Alternating Sign Matrices and Schur Functions

Angèle Hamel
Wilfrid Laurier University BIRS Workshop 11w5025
May 26, 2011

Three Objects and a Formula

Object 1

Alternating Sign Matrices

Alternating Sign Matrix

- Square matrices with entries from 0,1 , or -1
- Each row and column contains at least one 1; first and last nonzero elements of each row and column are 1
- Nonzero entries in each row and column alternate in sign

Alternating Sign Matrix

$$
\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

- Alternating sign matrices (ASM) generalize permutation matrices

Example

$$
\left.\begin{array}{ll}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]}
\end{array} \begin{array}{ll}
0 & {\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right]} \\
{\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]}
\end{array}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\right)=\$
$$

Alternating Sign Matrix

The number $\mathrm{A}(m)$ of $m x m \mathrm{ASM}$ is:

$$
A(m)=\prod_{j=0}^{m-1} \frac{(3 j+1)!}{(m+j)!}
$$

- This was the Alternating Sign Matrix Conjecture
- See D.M. Bressoud, Proof and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge UP: 1999

Object 2

Tableaux

Partitions

- Given a partition, λ, with parts $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, can be represented graphically by a diagram:

$$
\lambda=(4,3,3)
$$

Tableaux

- Fill diagram with entries according to the following rules:
\downarrow entries weakly increase across rows
\downarrow entries strictly increase down columns

1	1	2	4
2	3	3	
4	4		

Weighting Tableaux

- Weight each entry i in the tableau by x_{i}
- Then each tableau has weight $x_{1}^{w_{1}} x_{2}^{w_{2}} \cdots x_{n}^{w_{n}}$
\downarrow For example, the weight of this tableau is

1	1	2	4
2	3	3	
4	4	5	

$$
x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{3} x_{5}
$$

Schur Functions

$$
s_{\lambda}(\mathbf{x})=\sum_{T \in \mathcal{T}^{\lambda}(n)} \mathbf{x}^{\operatorname{wgt}(T)}
$$

A formula

Tokuyama's Formula

Tokuyama's Formula

- Proved by Tokuyama in 1988 using representation theory of general linear groups
- Proved by Okada in 1990 using algebraic manipulations on monotone triangles (equivalent to alternating sign matrices)

Playing with Formulas

- Tokuyama's formula:

$$
\prod_{i=1}^{n} x_{i} \prod_{1 \leq i<j \leq n}\left(x_{i}+t x_{j}\right) s_{\lambda}(\mathbf{x})=\sum_{S T \in \mathcal{S} T^{\mu}(n)} t^{\operatorname{hgtt}(S T)}(1+t)^{\operatorname{str}(S T)-n} \mathbf{x}^{\mathrm{wgt}(S T)}
$$

t -deformation of a Weyl denominator formula

Shifted Tableaux

- weakly increasing in rows
- weakly increasing down columns
- strictly increasing down left-to-right diagonals

Shifted Tableaux

- $\operatorname{wgt}(\mathrm{ST})=$ weight of the shifted tableau
- $\operatorname{str}(\mathrm{ST})=$ disjoint connected components of ribbon strips
- $\operatorname{hgt}(\mathrm{ST})=$ height of the tableau

Back to ASM: μ-ASM

- $\mu=\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{k}}$ is a partition
- Rectangular matrices with entries from 0,1 , or -1
- Nonzero entries in each row and column alternate in sign
- Each row and column contains at least one 1 ; first and last nonzero elements of each row are 1
- First nonzero element in each column is 1
- Last nonzero element is 1 in column q if $q=\mu_{i}$ for some i, and 0 otherwise

ASM statistics

$$
A=\left[\begin{array}{rrrrrrrrr}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

- Four kinds of zeros:
- NE, SW, NW, SE
- Two kinds of ones:
\uparrow WE (+1s), NS (-1s)

$$
A=\left[\begin{array}{rrrrrrrrr}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

$\left[\begin{array}{ccccccccc}N E & N E & W E & N W & N W & N W & N W & N W & N W \\ N E & N E & S E & W E & N W & N W & N W & N W & N W \\ W E & N W & N S & S E & N E & W E & N W & N W & N W \\ S E & N E & N E & S E & W E & N S & N E & N E & W E \\ S E & N E & W E & N S & S E & N E & N E & W E & S W \\ S E & N E & S E & W E & N S & W E & N W & S W & S W\end{array}\right]$

