A Geometric Interpretation of the Characteristic Polynomial of a Hyperplane Arrangement

Caroline Klivans

joint work with Mathias Drton and Ed Swartz

Open Problem

Does there exist a real central hyperplane arrangement with all cones isometric that is not a reflection arrangement?

Projection Volumes

- $\mathcal{C}=$ Polyhedral cone in $\mathbb{R}^{n}, \pi_{\mathcal{C}}(x)=$ orthogonal projection onto \mathcal{C}
- $\pi_{\mathcal{C}}(x)$ is k-dim if it is in the relative interior of a k-dim face of \mathcal{C}
- $\nu_{k}=$ ratio of volume of \mathbb{R}^{n} for which $\pi_{\mathcal{C}}(x)$ is k-dimensional

Problem Given a cone \mathcal{C} compute the projection volumes ν_{k}

(1/4, 1/2, 1/4)

Statistical Motivation: Hypothesis testing

- Likelihood Ratio Testing
- Mixture of chi-square distributions
- Projection volumes $=$ weights of the distribution

Hyperplane Arrangements

- $\mathcal{L}(\mathcal{H})=$ Set of all intersections of collections of hyperplanes of \mathcal{H} (include \mathbb{R}^{n} for the empty intersection)
$\mathcal{L}(\mathcal{H})$ forms a lattice under reverse inclusion of intersections.

Characteristic Polynomial

- The Characteristic polynomial:

$$
\chi_{\mathcal{H}}(t)=\sum_{x \in L(\mathcal{H})} \mu(x) t^{\operatorname{dim}(x)}
$$

Möbius function $\mu: L(\mathcal{H}) \rightarrow \mathbb{Z}$

$$
\mu\left(\mathbb{R}^{n}\right)=1 \text { and } \sum_{z \leq y} \mu(z)=0
$$

- The Poincaré polynomial $\pi(\mathcal{H}, t)$ is related by:

$$
\chi_{\mathcal{H}}(t)=t^{\mathrm{Rk}(\mathcal{H})} \pi\left(\mathcal{H},-t^{-1}\right)
$$

Reflection groups

- $\mathcal{W} \subset G L\left(\mathbb{R}^{n}\right)$: Finite real reflection group
- Reflection in \mathbb{R}^{n} is an isometry fixing the points of a hyperplane (mirror of reflection)
- Reflection arrangement or Coxeter arrangement \mathcal{H} is the collection of all mirrors of a finite reflection group.
- A Fundamental chamber is the closure \mathcal{C} of a region of $\mathbb{R}^{n} \backslash \mathcal{H}$ (All chambers are isometric)

Coefficients

Theorem Let \mathcal{W} be a finite reflection group, and $\chi_{\mathcal{W}}(t)$ the associated characteristic polynomial. The projection volumes ν_{k} are given by the coefficients of $\chi(t)$:

$$
\nu_{k}=\frac{\left|\alpha_{k}\right|}{\left|\alpha_{n}\right|+\cdots+\left|\alpha_{0}\right|}=\frac{\left|\alpha_{k}\right|}{\# \mathcal{W}}
$$

- Connection to the group:

Let x be a generic point in the fundamental chamber \mathcal{C}. Then the coefficient $\left|\alpha_{k}\right|$ is equal to the number of group elements $g \in \mathcal{W}$ for which the projection $\pi_{\mathcal{C}}(g x)$ is k-dimensional.

Coxeter Arrangements

- $\left|\alpha_{k}\right|$ is also known to be the number of group elements in \mathcal{W} that leave fixed all points of some linear space of dimension $n-k$
- Top Coefficient: Action of \mathcal{W} is simply transitive

$$
\nu_{n}=1 / \# \mathcal{W}
$$

- If $e_{1}, e_{2}, \ldots, e_{n}$ are the exponents of the group \mathcal{W}

$$
\chi_{\mathcal{W}}(t)=\left(t-e_{1}\right)\left(t-e_{2}\right) \ldots\left(t-e_{n}\right)
$$

- Bottom Coefficient: De Concini, Procesi, Stembridge, Denham

$$
\nu_{0}=\frac{\left|e_{1} \cdots e_{n}\right|}{\# \mathcal{W}}
$$

Averages over Arrangements

- Consider cones \mathcal{C} given by the closure of a region of a linear hyperplane arrangement.
- Consider the average projection volumes over all regions.

Example: Any two lines in \mathbb{R}^{2}
Average volumes will always be $\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$

Example: Any n lines in \mathbb{R}^{2}
Average volumes will always be $\left(\frac{1}{2 n}, \frac{n}{2 n}, \frac{n-1}{2 n}\right)$

Coefficients

Theorem The average projection volumes are given by the absolute values of the coefficients of $\chi(t)$:

$$
\frac{\sum_{\mathcal{C}} \nu_{k}}{\# \mathcal{C}}=\frac{\left|\alpha_{k}\right|}{\left|\alpha_{n}\right|+\cdots+\left|\alpha_{0}\right|}=\frac{\left|\alpha_{k}\right|}{\# \mathcal{C}}
$$

Corollary If all regions of \mathcal{H} are isometric, then the projection volumes of any region \mathcal{C} are given by the coefficents of $\chi(t)$:

$$
\nu_{k}=\frac{\left|\alpha_{k}\right|}{\# \mathcal{C}}
$$

Angle Sums of polytopes

- Zonotopes
- Angle sums of polytopes
- Equiprojective polytope
- Angles to f-vectors to lattice

