alpha x_{j}\right)\left(1-\beta x_{j}\right)}{\left(1-x_{j}\right)\left(1+x_{j}\right)}
\end{aligned}
$$

Unifies some well-known summation identities of Macdonald, Kawanaka.

Theorem (V. '10)

Let $I(\lambda) \leq 2 n$, then we have the following integral identity

$$
\begin{aligned}
& \frac{1}{Z} \int P_{\lambda}\left(x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1} ; t\right) \tilde{\Delta}_{K}^{(n)}(\pm 1, \pm \sqrt{t}) \prod_{i=1}^{n}\left(1-\alpha x_{i}^{ \pm 1}\right)\left(1-\beta x_{i}^{ \pm 1}\right) d T \\
& =\frac{[2 n]!}{v_{\lambda}(t)}\left[\left(\prod_{i \geq 0} H_{m_{2 i}(\lambda)}(\alpha \beta ; t) \prod_{i \geq 0} H_{m_{2 i+1}(\lambda)}(\beta / \alpha ; t)\right)(-\alpha)^{\# \text { of odd parts of } \lambda}\right. \\
& \left.\quad+\left(\prod_{i \geq 0} H_{m_{2 i+1}(\lambda)}(\alpha \beta ; t) \prod_{i \geq 0} H_{m_{2 i}(\lambda)}(\beta / \alpha ; t)\right)(-\alpha)^{\# \text { of even parts of } \lambda}\right]
\end{aligned}
$$

Using a method of Rains that produces summation results from integral identities, we can obtain Warnaar's result in $\lim n \rightarrow \infty$. Thus, this can be viewed as a finite-dimensional analog of that result.

Some of the results in Rains, Vazirani involve Koornwinder polynomials (instead of Macdonald polynomials). These polynomials are a 6 -parameter $B C_{n}$-symmetric family of Laurent polynomials that contain the Macdonald polynomials as suitable limits of the parameters. Unlike in the Macdonald case, there is no known closed formula for these polynomials at $q=0$. We use the defining properties to obtain an explicit formula at $q=0$:

- $B C_{n}$-symmetric (invariant under permutations, reciprocals) Laurent polynomial
- triangular with respect to dominance ordering, i.e.,

$$
K_{\lambda}^{(n)}\left(z ; t_{0}, \ldots, t_{3} ; t\right)=m_{\lambda}+\sum_{\mu<\lambda} c_{\mu}^{\lambda} m_{\mu}
$$

- satisfies an orthogonality relation wrt symmetric Koornwinder density

Theorem (V. -)

Let λ be a partition with $I(\lambda) \leq n$ and $|t|,\left|t_{0}\right|, \ldots,\left|t_{3}\right|<1$. Then the Koornwinder $q=0$ polynomial $K_{\lambda}\left(z_{1}, \ldots, z_{n} ; t_{0}, \ldots, t_{3} ; t\right)$ indexed by λ is defined by
$\frac{1}{v_{\lambda}\left(t_{0}, \ldots, t_{3} ; t\right)} \sum_{\omega \in B_{n}} \omega\left(\prod_{1 \leq i \leq n} u_{\lambda}\left(z_{i}\right) \prod_{1 \leq i<j \leq n} \frac{1-t z_{i}^{-1} z_{j}}{1-z_{i}^{-1} z_{j}} \frac{1-t z_{i}^{-1} z_{j}^{-1}}{1-z_{i}^{-1} z_{j}^{-1}}\right)$,
where

$$
u_{\lambda}\left(z_{i}\right)= \begin{cases}1 & \text { if } \lambda_{i}=0 \\ z_{i}^{\lambda_{i}} \frac{\left(1-t_{0} z_{i}^{-1}\right)\left(1-t_{1} z_{i}^{-1}\right)\left(1-t_{2} z_{i}^{-1}\right)\left(1-t_{3} z_{i}^{-1}\right)}{1-z_{i}^{-2}} & \text { if } \lambda_{i}>0\end{cases}
$$

Connection to p-adic representation theory

The case $G=G I_{n}\left(\mathbb{Q}_{p}\right)$, maximal compact subgroup $K=G I_{n}\left(\mathbb{Z}_{p}\right)$ (due to Macdonald)

- $\mathcal{H}(G, K)$ is the Hecke algebra of G with respect to K : convolution algebra of compactly supported, K-bi-invariant, complex valued fcns on G

$$
(f \star g)(x)=\int_{G} f\left(x y^{-1}\right) g(y) d y
$$

- Cartan decomposition

$$
G=\bigsqcup_{\lambda \in \Lambda_{n}} K p^{\lambda} K
$$

c_{λ} characteristic function of double coset $K p^{\lambda} K$ - basis

Definition

A zonal spherical function (zsf) ω is a K-bi-invariant, eigenfunction of all the convolution operators, $\omega(1)=1$.

