A Murnaghan-Nakayama Rule for k-Schur Functions

Anne Schilling (joint work with Jason Bandlow, Mike Zabrocki)

University of California, Davis

May 25, 2011 - Combinatorixx, Banff

Outline

History

The Murnaghan-Nakayama rule

The affine Murnaghan-Nakayama rule

Non-commutative symmetric functions

The dual formulation

Early history - Representation theory

Theorem (Frobenius, 1900)

The map from class functions on S_n to symmetric functions given by

$$f \mapsto \frac{1}{n!} \sum_{w \in S_n} f(w) p_{\lambda(w)}$$

sends

(trace function on λ -irrep of S_n) $\mapsto s_{\lambda}$

Ferdinand Frobenius

Early history - Representation theory

Theorem (Frobenius, 1900)

The map from class functions on S_n to symmetric functions given by

$$f \mapsto \frac{1}{n!} \sum_{w \in S_n} f(w) p_{\lambda(w)}$$

sends

(trace function on λ -irrep of S_n) $\mapsto s_{\lambda}$

Corollary

$$s_{\lambda} = \sum_{\mu} \frac{1}{z_{\mu}} \chi_{\lambda}(\mu) p_{\mu} \qquad p_{\mu} = \sum_{\lambda} \chi_{\lambda}(\mu) s_{\lambda}$$

Ferdinand Frobenius

Early History - Combinatorics

Theorem (Littlewood-Richardson, 1934)

$$p_r s_\mu = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda$$

where the summation is over all λ such that λ/μ is a border strip of size r.

Dudley Littlewood

Archibald Richardson

Early History - Combinatorics

Theorem (Littlewood-Richardson, 1934)

$$p_r s_\mu = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda$$

where the summation is over all λ such that λ/μ is a border strip of size r.

Corollary

Iteration gives

$$\chi_{\lambda}(\mu) = \sum_{T} (-1)^{\operatorname{ht}(T)}$$

where the sum is over all border strip tableaux of shape λ and type μ .

Dudley Littlewood

Archibald Richardson

Early History - Further work

► Francis Murnaghan (1937) On representations of the symmetric group

Early History - Further work

► Francis Murnaghan (1937) On representations of the symmetric group

► Tadasi Nakayama (1941) On some modular properties of irreducible representations of a symmetric group

Border Strips

A *border strip* of size r is a connected skew partition consisting of r boxes and containing no 2×2 squares.

Example

(4,3,3)/(2,2) is a border strip of size 6:

Border Strips

A border strip of size r is a connected skew partition consisting of r boxes and containing no 2×2 squares.

Example

(4,3,3)/(2,2) is a border strip of size 6:

Definition

$$\operatorname{ht}\left(\lambda/\mu\right)=\#$$
 vertical dominos in λ/μ

Border Strips

A border strip of size r is a connected skew partition consisting of r boxes and containing no 2×2 squares.

Example

(4,3,3)/(2,2) is a border strip of size 6:

Definition

$$\operatorname{ht}(\lambda/\mu) = \#$$
 vertical dominos in λ/μ

Theorem

$$ho_r s_\mu = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda$$

sum over all λ such that λ/μ a border strip of size r.

Theorem

$$ho_r s_\mu = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda$$

sum over all λ such that λ/μ a border strip of size r.

$$p_3 s_{2,1} =$$

Theorem

$$p_r s_\mu = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda$$

sum over all λ such that λ/μ a border strip of size r.

$$p_3 s_{2,1} = s_{2,1,1,1,1}$$

Theorem

$$p_r s_\mu = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda$$

sum over all λ such that λ/μ a border strip of size r.

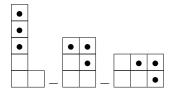
$$p_3 s_{2,1} = s_{2,1,1,1,1} - s_{2,2,2}$$

Theorem

$$p_r s_\mu = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda$$

sum over all λ such that λ/μ a border strip of size r.

$$p_3 s_{2,1} = s_{2,1,1,1,1} - s_{2,2,2} - s_{3,3}$$

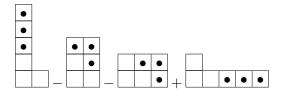


Theorem

$$p_r s_\mu = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda$$

sum over all λ such that λ/μ a border strip of size r.