Tokuyama for ASM

- H. and King, 2007:

$$
\prod_{1 \leq i<j \leq n}\left(x_{i}+y_{j}\right) s_{\lambda}(\mathbf{x})=\sum_{A \in \mathcal{A}^{\mu}(n)} \prod_{k=1}^{n} x_{k}^{N E_{k}(A)} y_{k}^{S E_{k}(A)}\left(x_{k}+y_{k}\right)^{N S_{k}(A)}
$$

Or, if you like t 's....
$\prod_{1 \leq i<j \leq n}\left(x_{i}+t x_{j}\right) s_{\lambda}(\mathbf{x})=\sum_{A \in \mathcal{A}^{\mu}(n)} \prod_{k=1}^{n} t^{S E_{k}(A)}(1+t)^{N S_{k}(A)} x_{k}^{N E_{k}(A)+S E_{k}(A)+N S_{k}(A)}$

Primed Shifted Tableaux

- weak increase across each row
- weak increase down each column
- no two identical unprimed entries in any column

1	1	1	2^{\prime}	2	2	3	3	5
	2	2	3^{\prime}	3	4^{\prime}	5^{\prime}	5	6^{\prime}
		3	3	4^{\prime}	4	5^{\prime}	6	
			4	5^{\prime}	5	5		
y column				5	6^{\prime}	6		
					6			

- no two identical primed entries in any row
- no primed element on the main diagonal

Proof idea...

- Use an association between ASM and primed shifted tableaux...

$$
\Longrightarrow A=\left[\begin{array}{rrrrrrrrr}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

...and use jeu de taquin on the primed shifted tableau...
...to create a pair of tableaux

12^{\prime}	2^{\prime}	14	$4^{\prime} 5$		6^{\prime}	1	2	3			2^{\prime}		4		5^{\prime}	6^{\prime}
2	23	${ }^{\prime}$	2		2	3	5	5			2	3^{\prime}	2		5	2
	3	3	4^{\prime}		3	4	6					3	4		3	3
		4	4	5^{\prime}	6^{\prime}	5									5	6^{\prime}
					5	6									5	5
					6											6

One corresponding to

$$
\prod_{1 \leq i \leq j \leq n}\left(x_{i}+y_{j}\right)
$$

1	2	3
3	5	5
4	6	
5		
6		

...and the other
corresponding to

$$
s_{\lambda}(\mathbf{x})
$$

Another perspective

$$
\begin{aligned}
Z\left(\mathfrak{S}_{\lambda}^{\Gamma}\right) & =\prod_{i<j}\left(t_{i} z_{j}+z_{i}\right) s_{\lambda}\left(z_{1}, \cdots, z_{n}\right) \\
Z\left(\mathfrak{S}_{\lambda}^{\Delta}\right) & =\prod_{i<j}\left(t_{j} z_{j}+z_{i}\right) s_{\lambda}\left(z_{1}, \cdots, z_{n}\right)
\end{aligned}
$$

where Z is the partition function.....
(Brubaker, Bump, Friedberg, 2009)

Object 3

Square Ice

Square Ice

- So-called because it models in a two dimensional grid the orientation of molecules in frozen water.
- Also called the six-vertex model.

$$
\begin{aligned}
& +\cdots+\ldots+\cdots \\
& W E(+1) \quad N S(-1) \quad N E(0) \quad S W(0) \quad N W(0) \quad S E(0)
\end{aligned}
$$

$$
A=\left[\begin{array}{rrrrrrrrr}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

$$
A=\left[\begin{array}{rrrrrrrrr}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

$\left[\begin{array}{lcccccccc}N E & N E & W E & N W & N W & N W & N W & N W & N W \\ N E & N E & S E & W E & N W & N W & N W & N W & N W \\ W E & N W & N S & S E & N E & W E & N W & N W & N W \\ S E & N E & N E & S E & W E & N S & N E & N E & W E \\ S E & N E & W E & N S & S E & N E & N E & W E & S W \\ S E & N E & S E & W E & N S & W E & N W & S W & S W\end{array}\right]$

BoltzmannWeights

- Each vertex is assigned a weight called a Boltzmann weight. The value of this weight depends on the orientation of the adjacent edges.
- A partition function is the sum of the weights over all possible states.

