Modular representation theory of symmetric groups and *p*-combinatorics

Christine Bessenrodt

Leibniz Universität Hannover

May 26, 2011 Algebraic Combinatorixx BIRS

Representations of finite groups

Let G be a finite group, K a field (large enough).

Aims:

• Classify irreducible (and indecomposable) representations

 $\rho: \textit{G} \rightarrow \textit{GL}(\textit{V}) \,, \, \textit{V}$ a finite dimensional K-vector space.

- Decompose representations into irreducible ones.
- Understand relations between representations.

Ordinary representation theory: Char K = 0 or Char $K \nmid |G|$ *p*-modular representation theory: Char $K = p \mid |G|$ Ordinary and modular theory: *p*-blocks of characters

For $x \in G$: $\widehat{x^G} = \sum_{y \in x^G} y$, the class sum to x.

The set of class sums is a basis of $Z(\mathbb{C}G)$.

The central character $\omega_{\chi}: Z(\mathbb{C}G) \to \mathbb{C}$ to $\chi \in Irr_{\mathbb{C}}(G)$:

$$\omega_{\chi}(\widehat{x^{G}}) = rac{|x^{G}|\chi(x)}{\chi(1)}$$
 for all $x \in G$.

Then $\omega_{\chi}(\widehat{x^G}) \in R$ = the ring of algebraic integers..

Let p be a prime, $p \in \wp$ maximal ideal of R. Let $\chi, \psi \in Irr_{\mathbb{C}}(G)$.

$$\chi \sim_{\rho} \psi :\Leftrightarrow \omega_{\chi}(\widehat{x^{\mathsf{G}}}) \equiv \omega_{\psi}(\widehat{x^{\mathsf{G}}}) \mod \wp \quad \forall \, x \in \mathsf{G}$$

The \sim_p equivalence classes are the *p*-blocks of *G*.

Character table of S_5

cycle type	1 ⁵	1 ³ 2	1 ² 3	14	12 ²	23	5
length	1	10	20	30	15	20	24
1 =[5]	1	1	1	1	1	1	1
[41]	4	2	1	0	0	-1	-1
[32]	5	1	-1	-1	1	1	0
[31 ²]	6	0	0	0	-2	0	1
[2 ² 1]	5	-1	-1	1	1	-1	0
[21 ³]	4	-2	1	0	0	1	-1
$\operatorname{sgn} = [1^5]$	1	-1	1	-1	1	-1	1

Central characters of S_5

cycle type	15	1 ³ 2	1 ² 3	14	12 ²	23	5
length	1	10	20	30	15	20	24
$\omega_{[5]}$	1	10	20	30	15	20	24
$\omega_{[41]}$	1	5	5	0	0	-5	-6
$\omega_{[32]}$	1	2	—4	-6	3	4	0
$\omega_{[31^2]}$	1	0	0	0	-5	0	4
$\omega_{[2^21]}$	1	-2	-4	6	3	-4	0
$\omega_{[21^3]}$	1	—5	5	0	0	5	-6
$\omega_{[1^5]}$	1	-10	20	-30	15	-20	24

Modulo 3:

cycle type	1 ⁵	1 ³ 2	1 ² 3	14	12 ²	23	5
length	1	10	20	30	15	20	24
$\omega_{[5]}$	1	1	2	0	0	2	0
$\omega_{[41]}$	1	2	2	0	0	1	0
$\omega_{[32]}$	1	2	2	0	0	1	0
$\omega_{[31^2]}$	1	0	0	0	1	0	1
$\omega_{[2^21]}$	1	1	2	0	0	2	0
$\omega_{[21^3]}$	1	1	2	0	0	2	0
$\omega_{[1^5]}$	1	2	2	0	0	1	0

Modulo 3:

cycle type	1 ⁵	1 ³ 2	1 ² 3	14	12 ²	23	5
length	1	10	20	30	15	20	24
ω _[5]	1	1	2	0	0	2	0
$\omega_{[41]}$	1	2	2	0	0	1	0
ω _[32]	1	2	2	0	0	1	0
$\omega_{[31^2]}$	1	0	0	0	1	0	1
$\omega_{[2^21]}$	1	1	2	0	0	2	0
$\omega_{[21^3]}$	1	1	2	0	0	2	0
$\omega_{[1^5]}$	1	2	2	0	0	1	0