$$p_3s_{2,1} = s_{2,1,1,1,1} - s_{2,2,2} - s_{3,3} + s_{5,1}$$



Definition

A border strip tableau of shape λ is a filling of λ satisfying:

- Restriction to any single entry is a border strip
- ▶ Restriction to first *k* entries is partition shape for every *k*

Type of a border strip tableau: (# of boxes labelled i) $_i$ Height of a border strip tableau: sum of heights of border strips

Definition

A border strip tableau of shape λ is a filling of λ satisfying:

- Restriction to any single entry is a border strip
- ▶ Restriction to first *k* entries is partition shape for every *k*

Type of a border strip tableau: (# of boxes labelled i);
Height of a border strip tableau: sum of heights of border strips

Definition

A border strip tableau of shape λ is a filling of λ satisfying:

- Restriction to any single entry is a border strip
- ▶ Restriction to first *k* entries is partition shape for every *k*

Type of a border strip tableau: (# of boxes labelled i);
Height of a border strip tableau: sum of heights of border strips

type(
$$T$$
) = (4, 1, 5)
 $T = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & 3 & 3 \end{bmatrix}$ ht(T) = 2 + 0 + 2 = 4

Definition

A border strip tableau of shape λ is a filling of λ satisfying:

- Restriction to any single entry is a border strip
- ▶ Restriction to first *k* entries is partition shape for every *k*

Type of a border strip tableau: (# of boxes labelled i);
Height of a border strip tableau: sum of heights of border strips

type(
$$T$$
) = (4, 1, 5)
 $T = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & 3 & 3 \end{bmatrix}$ ht(T) = 2 + 0 + 2 = 4

Definition

A border strip tableau of shape λ is a filling of λ satisfying:

- ▶ Restriction to any single entry is a border strip
- ▶ Restriction to first *k* entries is partition shape for every *k*

Type of a border strip tableau: (# of boxes labelled i);
Height of a border strip tableau: sum of heights of border strips

type(
$$T$$
) = (4,1,5)
 $T = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & 3 & 3 \end{bmatrix}$ ht(T) = 2 + 0 + 2 = 4

The affine Murnaghan-Nakayama rule

Theorem (Bandlow-S-Zabrocki, 2010)

For $r \leq k$,

$$p_r s_\mu^{(k)} = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda^{(k)}$$

where the summation is over all λ such that λ/μ is a k-border strip of size r.

The affine Murnaghan-Nakayama rule

Theorem (Bandlow-S-Zabrocki, 2010) For $r \le k$,

$$p_r s_\mu^{(k)} = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda^{(k)}$$

where the summation is over all λ such that λ/μ is a k-border strip of size r.

Mike Zabrocki

k-Schur functions

k-Schur functions were first introduced in 2000 by Luc Lapointe, Alain Lascoux and Jennifer Morse.

k-Schur functions

k-Schur functions were first introduced in 2000 by Luc Lapointe, Alain Lascoux and Jennifer Morse.

$$s_{\lambda}^{(k)}(x;t) = \sum_{T \in A_{\lambda}^{(k)}} t^{ch(T)} s_{sh(T)}$$

k-Schur functions

Here we use the definition due to Lapointe and Morse in 2004:

$$h_r s_\lambda^{(k)}(x) = \sum_\mu s_\mu^{(k)}(x)$$
 Pieri rule

where the sum is over those μ such that $\mathfrak{c}(\mu)/\mathfrak{c}(\lambda)$ is a horizontal strip.

