A GEOMETRIC INTERPRETATION OF THE CHARACTERISTIC POLYNOMIAL OF A HYPERPLANE ARRANGEMENT

Caroline Klivans

joint work with Mathias Drton and Ed Swartz

OPEN PROBLEM

Does there exist a real central hyperplane arrangement with all cones isometric that is not a reflection arrangement?

PROJECTION VOLUMES

- C = Polyhedral cone in \mathbb{R}^n , $\pi_C(x)$ = orthogonal projection onto C
- $\pi_{\mathcal{C}}(x)$ is k-dim if it is in the relative interior of a k-dim face of \mathcal{C}
- ν_k = ratio of volume of \mathbb{R}^n for which $\pi_{\mathcal{C}}(x)$ is k-dimensional

PROBLEM Given a cone ${\mathcal C}$ compute the projection volumes u_k

STATISTICAL MOTIVATION: HYPOTHESIS TESTING

- Likelihood Ratio Testing
- Mixture of chi-square distributions
- Projection volumes = weights of the distribution

HYPERPLANE ARRANGEMENTS

• $\mathcal{L}(\mathcal{H})$ = Set of all intersections of collections of hyperplanes of \mathcal{H} (include \mathbb{R}^n for the empty intersection)

 $\mathcal{L}(\mathcal{H})$ forms a lattice under reverse inclusion of intersections.

CHARACTERISTIC POLYNOMIAL

• The Characteristic polynomial:

$$\chi_{\mathcal{H}}(t) = \sum_{x \in L(\mathcal{H})} \mu(x) t^{\dim(x)}$$

Möbius function $\mu: L(\mathcal{H}) \rightarrow \mathbb{Z}$

$$\mu(\mathbb{R}^n) = 1 \text{ and } \sum_{z \leq y} \mu(z) = 0$$

• The Poincaré polynomial $\pi(\mathcal{H}, t)$ is related by:

$$\chi_{\mathcal{H}}(t) = t^{\mathsf{Rk}(\mathcal{H})} \pi(\mathcal{H}, -t^{-1})$$

REFLECTION GROUPS

- $\mathcal{W} \subset GL(\mathbb{R}^n)$: Finite real reflection group
- Reflection in \mathbb{R}^n is an isometry fixing the points of a hyperplane (mirror of reflection)
- Reflection arrangement or Coxeter arrangement \mathcal{H} is the collection of all mirrors of a finite reflection group.
- A Fundamental chamber is the closure C of a region of $\mathbb{R}^n \setminus \mathcal{H}$ (All chambers are isometric)

COEFFICIENTS

THEOREM Let \mathcal{W} be a finite reflection group, and $\chi_{\mathcal{W}}(t)$ the associated characteristic polynomial. The projection volumes ν_k are given by the coefficients of $\chi(t)$:

$$\nu_k = \frac{|\alpha_k|}{|\alpha_n| + \dots + |\alpha_0|} = \frac{|\alpha_k|}{\#\mathcal{W}}$$

• Connection to the group:

Let x be a generic point in the fundamental chamber C. Then the coefficient $|\alpha_k|$ is equal to the number of group elements $g \in W$ for which the projection $\pi_c(gx)$ is k-dimensional.

COXETER ARRANGEMENTS

- $|\alpha_k|$ is also known to be the number of group elements in \mathcal{W} that leave fixed all points of some linear space of dimension n-k
- \bullet Top Coefficient: Action of ${\mathcal W}$ is simply transitive

$$\nu_n = 1/\#\mathcal{W}$$

• If e_1, e_2, \ldots, e_n are the exponents of the group $\mathcal W$

$$\chi_{\mathcal{W}}(t) = (t - e_1)(t - e_2) \dots (t - e_n)$$

• Bottom Coefficient: De Concini, Procesi, Stembridge, Denham

$$\nu_0 = \frac{|e_1 \cdots e_n|}{\#\mathcal{W}}$$

AVERAGES OVER ARRANGEMENTS

- Consider cones \mathcal{C} given by the closure of a region of a linear hyperplane arrangement.
- Consider the *average* projection volumes over all regions.

EXAMPLE: Any two lines in \mathbb{R}^2

Average volumes will always be $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$

EXAMPLE: Any n lines in \mathbb{R}^2

Average volumes will always be $(\frac{1}{2n}, \frac{n}{2n}, \frac{n-1}{2n})$

COEFFICIENTS

THEOREM The average projection volumes are given by the absolute values of the coefficients of $\chi(t)$:

$$\frac{\sum_{\mathcal{C}} \nu_k}{\#\mathcal{C}} = \frac{|\alpha_k|}{|\alpha_n| + \dots + |\alpha_0|} = \frac{|\alpha_k|}{\#\mathcal{C}}$$

COROLLARY If all regions of \mathcal{H} are isometric, then the projection volumes of any region \mathcal{C} are given by the coefficients of $\chi(t)$:

$$\nu_k = \frac{|\alpha_k|}{\#\mathcal{C}}$$

Angle Sums of polytopes

- Zonotopes
- Angle sums of polytopes
- Equiprojective polytope
- Angles to f-vectors to lattice