3-blocks of S_5

cycle type	15	1 ³ 2	1 ² 3	14	12 ²	23	5
length	1	10	20	30	15	20	24
[5]	1	1	1	1	1	1	1
[41]	4	2	1	0	0	-1	-1
[32]	5	1	-1	-1	1	1	0
[31 ²]	6	0	0	0	-2	0	1
[2 ² 1]	5	-1	-1	1	1	-1	0
[21 ³]	4	-2	1	0	0	1	-1
[1 ⁵]	1	-1	1	-1	1	-1	1

3-blocks of S_5

cycle type	15	1 ³ 2	1 ² 3	14	12 ²	23	5
length	1	10	20	30	15	20	24
[5]	1	1	1	1	1	1	1
[41]	4	2	1	0	0	-1	-1
[32]	5	1	-1	-1	1	1	0
[31 ²]	6	0	0	0	-2	0	1
[2 ² 1]	5	-1	-1	1	1	-1	0
[21 ³]	4	-2	1	0	0	1	-1
[1 ⁵]	1	-1	1	-1	1	-1	1

 $\begin{array}{l} p\text{-blocks of defect 0 }(p\text{-cores})\\ \text{Let }\chi\in {\rm Irr}_{\mathbb C}(G)\text{; then: }\{\chi\}\text{ is a }p\text{-block }\Leftrightarrow\chi(1)_p=|G|_p \ .\\ \text{In this case: }\chi(x)=0 \text{ for all }p\text{-singular }x\in G. \end{array}$

Applications of block theory: classification of finite simple groups.

Let p be a prime. A finite group G is p-nilpotent, if it has a normal subgroup N such that $p \nmid |N|$ and G/N is a p-group.

Example. S_3 is 2-nilpotent, but not 3-nilpotent.

Theorem (Thompson 1970) If $p \mid \chi(1)$, for all non-linear $\chi \in Irr_{\mathbb{C}}(G)$, then G is *p*-nilpotent.

Characters and block structure

Generalization of *p*-nilpotent groups: **nilpotent** *p*-blocks.

Generalization of *p*-nilpotent groups: nilpotent *p*-blocks. We say that $\chi \in B$ is of height 0 if $\chi(1)_p = \min_{\psi \in B} \psi(1)_p$. Generalization of *p*-nilpotent groups: nilpotent *p*-blocks. We say that $\chi \in B$ is of height 0 if $\chi(1)_p = \min_{\psi \in B} \psi(1)_p$.

Conjecture (Malle-Navarro)

The p-block B of G is nilpotent if and only if all $\chi \in B$ of height 0 have the same degree.

Generalization of *p*-nilpotent groups: nilpotent *p*-blocks. We say that $\chi \in B$ is of height 0 if $\chi(1)_p = \min_{\psi \in B} \psi(1)_p$.

Conjecture (Malle-Navarro)

The p-block B of G is nilpotent if and only if all $\chi \in B$ of height 0 have the same degree.

Theorem (Malle-Navarro 2011)

Let G be quasi-simple, B a p-block which is neither a spin block of the double cover of the alternating group, nor a quasi-isolated block of an exceptional group of Lie type for p a bad prime. Then the conjecture holds for B. For the symmetric groups and a prime *p*:

p-blocks $\leftrightarrow p$ -core partitions

Degree computation for irreducible characters:

hook formula

Malle-Navarro: not adequate for the purpose ...

New relative degree formula:

factor the character degrees along their *p*-core degrees.

Theorem (Frame, Robinson, Thrall 1954)

Let $\prod \mathcal{H}(\lambda)$ be the product of all hook lengths in $\lambda \vdash$ n. Then

$$[\lambda](1) = rac{n!}{\prod \mathcal{H}(\lambda)} \; .$$

Example

Let
$$\lambda = (5, 4, 4, 2, 2) \vdash 17$$
.

d-cores

Let $d \in \mathbb{N}$. For a partition λ , denote by $\lambda_{(d)}$ its *d*-core, obtained by removing as many *d*-hooks as possible.

Removal process may be described by the *d*-quotient $\lambda^{(d)}$, a *d*-tuple of partitions.

d-cores

Let $d \in \mathbb{N}$. For a partition λ , denote by $\lambda_{(d)}$ its *d*-core, obtained by removing as many *d*-hooks as possible.

Removal process may be described by the *d*-quotient $\lambda^{(d)}$, a *d*-tuple of partitions.