k-bounded partitions: First part $\leq k$

k+1-cores: No hook length = k+1

k-bounded partitions: First part $\leq k$

k + 1-cores: No hook length = k + 1Bijection: Slide rows with big hooks

k-bounded partitions: First part $\leq k$

k + 1-cores: No hook length = k + 1Bijection: Slide rows with big hooks

$$k = 3$$

2	1				
3	2				
5	4	1			
6	5	2	\rightarrow		

k-bounded partitions: First part $\leq k$

k + 1-cores: No hook length = k + 1Bijection: Slide rows with big hooks

$$k = 3$$

2	1			2	1		
3	2			3	2		
5	4	1			5	2	1
6	5	2	\rightarrow		6	3	2

k-bounded partitions: First part $\leq k$

k + 1-cores: No hook length = k + 1 Bijection: Slide rows with big hooks

$$k = 3$$

1	
2	
4	1
5	2
	1 2 4 5

2	1			
3	2			
		3	2	1
		4	3	2

k-bounded partitions: First part $\leq k$

k + 1-cores: No hook length = k + 1Bijection: Slide rows with big hooks

$$k = 3$$

3 2 3 2	
5 4 1 3 2 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1

k-bounded partitions: First part $\leq k$

k + 1-cores: No hook length = k + 1Bijection: Slide rows with big hooks

$$k = 3$$

2	1	
3	2	
5	4	1
6	5	2

2	1					
3	2					
		3	2	1		
				4	2	1

k-bounded partitions: First part $\leq k$

k + 1-cores: No hook length = k + 1Bijection: Slide rows with big hooks

$$k = 3$$

2	1	
3	2	
5	4	1
6	5	2

2	1						
3	2						
		3	2	1			
					3	2	1

k-bounded partitions: First part $\leq k$

k + 1-cores: No hook length = k + 1Bijection: Slide rows with big hooks

$$k = 3$$

The k-conjugate of a k-bounded partition λ is found by

$$\lambda \to \mathfrak{c}(\lambda) \to \mathfrak{c}(\lambda)' \to \lambda^{(k)}$$

The k-conjugate of a k-bounded partition λ is found by

$$\lambda \to \mathfrak{c}(\lambda) \to \mathfrak{c}(\lambda)' \to \lambda^{(k)}$$

$$k = 3$$

The k-conjugate of a k-bounded partition λ is found by

$$\lambda \to \mathfrak{c}(\lambda) \to \mathfrak{c}(\lambda)' \to \lambda^{(k)}$$

$$k = 3$$

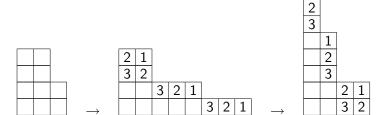
2	1
3	2

_	-				
		3	2	1	
					3

The k-conjugate of a k-bounded partition λ is found by

$$\lambda \to \mathfrak{c}(\lambda) \to \mathfrak{c}(\lambda)' \to \lambda^{(k)}$$

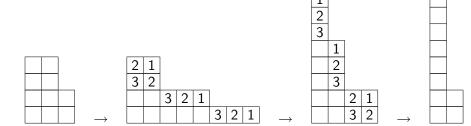
$$k = 3$$



The k-conjugate of a k-bounded partition λ is found by

$$\lambda \to \mathfrak{c}(\lambda) \to \mathfrak{c}(\lambda)' \to \lambda^{(k)}$$

$$k = 3$$



content

When $k = \infty$, the *content* of a cell in a diagram is (column index) - (row index)

content

When $k = \infty$, the *content* of a cell in a diagram is (column index) - (row index)

Example

For $k<\infty$ we use the $\emph{residue} \bmod k+1$ of the associated core Example

1	2						
2	3						
3	0	1	2	3			
0	1	2	3	0	1	2	3

A skew k+1 core is k-connected if the residues form a proper subinterval of the numbers $\{0,\ldots,k\}$, considered on a circle.

A skew k+1 core is k-connected if the residues form a proper subinterval of the numbers $\{0,\ldots,k\}$, considered on a circle.

Example

A 3-connected skew core:

0								
1	2							
2	3	0						
3	0	1	2	3	0			
0	1	2	3	0	1	2	3	0

A skew k+1 core is k-connected if the residues form a proper subinterval of the numbers $\{0,\ldots,k\}$, considered on a circle.

Example

A 3-connected skew core:

0								
	2							
		0						
			2	3	0			
						2	3	0

A skew k+1 core is k-connected if the residues form a proper subinterval of the numbers $\{0,\ldots,k\}$, considered on a circle.

Example

A 3-connected skew core:

0								
	2							
		0						
			2	3	0			
						2	3	0

A skew core which is not 3-connected:

0								
1	2							
2	3	0						
3	0	1	2	3	0			
0	1	2	3	0	1	2	3	0

A skew k+1 core is k-connected if the residues form a proper subinterval of the numbers $\{0,\ldots,k\}$, considered on a circle.

