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Virtual Links

A virtual link diagram is a decorated immersion of n copies of S

with two types of crossings: classical and virtual.

Classical crossings have under/over markings.

Virtual crossings are solid and circled.
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Reidemeister Moves
Two link diagrams are said to be equivalent if one can be transformed into the

other by a sequence of Reidemeister moves. A virtual link is an equivalence class

of virtual link diagrams.

In an oriented diagram, each crossing has an orientation.
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Virtual Reidemeister moves
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Gauss Diagrams
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Converting a knot to a Gauss diagram
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The virtual Reidemeister moves do not appear in the Gauss diagrams.

Gauss diagrams are oriented circles with signed, directed chords. Equivalence classes are 

determined by the local moves shown below, which are analogs of the classical 

Virtual knots are in one to one correspondence with equivalence classes of Gauss diagrams.

Reidemeister moves.



Parity in Gauss Diagrams
Parity in Gauss diagrams

The number of intersecting chords mod two. Uses the  direction and signs of the chords.

Gaussian: Oriented:

Gaussian Parity: 1 Oriented Parity: 3
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The absolute value of the difference between 
the sum of signs on either side of chord.

Net: 3

Net: 0



Linking numbers

Consider a two component link with components A and B.

We define:

Σ
A

B
Let A  denote the set of crossings, c, where A overpasses B.

sgn(c)

B

(A,B)=

L(A,B) =   (A,B) +   (B,A)

L’(A,B) = |   (A,B) −   (B,A)|

To obtain parity from oriented knots, we introduce linking numbers.
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Note that L’(A,B) = L’(B,A). 

Hence, for a link K, we write L’(K).

For a classical link, L’(K) =0.

A B

l (A,B) = −1

(B,A) = 2

L(A,B) = 1

L’(A,B) = 3

l

(A,B) = −1

(B,A) = −1

L(A,B) = −2

L’(A,B) = 0
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Parity in virtual knots
Parity in Knots

In a knot, smoothing a crossing vertically produces a 2 component link.

K K

c

Theorem 1:

Theorem 2:

Designate a component of K  as A and the other component as B.

Realize each virtual crossing as a classical crossing by designating "A" as the overpassing arc.

We define L  (K  ) = 
v

Let R denote the set of realized crossings.

c

Σ
R

sgn (c) .

We define B  to be the set of all crossings c with L   (K  ) = i.i
c

Let b   =
i

i
The vector < b  , b  , b  , b ... > is an invariant of knots.

1 2 3 4

sgn(c)Σ
B

.

v

We define A  to be the set of all crossings c with L’(K  ) = i.i
c

Let a   =
i

i
The vector < a  , a  , a  , a ... > is an invariant of knots.

1 2 3 4

sgn(c)Σ
A

.



Proof of Invariance

Proof of Theorem 1:

L’(k   ) = 0c

L’(K  ) = | a − (−1) | L’(K  ) = | a + 1|

Net contribution: 0
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Net difference: 0

There is a correspondence between the smoothed diagrams.



Pairs of crossings

Pairs of intersecting chords

Pairs of intersecting chords correspond to pairs of crossings that have the following property: 

when both crossings are smoothed vertically we again obtain a knot.
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Smoothed version:

For a knot diagram K, we will let P denote the set of pairs crossings that correspond

to intersecting chords with opposite parity.

For a classical knot, the set P is empty.



The η invariant

A formal sum

Let K   denote the knot diagram obtained from the knot diagram K by smoothing p

We define a formal sum of knots with coefficients in Z 

a pair of crossings from the set P.

η Σ(Κ) = Κ
pεP

p

Theorem:

For a knot K,     (K) is invariant under the Reidmeister moves and crossing change.

That is    (K) is a homtopy invariant.

η

η
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Invariance

The invariance of    (K)η

Chords corresponding to Reidemeister I moves do not intersect other chords.

Both chords corresponding to a Reidemeister II move have the same parity. So we need 

only consider 1 crossing from the move and an exterior crossing.

Smoothing these pairs of crossings produces two knots in the same homotopy class. 

Hence, the net contribution is zero.

We consider the Reidemeister III move. We have two cases: 

1. An exterior and an interior crossing. 

2. Two interior crossings.

Case 1 is clear.

We expand the crossings in case 2. As Gauss diagrams, we obtain:



The invariance of    (K)η

1 p=02 p=0

3 p=1
3 p=1

1 p=0 2 p=0

1

2

3

− a sample Reidemeister III move.

2

1
3

On the left hand side, there are no pairs to smooth.

On the right hand side, smooth pairs (1,3) and (2,3).

Pair (1,3) Pair (2,3)

The net contribution of homotopy classes modulus two is zero.

To finish the proof, we check all cases of parity.



Long virtual links
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Two crossings, a and b, intersect if 

a "b" label occurs between the

two "a" labels

by the number of labels between the

two labels of a crossing.

Here:

4 and 5 intersect.
4 has odd parity.

2 has even.

The parity of a crossing is determined 

A long virtual link is an oriented n−n virtual tangle with ordered components.

Gauss diagrams of a ordered long virtual links consist of a set of ordered, directed edges. 

For each  component, we record crossing information (number, orientation, over/under) 

along the edges. We then connect corresponding points on the edges.



Extending the invariant

1

3

1

2

2

3

4

5

4

5

−

−

−

+

+

1

2

3

4

5

Use the definitions of intersection and parity to extend the invariant

Parity Intersects
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We smooth the crossings 1 and 3.
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Producing a sum of long virtual links.

Each term in the sum has n−2 crossings 

Coefficients are modulo 2.



Questions

1. The vectors and the η invariant are degree one Vassilliev
invariants. Is it possible to construct higher degree
Vassilliev invariants using the similar methods?

2. Can we extend the invariants to links using methods similar
to those in the paper: Homotopy invariants of Gauss
phrases?

3. Can we combine the vectors 〈a1, a2, . . .〉 and 〈b1, b2, . . .〉 to
produce a more powerful invariant?

4. The vectors can be used to determine a lower bound on
the virtual and classical crossing number. Can we obtain
stronger topological results?

5. How does the formal sum relate to other invariants of knots
and links? Is it part of a family of other invariants?
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