Remark. $[\lambda]$ is of height $0 \Leftrightarrow [\lambda](1)_{\rho} = [\lambda_{(\rho)}](1)_{\rho} = |\lambda_{(\rho)}|_{\rho}$.

Theorem (Malle-Navarro: relative degree formula)

Let p be a prime, $\lambda \vdash n$, $\lambda_{(p)} \vdash r$. Let S be a symbol associated to the p-quotient $\lambda^{(p)}$, b_i the number of beads on the i^{th} runner of the p-abacus for $\lambda_{(p)}$, $c_i = pb_i + i - 1$. Then

$$[\lambda](1) = \frac{n!}{r!} \frac{1}{\prod_{h \text{ hook of } S} |p\ell(h) + c_{i(h)} - c_{j(h)}|} [\lambda_{(p)}](1) \,.$$

Note on the proof: In his work on unipotent character degrees of general linear groups (1995), Malle used *p*-symbols as labels, defined hooks (and associated lengths) in *p*-symbols and proved a 'hook formula' for the unipotent degrees. Its specialization at q = 1 is crucial for the relative degree formula.

Theorem (Malle-Navarro: relative degree formula)

Let p be a prime, $\lambda \vdash n$, $\lambda_{(p)} \vdash r$. Let S be a symbol associated to the p-quotient $\lambda^{(p)}$, b_i the number of beads on the i^{th} runner of the p-abacus for $\lambda_{(p)}$, $c_i = pb_i + i - 1$. Then

$$[\lambda](1) = \frac{n!}{r!} \frac{1}{\prod_{h \text{ hook of } S} |p\ell(h) + c_{i(h)} - c_{j(h)}|} [\lambda_{(p)}](1) .$$

Note on the proof: In his work on unipotent character degrees of general linear groups (1995), Malle used *p*-symbols as labels, defined hooks (and associated lengths) in *p*-symbols and proved a 'hook formula' for the unipotent degrees. Its specialization at q = 1 is crucial for the relative degree formula.

Suspicion: This is the classical hook formula in disguise.

Theorem (Malle-Navarro: relative degree formula)

Let p be a prime, $\lambda \vdash n$, $\lambda_{(p)} \vdash r$. Let S be a symbol associated to the p-quotient $\lambda^{(p)}$, b_i the number of beads on the i^{th} runner of the p-abacus for $\lambda_{(p)}$, $c_i = pb_i + i - 1$. Then

$$[\lambda](1) = \frac{n!}{r!} \frac{1}{\prod_{h \text{ hook of } S} |p\ell(h) + c_{i(h)} - c_{j(h)}|} [\lambda_{(p)}](1) .$$

Note on the proof: In his work on unipotent character degrees of general linear groups (1995), Malle used *p*-symbols as labels, defined hooks (and associated lengths) in *p*-symbols and proved a 'hook formula' for the unipotent degrees. Its specialization at q = 1 is crucial for the relative degree formula.

Suspicion: This is the classical hook formula in disguise. *B.-Gramain-Olsson: Generalized hook lengths in symbols and partitions*, arXiv 1101.5067

Useful tool: β-sets

Any finite subset $X = \{a_1, \ldots, a_s\}_>$ of \mathbb{N}_0 is a β -set. This is a β -set for the partition $\lambda = p(X)$ with parts the positive numbers among

$$a_i - (s - i)$$
, $i = 1, \ldots, s$.

Useful tool: β-sets

Any finite subset $X = \{a_1, \ldots, a_s\}_>$ of \mathbb{N}_0 is a β -set. This is a β -set for the partition $\lambda = p(X)$ with parts the positive numbers among

$$a_i - (s - i), i = 1, \dots, s.$$

- For the shifts $X^{+k} = \{a+k \mid a \in X\} \cup \{k-1,\ldots,1,0\}$ we have: $p(X) = p(X^{+k})$.
- The set of first column hook lengths of λ is a β -set for λ .

Any finite subset $X = \{a_1, ..., a_s\}_>$ of \mathbb{N}_0 is a β -set. This is a β -set for the partition $\lambda = p(X)$ with parts the positive numbers among

$$a_i - (s - i), \ i = 1, \dots, s.$$

- For the shifts $X^{+k} = \{a+k \mid a \in X\} \cup \{k-1,\ldots,1,0\}$ we have: $p(X) = p(X^{+k})$.
- The set of first column hook lengths of λ is a β -set for λ .
- A *d*-hook of X is a pair $(a, b) \in \mathbb{N}_0^2$ with

$$a \in X$$
, $b < a$, $b \notin X$ and $a - b = d$.