Example

A 3-connected skew core:

0								
	2							
		0						
			2	3	0			
						2	3	0

A skew core which is not 3-connected:

0					
	2				
			0		
					0

k-border strips

The skew of two k-bounded partitions λ/μ is a k-border strip of size r if it satisfies the following conditions:

- (size) $|\lambda/\mu| = r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda/\mu) + \operatorname{ht}(\lambda^{(k)}/\mu^{(k)}) = r 1$
- (second ribbon condition) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ contains no 2 × 2 squares

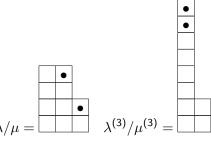
k-border strips

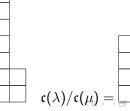
The skew of two k-bounded partitions λ/μ is a k-border strip of size r if it satisfies the following conditions:

- (size) $|\lambda/\mu| = r$
 - (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
 - (connectedness) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ is k-connected
 - (first ribbon condition) $\operatorname{ht}(\lambda/\mu) + \operatorname{ht}(\lambda^{(k)}/\mu^{(k)}) = r 1$ • (second ribbon condition) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ contains no 2×2 squares

Example

$$k = 3, r = 2$$





2 3

k-ribbons at ∞

At $k = \infty$ the conditions

- (size) $|\lambda/\mu| = r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda/\mu) + \operatorname{ht}(\lambda^{(k)}/\mu^{(k)}) = r 1$
- (second ribbon condition) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ contains no 2 × 2 squares

k-ribbons at ∞

At $k = \infty$ the conditions become

- ▶ (size) $|\lambda/\mu| = r$
- ▶ (containment) $\mu \subset \lambda$
- (connectedness) λ/μ is connected
- (first ribbon condition) $\operatorname{ht}(\lambda/\mu) + \operatorname{ht}(\lambda'/\mu') = r 1$
- (second ribbon condition) λ/μ contains no 2 × 2 squares

k-ribbons at ∞

At $k = \infty$ the conditions become

- ▶ (size) $|\lambda/\mu| = r$
- (containment) $\mu \subset \lambda$
- (connectedness) λ/μ is connected
- (first ribbon condition) $ht(\lambda/\mu) + ht(\lambda'/\mu') = r 1$
- (second ribbon condition) λ/μ contains no 2 × 2 squares

Proposition

At $k = \infty$ the first four conditions imply the fifth.

The ribbon statistic at $k = \infty$

Let λ/μ be connected of size r, and

$$\operatorname{ht}(\lambda/\mu) + \operatorname{ht}(\lambda'/\mu') = \#\operatorname{vert.} \operatorname{dominos} + \#\operatorname{horiz.} \operatorname{dominos} = r - 1$$

Then λ/μ is a ribbon

The ribbon statistic at $k = \infty$

Let λ/μ be connected of size r, and

$$\operatorname{ht}(\lambda/\mu) + \operatorname{ht}(\lambda'/\mu') = \#\operatorname{vert.} \operatorname{dominos} + \#\operatorname{horiz.} \operatorname{dominos} = r - 1$$

Then λ/μ is a ribbon

$$3 + 3 = 6$$

The ribbon statistic at $k = \infty$

Let λ/μ be connected of size r, and

$$\operatorname{ht}\left(\lambda/\mu\right) + \operatorname{ht}\left(\lambda'/\mu'\right) = \#\operatorname{vert.} \ \operatorname{dominos} + \#\operatorname{horiz.} \ \operatorname{dominos} = r - 1$$

Then λ/μ is a ribbon

$$(3+1)+(3+1)=8 \neq 7$$

Recap for general k

Theorem (Bandlow-S-Zabrocki, 2010)

For $r \leq k$,

$$p_r s_\mu^{(k)} = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda^{(k)}$$

where the summation is over all λ such that λ/μ satisfies

- (size) $|\lambda/\mu| = r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda/\mu) + \operatorname{ht}(\lambda^{(k)}/\mu^{(k)}) = r 1$
- (second ribbon condition) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ is a ribbon

Recap for general k

Theorem (Bandlow-S-Zabrocki, 2010)

For $r \leq k$,

$$p_r s_\mu^{(k)} = \sum_\lambda (-1)^{\operatorname{ht}(\lambda/\mu)} s_\lambda^{(k)}$$

where the summation is over all λ such that λ/μ satisfies

- (size) $|\lambda/\mu| = r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda/\mu) + \operatorname{ht}(\lambda^{(k)}/\mu^{(k)}) = r 1$
- (second ribbon condition) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ is a ribbon

Conjecture

The first four conditions imply the fifth.

