An Inverse Approach to the Littlewood-Richardson Rule for the K-theoretic Coproducts

Huilan Li and Jennifer Morse

Department of Mathematics
Drexel University

The K-theory of Grassmannians

The stable Grothendieck polynomial G_{λ} is

$$
G_{\lambda}=\sum \mathbb{K}_{\lambda \gamma} m_{\gamma},
$$

where $\mathbb{K}_{\lambda \gamma}=(-1)^{|\gamma|-|\lambda|}$ times the number of set-valued tableaux of shape λ and type that rearranges to γ
4557
$=34457$ is of shape $(3,3,2)$ and type $(1,3,1,3,3,0,2)$ and $w(T)=4531257424572$. 1222
Let $\left\{g_{\lambda}\right\}$ denote the basis dual to $\left\{G_{\lambda}\right\}$. By duality, $h_{\gamma}=\sum_{\lambda} \mathbb{K}_{\lambda \gamma} g_{\lambda}$. So

$$
g_{\lambda}=\sum_{\gamma} \mathbb{K}_{\gamma \lambda}^{-1} h_{\gamma} .
$$

The LR Rule for K-theoretic Coproduct
$\left(o^{\top}\right) \quad \Delta G_{v}=\sum_{\lambda, \mu} d_{\lambda \mu}^{\nu} G_{\lambda} \otimes G_{\mu}$,

$$
d_{\lambda \mu}^{\nu}=\sum_{\sigma \subset \lambda}(-1)^{|\lambda|+|\mu|-|v|} \alpha_{v / \sigma, \mu}^{\lambda}
$$

where $\alpha_{\nu / \sigma, \mu}^{\lambda}$ is the number of set-valued tableaux of shape ν / σ weight μ whose reading word is Yamanouchi.

Our Result

We give a combinatorial proof of (σ^{λ}) using the Pieri Rule for g_{λ} and an involution on set-valued tableaux.

Tabloids and Elegant Fillings

A special rim hook tabloid (s.r.h.) T of shape μ and type $\left(q_{1}, q_{2}, \ldots, q_{k}\right)$ is a filling of μ with a rim hook of length q_{i} starting in column 1 and row i, for all i.
 special rim hook tabloids of shape $(4,3,3,3)$ and type $(2,5,2,4)$ and $(0,5,3,5)$, respectively

$$
\operatorname{sign}(T)=\prod_{H}(-1)^{\mathrm{ht}(H)-1},
$$

where the sum is over all special rim hooks H in T

$$
m_{\gamma}=\sum_{\beta} K_{\gamma \beta}^{-1} s_{\beta}
$$

where $K_{\gamma \beta}^{-1}=\sum_{T} \operatorname{sign}(T)$ over s.r.h. tabloids T of shape β and any type that rearranges to γ.

An elegant filling of shape μ / β is a SSYT with entries in the i th row restricted to $1,2, \ldots, i-1$. | 2 | 3 |
| :--- | :--- |

$E=\begin{array}{llll}1 & 2 & 2 \\ & & & 1\end{array}$ is of shape $(3,3,3,2) /(3,2)$.

$$
s_{\beta}=\sum_{\mu \supset \beta} E_{\beta \mu} G_{\mu},
$$

where $E_{\beta \mu}$ is the number of all elegant fillings E of shape μ / β

Algebraic Aspect

$$
\begin{align*}
& \Delta G_{\nu}=\sum_{\lambda, \mu} d_{\lambda \mu}^{\nu} G_{\lambda} \otimes G_{\mu} \\
& \text { duality } \\
& g_{\lambda} \underbrace{g_{\mu}}_{\mu}=\sum_{v} \underbrace{v}_{\lambda_{\mu}^{v}} g_{v} \tag{९}\\
& \text { (*) } \\
& \text { Pieri }
\end{align*}
$$

$$
\begin{aligned}
& m_{\gamma}=\sum_{\mu} \mathbb{K}_{\gamma \mu}^{-1} G_{\mu} \\
& m_{\gamma}=\sum_{\beta} K_{\gamma \beta}^{-1} s_{\beta} \quad s_{\beta}=\sum_{\mu \supset \beta} E_{\beta \mu} G_{\mu} \\
& g_{\mu}=\sum_{\gamma} \mathbb{K}_{\gamma \mu}^{-1} h_{\gamma} \quad \mathbb{K}_{\gamma \mu}^{-1}=\sum_{\beta \subset \mu} K_{\gamma \beta}^{-1} E_{\beta \mu} \\
& \text { (*) } \quad g_{\mu}=\sum_{\gamma} \sum_{\beta \subset \mu} K_{\gamma \beta}^{-1} E_{\beta \mu} h_{\gamma} \\
& \text { Pieri Rule } \\
& g_{\lambda} h_{\gamma}=\sum_{v} \sum_{\sigma \subset \lambda}(-1)^{|\lambda|+|\gamma|-\mid v \mathbb{K}_{v / \sigma, \gamma}^{\lambda}} g_{v} \\
& \text { where } \mathbb{K}_{\gamma / \sigma \gamma}^{\lambda} \text { is the number of set-valued tableaux } \\
& \text { of shape } \gamma / \sigma \text { weight } \gamma \text {. }
\end{aligned}
$$

$\operatorname{sign}(\hat{S}, \hat{T}, E)=-\operatorname{sign}(S, T, E)$, where
$\operatorname{sign}(S, T, E)=\operatorname{sign}(T)$;

References

- fixed points of ι are (Y, \widetilde{T}, E) where Y is a Yamanouchi set-valued tableau of shape v / σ type μ and \widetilde{T} is the tabloid shape μ type μ.

1. A. S. Buch, A Littlewood-Richardson rule for the K -theory of Grassmannians, Acta Math. 189 (2002), 37-78 O. Eğecioğlu and J. Remmel, A Combinatorial Interpretation of the Inverse Kostka Matrix, Lin. Multilin. Als 2. O. Egecioghluand
26 (19090 59-84.
C. Lenart, Combinatorial aspects of the K-theory of Grassmannians, Annals of Combinatorics 4 (2000): $67-82$ J. B. Remmel and M. Shimozono, A simple proof of fhe Littlewood-Richardson r rile and applications, Discrete
Math. 193, (1998), 257-266. (In Selected papers in honor of Adriano Garsia (Taormina, 1094))