Removal of this *d*-hook from X: replace *a* by *b* (\leftrightarrow removal of a *d*-hook from $\lambda = p(X)$).

The *d*-abacus

Place the elements of X as beads on an abacus with d runners!

Example

 $X = \{11, 8, 6, 2, 0\}$ is a β -set of $p(X) = \lambda = (7, 5, 4, 1) \vdash 17$. Fix d = 3. The 3-abacus representation for X and its 3-core:

0	1	2
3	4	5
6	7	8
9	10	11

The *d*-abacus

Place the elements of X as beads on an abacus with d runners!

Example

 $X = \{11, 8, 6, 2, 0\}$ is a β -set of $p(X) = \lambda = (7, 5, 4, 1) \vdash 17$. Fix d = 3. The 3-abacus representation for X and its 3-core:

0	1	2	0	1	2
3	4	5	3	4	5
6	7	8	6	7	8
9	10	11	9	10	11

3-core $C_3(X) = \{8, 5, 3, 2, 0\}$

 $c_3(X) = p(C_3(X)) = p(\{8, 5, 3, 2, 0\}) = (4, 2, 1, 1) = \lambda_{(3)}$

The *d*-abacus

Place the elements of X as beads on an abacus with d runners!

Example

$$X = \{11, 8, 6, 2, 0\}$$
 is a β -set of $p(X) = \lambda = (7, 5, 4, 1) \vdash 17$.
Fix $d = 3$. The 3-abacus representation for X and its 3-core:

0	1	2	0	1	2
3	4	5	3	4	5
6	7	8	6	7	8
9	10	11	9	10	11

3-core $C_3(X) = \{8, 5, 3, 2, 0\}$

 $c_3(X) = p(C_3(X)) = p(\{8, 5, 3, 2, 0\}) = (4, 2, 1, 1) = \lambda_{(3)}$

Remarks.

- Easy computation of *d*-core.
- *d*-core independent of removal process!

A *d*-symbol is a *d*-tuple of β -sets $S = (X_0, \ldots, X_{d-1})$. We have a bijection

 $s_d: \{\beta\text{-sets}\} \rightarrow \{d\text{-symbols}\}$ $X \mapsto (X_0^{(d)}, \dots, X_{d-1}^{(d)}),$ where $X_j^{(d)} = \{k \in \mathbb{N}_0 \mid kd + j \in X\}, j = 0, \dots, d-1.$ A hook of S: $(a, b, i, j) \in \mathbb{N}_0^4$ with $i, j \in \{0, \dots, d-1\},$ $a \in X_i, b \notin X_j$, and either a > b, or a = b and i > j. H(S) = the set of all hooks of S.

A *d*-symbol is a *d*-tuple of β -sets $S = (X_0, \ldots, X_{d-1})$. We have a bijection

 $s_d: \{\beta\text{-sets}\} \rightarrow \{d\text{-symbols}\}$ $X \mapsto (X_0^{(d)}, \dots, X_{d-1}^{(d)}),$ where $X_j^{(d)} = \{k \in \mathbb{N}_0 \mid kd + j \in X\}, j = 0, \dots, d-1.$ A hook of $S: (a, b, i, j) \in \mathbb{N}_0^4$ with $i, j \in \{0, \dots, d-1\},$ $a \in X_i, b \notin X_j$, and either a > b, or a = b and i > j. H(S) = the set of all hooks of S.

Remark. There are canonical bijections between the hooks in *X*, $\lambda = p(X)$ and $S = s_d(X)$.

Example

 β -set X = {11, 8, 6, 2, 0} for $p(X) = \lambda = (7, 5, 4, 1) \vdash 17$. Let d = 3; 3-abacus representation for X and S = s₃(X):

 $S = (\{2, 0\}, \emptyset, \{3, 2, 0\})$

Example: hook (11, 4) in $X \leftrightarrow$ hook (3, 1, 2, 1) in S.

Let $S = (X_0, \ldots, X_{d-1})$ be a *d*-symbol.

S is **balanced**, if $|X_0| = \ldots = |X_{d-1}|$ and $0 \notin X_i$ for some *i*.