Recap for general k

Theorem (Bandlow-S-Zabrocki, 2010)

For $r \leq k$,

$$ho_{r}s_{\mu}^{(k)}=\sum_{\lambda}(-1)^{\mathrm{ht}(\lambda/\mu)}s_{\lambda}^{(k)}$$

where the summation is over all λ such that λ/μ satisfies

- (size) $|\lambda/\mu| = r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda/\mu) + \operatorname{ht}(\lambda^{(k)}/\mu^{(k)}) = r 1$
- (second ribbon condition) $\mathfrak{c}(\lambda)/\mathfrak{c}(\mu)$ is a ribbon

Conjecture

The first four conditions imply the fifth.

This has been verified for all $k,r\leq 11$, all μ of size ≤ 12 and all λ of size $|\mu|+r$.

The non-commutative setting

Theorem (Fomin-Greene, 1998)

Any algebra with a linearly ordered set of generators u_1, \ldots, u_n satisfying certain relations contains a homomorphic image of Λ .

Example

The type A nilCoxeter algebra. Generators s_1, \ldots, s_{n-1} . Relations

- $s_i^2 = 0$
- $ightharpoonup s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$
- $ightharpoonup s_i s_i = s_i s_i \text{ for } |i-j| > 2.$

Sergey Fomin

Curtis Greene

The affine nilCoxeter algebra

The affine nilCoxeter algebra A_k is the \mathbb{Z} -algebra generated by u_0, \ldots, u_k with relations

- ▶ $u_i^2 = 0$ for all $i \in [0, k]$
- ▶ $u_i u_{i+1} u_i = u_{i+1} u_i u_{i+1}$ for all $i \in [0, k]$
- $u_i u_j = u_j u_i$ for all i, j with |i j| > 1

All indices are taken modulo k + 1 in this definition.

A word in the affine nilCoxeter algebra is called *cyclically* decreasing if

- ▶ its length is $\leq k$
- each generator appears at most once
- ▶ if u_i and u_{i-1} appear, then u_i occurs first (as usual, the indices should be taken mod k).

As elements of the nilCoxeter algebra, cyclically decreasing words are completely determined by their support.

$$k = 6$$

$$(u_0u_6)(u_4u_3u_2) = (u_4u_3u_2)(u_0u_6) = u_4u_0u_3u_6u_2 = \cdots$$

Noncommutative **h** functions

For a subset $S \subset [0, k]$, we write u_S for the unique cyclically decreasing nilCoxeter element with support S.

For $r \leq k$ we define

$$\mathbf{h}_r = \sum_{|S|=r} u_S$$

Noncommutative h functions

For a subset $S \subset [0, k]$, we write u_S for the unique cyclically decreasing nilCoxeter element with support S.

For $r \leq k$ we define

$$\mathbf{h}_r = \sum_{|S|=r} u_S$$

Theorem (Lam, 2005)

The elements $\{\mathbf{h}_1, \dots, \mathbf{h}_k\}$ commute and are algebraically independent.

Noncommutative h functions

For a subset $S \subset [0, k]$, we write u_S for the unique cyclically decreasing nilCoxeter element with support S.

For $r \leq k$ we define

$$\mathbf{h}_r = \sum_{|S|=r} u_S$$

Theorem (Lam, 2005)

The elements $\{\mathbf{h}_1, \dots, \mathbf{h}_k\}$ commute and are algebraically independent.