- zsfs are parametrized by n tuples of non-zero complex numbers
- Fourier transform of characteristic function

$$
\begin{aligned}
& \widehat{c_{\lambda}}\left(\omega_{s}\right)=\left(\omega_{s} \star c_{\lambda}\right)(1)=\int_{G} c_{\lambda}(x) \omega_{s}\left(x^{-1}\right) d x \\
= & \omega_{s}\left(p^{-\lambda}\right) \times \text { measure of } K p^{\lambda} K=p^{<\lambda, \rho>} P_{\lambda}\left(p^{-s_{1}}, \ldots, p^{-s_{n}} ; p^{-1}\right)
\end{aligned}
$$

- Plancherel-Godement theorem: there exists a measure μ such that

$$
\int_{G} f_{1}(g) \overline{f_{2}(g)} d g=\int_{T} \hat{f}_{1}\left(\omega_{s}\right) \overline{\hat{f}_{2}\left(\omega_{s}\right)} d \mu\left(\omega_{s}\right)
$$

- Fourier transformation extends to isomorphism of $\mathcal{H}(G, K)$ onto $\mathbb{C}\left[p^{ \pm s_{1}}, \ldots, p^{ \pm s_{n}}\right]^{S_{n}}$

Hall-Littlewood orthogonality for $t=p^{-1}$ can be transformed (via P-G theorem) into a statement about the Hecke algebra and intersection of double cosets:

$$
\begin{aligned}
& \frac{1}{Z} \int_{T} P_{\lambda}^{(n)}\left(x ; p^{-1}\right) P_{\mu}^{(n)}\left(x^{-1} ; p^{-1}\right) \tilde{\Delta}_{S}^{(n)} d T \\
&=\frac{1}{p^{\langle\lambda+\rho\rangle+\langle\mu+\rho\rangle}} \int_{G_{n}\left(\mathbb{Q}_{p}\right)} c_{\lambda}(g) c_{\mu}(g) d g
\end{aligned}
$$

Question: Given this, is there a p-adic interpretation of the Hall-Littlewood integration results?

Recall that the symplectic group is the set of fixed points of an order two endomorphism of $G L_{2 n}$. There is an analogous order two endomorphism of $G L_{2 n}\left(\mathbb{Q}_{p}\right)$, whose fixed point subgroup is isomorphic to $G L_{n}\left(\mathbb{Q}_{p}(\sqrt{a})\right)$, where $\mathbb{Q}_{p}(\sqrt{a})$ is an unramified quadratic extension of \mathbb{Q}_{p}. We prove the following result, which is a p-adic analogue of the classical formula describing the restriction of Schur polynomials on $G L_{2 n}$ to the symplectic group.
Theorem (V. -)
Let $I(\lambda) \leq 2 n$, and $(G, H)=\left(G l_{2 n}\left(\mathbb{Q}_{p}\right), G I_{n}\left(\mathbb{Q}_{p}(\sqrt{a})\right)\right)$ and $K=G l_{2 n}\left(\mathbb{Z}_{p}\right)$. Let c_{λ} be the characteristic function in $\mathcal{H}(G, K)$.
Then

$$
\begin{aligned}
& \frac{1}{Z} \int_{T} P_{\lambda}^{(2 n)}\left(x_{i}^{ \pm 1} ; p^{-1}\right) \tilde{\Delta}_{K}^{(n)}\left(x ; \pm p^{-1 / 2}, 0,0 ; p^{-1}\right) d T \\
&=\frac{1}{p^{<\lambda, \rho^{\prime}>}} \int_{H} c_{\lambda}(h) d h
\end{aligned}
$$

where $\rho^{\prime}=(n-1 / 2, n-3 / 2, \ldots, 1 / 2-n) \in \mathbb{C}^{2 n}$.