Boltzmann Weights

$z_{i}\left(t_{i}+1\right)$

z_{i}
z_{i}
1

- Set the arrows at the boundary either in or out (some restrictions apply)

- Look at all possible valid orientations for the arrows on the inside. Each set of valid orientations is a configuration.

- The weight of the configuration is the product of the Boltzmann weights of its vertices.
- In this case, $z_{i}^{7} t_{i}\left(t_{i}+1\right)$.
- The partition function is the sum over all configurations of the weight of the configuration, i.e. $\sum_{x \in \mathfrak{S}} w(x)$.

Proof idea...

Brubaker, Bump, Friedberg show that

$$
s_{\lambda}^{\Gamma}\left(z_{1}, \cdots, z_{n} ; t_{1}, \cdots, t_{n}\right)=\frac{Z\left(\mathfrak{S}_{\lambda}^{\Gamma}\right)}{\prod_{i<j}\left(t_{i} z_{j}+z_{i}\right)}
$$

is the Schur function by showing it is symmetric in z, and independent of t.

- Then set $t=-1$ and show it is equivalent to the Weyl denominator formula.

Factorial Schur Functions

$$
s_{\lambda}(x \mid a)=\sum_{T} \prod_{n \in \mathcal{A}}\left(x_{T(a)}-a_{T(a)+(\alpha)}\right)
$$

- sum is over all tableaux of shape λ, and $c(\alpha)$ is the content of the square $(\mathrm{c}(\alpha)=\mathrm{j}-\mathrm{i}$ for square $\alpha)$.

Weighted Tableaux

- Weight each entry k in position i, j by $x_{k}-a_{k+j-i}$

$$
\begin{array}{llll}
\left(x_{1}-a_{1}\right) & \left(x_{1}-a_{2}\right) & \left(x_{2}-a_{4}\right) & \left(x_{4}-a_{7}\right) \\
\left(x_{2}-a_{1}\right) & \left(x_{3}-a_{3}\right) & \left(x_{3}-a_{4}\right) \\
\left(x_{4}-a_{2}\right) & \left(x_{4}-a_{3}\right) & \left(x_{5}-a_{5}\right)
\end{array}
$$

Who are they?

- Factorial Schur functions....what are they good for?
\uparrow Originally due to Biedenharn and Louck (1989) in a different form: $x_{\mathrm{k}}-\mathrm{k}+1+\mathrm{j}-\mathrm{i}$.
\uparrow Related to supersymmetric Schur functions (Macdonald, 1992 \& 1995 p54; Goulden and Greene, 1994)
\downarrow Is there a connection to ASM?

Other Boltzmann weights

1

- McNamara 2009

Partition function and Factorial Schur Function

$$
Z_{\lambda}(x \mid a)=\frac{x^{\delta}}{a^{(\lambda+\rho)^{\prime}}} s_{\lambda}(x \mid a)
$$

- McNamara 2009; Lascoux 2007 (in different language).

Proof idea...

- Show the symmetry of the partition function Z
- Use the "vanishing" properties of the factorial Schur function
- Show the partition function and the factorial Schur function are one and the same

Bibliography

- B. Brubaker, D. Bump, S. Friedberg, Schur polynomials and the Yang-Baxter equation, arXiv:0912.0911v3 [math.CO] 30 Jan 2010.
- A.M. Hamel, R.C. King, Bijective proofs of shifted tableau and alternating sign matrix identities, J. Alg. Comb. 25 (2007), 417-458.
- P.J. McNamara, Factorial Schur functions via the six vertex model, arXiv:0910.5288v2[math.CO] 1 Nov 2009.

Bibliography (ctnd)

- S. Okada, Partially strict shifted plane partitions, JCTA, 53 (1990), 143-156.
- S. Okada, Alternating sign matrices and some deformations of Weyl's denominator formula, J. Alg. Comb., 2 (1993), 155-176.
- T. Tokuyama, A generating function of strict Gelfand patterns and some formulas on characters of general linear group, J. Math. Soc. Japan, 40 (1988), 671-685.