This immediately implies that the algebra

 $\mathbb{Q}[\mathbf{h}_1,\ldots,\mathbf{h}_k]\cong\mathbb{Q}[h_1,\ldots,h_k]$ where the latter functions are the usual homogeneous symmetric functions.

$$\sum_{i=0}^r (-1)^i \mathbf{e}_{r-i} \mathbf{h}_i = 0$$

$$\sum_{i=0}^r (-1)^i \mathbf{e}_{r-i} \mathbf{h}_i = 0$$

$$\mathbf{p}_r = r\mathbf{h}_r - \sum_{i=1}^{r-1} \mathbf{p}_i \mathbf{h}_{r-i}$$

$$\sum_{i=0}^r (-1)^i \mathbf{e}_{r-i} \mathbf{h}_i = 0$$

$$\mathbf{p}_r = r\mathbf{h}_r - \sum_{i=1}^{r-1} \mathbf{p}_i \mathbf{h}_{r-i}$$

$$\mathbf{s}_{\lambda} = \det\left(\mathbf{h}_{\lambda_i - i + j}\right)$$

We can now define non-commutative analogs of symmetric functions by their relationship with the ${\bf h}$ basis.

$$\sum_{i=0}^r (-1)^i \mathbf{e}_{r-i} \mathbf{h}_i = 0$$

$$\mathbf{p}_r = r\mathbf{h}_r - \sum_{i=1}^{r-1} \mathbf{p}_i \mathbf{h}_{r-i}$$

$$\mathbf{s}_{\lambda} = \det\left(\mathbf{h}_{\lambda_i - i + j}\right)$$

 $\mathbf{s}_{\lambda}^{(k)}$ by the k-Pieri rule

k-Pieri rule

The k-Pieri rule is

$$\mathbf{h}_r\mathbf{s}_\lambda^{(k)}=\sum_\mu\mathbf{s}_\mu^{(k)}$$

where the sum is over all k-bounded partitions μ such that μ/λ is a horizontal strip of length r and $\mu^{(k)}/\lambda^{(k)}$ is a vertical strip of length r. This can be re-written as

$$\mathbf{h}_r \mathbf{s}_{\lambda}^{(k)} = \sum_{|S|=r} \mathbf{s}_{u_S \cdot \lambda}^{(k)}$$

The action on cores

There is an action of A_k on k+1-cores given by

$$u_i \cdot c = \begin{cases} 0 & \text{no addable } i\text{-residue} \\ c \cup \text{ all addable } i\text{-residues} & \text{otherwise} \end{cases}$$

$$k = 4$$

There is an action of A_k on k+1-cores given by

$$u_i \cdot c = \begin{cases} 0 & \text{no addable } i\text{-residue} \\ c \cup \text{ all addable } i\text{-residues} & \text{otherwise} \end{cases}$$

$$k = 4$$

There is an action of A_k on k+1-cores given by

$$u_i \cdot c = egin{cases} 0 & \text{no addable i-residue} \\ c \cup \text{ all addable i-residues} & \text{otherwise} \end{cases}$$

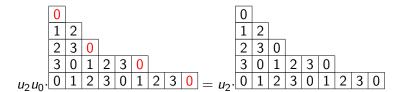
$$k = 4$$

	0									
	1	2								
	2	3	0							
	3	0	1	2	3	0				
นว นก •	0	1	2	3	0	1	2	3	0	

There is an action of A_k on k+1-cores given by

$$u_i \cdot c = egin{cases} 0 & \text{no addable i-residue} \\ c \cup & \text{all addable i-residues} & \text{otherwise} \end{cases}$$

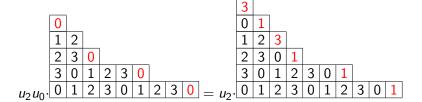
$$k = 4$$



There is an action of A_k on k+1-cores given by

$$u_i \cdot c = egin{cases} 0 & \text{no addable i-residue} \\ c \cup \text{ all addable i-residues} & \text{otherwise} \end{cases}$$

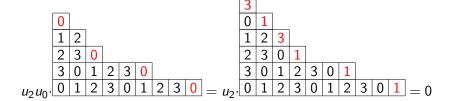
$$k = 4$$



There is an action of A_k on k+1-cores given by

$$u_i \cdot c = \begin{cases} 0 & \text{no addable } i\text{-residue} \\ c \cup \text{ all addable } i\text{-residues} & \text{otherwise} \end{cases}$$

$$k = 4$$



Multiplication rule

A corollary of the k-Pieri rule is that if ${\bf f}$ is any non-commutative symmetric function of the form

$$\mathbf{f} = \sum_{u} c_{u} u$$

then

$$\mathsf{fs}_{\lambda}^{(k)} = \sum_{u} c_{u} \mathsf{s}_{u \cdot \lambda}^{(k)}$$

Fomin and Greene define a *hook word* in the context of an algebra with a totally ordered set of generators to be a word of the form

$$u_{a_1}\cdots u_{a_r}u_{b_1}\cdots u_{b_s}$$

where

$$a_1 > a_2 > \cdots > a_r > b_1 \le b_2 \le \cdots \le b_s$$

To extend this notion to A_k which has a *cyclically* ordered set of generators, we only consider words whose support is a proper subset of $[0, \dots, k]$.

There is a *canonical order* on any proper subset of [0, k] given by thinking of the smallest (in integer order) element which does not appear as the smallest element of the circle.

There is a *canonical order* on any proper subset of [0, k] given by thinking of the smallest (in integer order) element which does not appear as the smallest element of the circle.

Example

For $\{0,1,3,4,6\} \subset [0,6]$, we have the order

Hook words in A_k have (support = proper subset) and form

$$u_{a_1}\cdots u_{a_r}u_{b_1}\cdots u_{b_s}$$

where

$$a_1 > a_2 > \cdots > a_r > b_1 < b_2 < \cdots < b_s$$

There is a *canonical order* on any proper subset of [0, k] given by thinking of the smallest (in integer order) element which does not appear as the smallest element of the circle.

Example

For $\{0,1,3,4,6\} \subset [0,6]$, we have the order

Hook words in A_k have (support = proper subset) and form

$$u_{a_1}\cdots u_{a_r}u_{b_1}\cdots u_{b_s}$$

where

$$a_1 > a_2 > \cdots > a_r > b_1 < b_2 < \cdots < b_s$$

Hook word representations are unique; therefore the number of ascents in a hook word is well-defined as s-1.

The non-commutative rule

Theorem (Bandlow-S-Zabrocki, 2010)

$$\mathsf{p}_{r}\mathsf{s}_{\mu}^{(k)} = \sum_{w} (-1)^{\mathsf{asc}(w)}\mathsf{s}_{w\cdot\mu}^{(k)}$$

where the sum is over all words in the affine nilCoxeter algebra satisfying

- ightharpoonup (size) len(w) = r
- (containment) $w \cdot \mu \neq 0$
- (connectedness) w is a k-connected word
- (ribbon condition) w is a hook word

$$(size) len(w) = r$$

(size)
$$|\lambda/\mu| = r$$

- (size) len(w) = r
- (containment) $w \cdot \mu \neq 0$

- (size) $|\lambda/\mu| = r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$

- (size) len(w) = r
- (containment) $w \cdot \mu \neq 0$
- (connectedness)w is a k-connected word

- (size) $|\lambda/\mu| = r$
- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $c(\lambda)/c(\mu)$ is k-connected

- (size) len(w) = r
- (containment) $w \cdot \mu \neq 0$
- (connectedness)w is a k-connected word
- (ribbon condition)
 w is a hook word

• (size)
$$|\lambda/\mu| = r$$

- (containment) $\mu \subset \lambda$ and $\mu^{(k)} \subset \lambda^{(k)}$
- (connectedness) $c(\lambda)/c(\mu)$ is k-connected
- (first ribbon condition) $\operatorname{ht}(\lambda/\mu) + \operatorname{ht}(\lambda^{(k)}/\mu^{(k)}) = r 1$
- (second ribbon condition) $c(\lambda)/c(\mu)$ is a ribbon

Iteration

Iterating the rule

$$p_r s_\lambda^{(k)} = \sum_\mu (-1)^{\operatorname{ht}(\mu/\lambda)} s_\mu^{(k)}$$

gives

$$p_{\lambda} = \sum_{T} (-1)^{\operatorname{ht}(T)} s_{sh(T)}^{(k)} = \sum_{\mu} \bar{\chi}_{\lambda}^{(k)}(\mu) s_{\mu}^{(k)}$$

where the sum is over all k-ribbon tableaux, defined analogously to the classical case.

Duality

In the classical case, the inner product immediately gives

$$p_{\lambda} = \sum_{\mu} \chi_{\lambda}(\mu) s_{\mu} \iff s_{\mu} = \sum_{\lambda} \frac{1}{z_{\lambda}} \chi_{\lambda}(\mu) p_{\lambda}$$

In the affine case we have

$$p_{\lambda} = \sum_{\mu} \bar{\chi}_{\lambda}^{(k)}(\mu) s_{\mu}^{(k)} \iff \mathfrak{S}_{\mu}^{(k)} = \sum_{\lambda} \frac{1}{z_{\lambda}} \bar{\chi}_{\lambda}^{(k)} p_{\lambda}$$

Duality

In the classical case, the inner product immediately gives

$$p_{\lambda} = \sum_{\mu} \chi_{\lambda}(\mu) s_{\mu} \iff s_{\mu} = \sum_{\lambda} \frac{1}{z_{\lambda}} \chi_{\lambda}(\mu) p_{\lambda}$$

In the affine case we have

$$p_{\lambda} = \sum_{\mu} \bar{\chi}_{\lambda}^{(k)}(\mu) s_{\mu}^{(k)} \iff \mathfrak{S}_{\mu}^{(k)} = \sum_{\lambda} \frac{1}{z_{\lambda}} \bar{\chi}_{\lambda}^{(k)} p_{\lambda}$$

We would like the inverse matrix

$$s_{\lambda}^{(k)} = \sum_{\mu} rac{1}{z_{\mu}} \chi_{\lambda}^{(k)}(\mu) p_{\mu}$$

Conceptual reasons

Λ ring of symmetric functions \mathcal{P}^k set of partitions $\{\lambda \mid \lambda_1 \leq k\}$

$$\Lambda_{(k)} := \mathbb{C}\langle h_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle e_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle p_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$
$$\Lambda^{(k)} := \mathbb{C}\langle m_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$

Conceptual reasons

Λ ring of symmetric functions \mathcal{P}^k set of partitions $\{\lambda \mid \lambda_1 < k\}$

$$\Lambda_{(k)} := \mathbb{C}\langle h_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle e_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle p_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$
$$\Lambda^{(k)} := \mathbb{C}\langle m_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$

Hall inner product $\langle \cdot, \cdot \rangle$:

for $f \in \Lambda_{(k)}$ and $g \in \Lambda^{(k)}$ define $\langle f,g \rangle$ as the usual Hall inner product in Λ

 $\{h_{\lambda}\}$ and $\{m_{\lambda}\}$ with $\lambda \in \mathcal{P}^k$ form dual bases of $\Lambda_{(k)}$ and $\Lambda^{(k)}$

 $\Lambda_{(k)}$ is a subalgebra

 $\Lambda^{(k)}$ is **not** closed under multiplication, but comultiplication

Conceptual reasons

Λ ring of symmetric functions \mathcal{P}^k set of partitions $\{\lambda \mid \lambda_1 \leq k\}$

$$\Lambda_{(k)} := \mathbb{C}\langle h_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle e_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle p_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$
$$\Lambda^{(k)} := \mathbb{C}\langle m_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$

k-Schur functions $\{s_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^k\}$ form basis of $\Lambda_{(k)}$ (Schubert class of cohomology of affine Grassmannian $H_*(Gr)$)

dual k-Schur functions $\{\mathfrak{S}_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^k\}$ form basis of $\Lambda^{(k)}$ (Schubert class of homology of affine Grassmannian $H^*(Gr)$)

Back to Frobenius

For V any S_n representation, we can find the decomposition into irreducible submodules with

$$\sum_{\mu} \frac{1}{z_{\mu}} \chi_{V}(\mu) p_{\mu} = \sum_{\lambda} c_{\lambda} s_{\lambda}$$

So finding

$$s_{\lambda}^{(k)} = \sum_{\mu} rac{1}{z_{\mu}} \chi_{\lambda}^{(k)}(\mu) p_{\mu}$$

would potentially allow one to verify that a given representation had a character equal to k-Schur functions.

Back to Frobenius

For V any S_n representation, we can find the decomposition into irreducible submodules with

$$\sum_{\mu} \frac{1}{z_{\mu}} \chi_{V}(\mu) p_{\mu} = \sum_{\lambda} c_{\lambda} s_{\lambda}$$

So finding

$$s_{\lambda}^{(k)} = \sum_{\mu} rac{1}{z_{\mu}} \chi_{\lambda}^{(k)}(\mu) p_{\mu}$$

would potentially allow one to verify that a given representation had a character equal to k-Schur functions.

Full paper available at arXiv:1004.8886