The **balanced quotient** of *S* is the unique *balanced d*-symbol $Q(S) = (X'_0, ..., X'_{d-1})$ with $p(X'_i) = p(X_i)$ for all *i*. The **core** of *S* is the *d*-symbol C(S) with *i*th component $\{|X_i| - 1, ..., 1, 0\}, i = 0, ..., d - 1.$

If $X = s_d^{-1}(S)$, the **balanced** *d*-quotient of X is the β -set $Q_d(X) = s_d^{-1}(Q(S))$

and the *d*-quotient partition of $\lambda = p(X)$ is $q_d(X) = p(Q_d(X))$.

Example

Let
$$S = s_3(X) = (\{2, 0\}, \emptyset, \{3, 2, 0\}).$$

Associated partitions: $((1), \emptyset, (1, 1))$.

Balanced quotient of S: $Q(S) = (\{2, 0\}, \{1, 0\}, \{2, 1\}).$

 $q_3(X) = p(Q_3(X)) = p(\{8, 6, 5, 4, 1, 0\}) = (3, 2, 2, 2)$

Note: $|q_3(X)| + |c_3(X)| = 9 + 8 = 17 = |p(X)|$.

Connections between a β -set X, its associated d-symbol $S = s_d(X)$ and associated partition $\lambda = p(X)$:

Note that $q_d(X)$ is *not* the usual *d*-quotient for λ !

What are we trying to do about the relative degree formula?

Example

As before:
$$\lambda = (7, 5, 4, 1)$$
, $X = \{11, 8, 6, 2, 0\}$, $d = 3$.

$$S = (\{2, 0\}, \emptyset, \{3, 2, 0\}), (x_0, x_1, x_2) = (2, 0, 3).$$

3-core and 3-quotient partitions to λ :

$$\lambda_{(3)} = (4, 2, 1, 1), \ q_3(X) = (3, 2, 2, 2).$$

What are we trying to do about the relative degree formula?

Example

As before:
$$\lambda = (7, 5, 4, 1)$$
, $X = \{11, 8, 6, 2, 0\}$, $d = 3$.

$$S = (\{2, 0\}, \emptyset, \{3, 2, 0\}), (x_0, x_1, x_2) = (2, 0, 3).$$

3-core and 3-quotient partitions to λ :

$$\lambda_{(3)} = (4, 2, 1, 1), \ q_3(X) = (3, 2, 2, 2).$$

Hook diagrams for λ , $\lambda_{(3)}$:

10	8	7	6	4	2	1	7	4	2	1
7	5	4	3	1			4	1		
5	3	2	1				2			
1							1			

What are we trying to do about the relative degree formula?

Example

As before:
$$\lambda = (7, 5, 4, 1)$$
, $X = \{11, 8, 6, 2, 0\}$, $d = 3$.

$$S = (\{2, 0\}, \emptyset, \{3, 2, 0\}), (x_0, x_1, x_2) = (2, 0, 3).$$

3-core and 3-quotient partitions to λ :

$$\lambda_{(3)} = (4, 2, 1, 1), \ q_3(X) = (3, 2, 2, 2).$$

Hook diagrams for $\lambda,$ $\lambda_{(3)}:$

10	8	7	6	4	2	1	7	4	2	1
7	5	4	3	1			4	1		
5	3	2	1				2			
1							1			

What are we trying to do about the relative degree formula?

Example

As before:
$$\lambda = (7, 5, 4, 1)$$
, $X = \{11, 8, 6, 2, 0\}$, $d = 3$.

$$S = (\{2, 0\}, \emptyset, \{3, 2, 0\}), (x_0, x_1, x_2) = (2, 0, 3).$$

3-core and 3-quotient partitions to λ :

$$\lambda_{(3)} = (4, 2, 1, 1), \ q_3(X) = (3, 2, 2, 2).$$

Hook diagrams for λ , $q_3(X)$:

10	8	7	6	4	2	1		6	5	1
7	5	4	3	1			?	4	3	
5	3	2	1				\longleftrightarrow	3	2	
1								2	1	

Let $S = (X_0, ..., X_{d-1})$ be a *d*-symbol. We consider only the hooks between runners *i* and *j*:

$$\begin{array}{ll} H_{ij}(S) &= \{(a,b,i,j) \mid (a,b,i,j) \in H(S)\}, \\ \\ H_{\{ij\}}(S) &= H_{ij}(S) \cup H_{ji}(S) \,. \end{array}$$

For $\ell \geq 0$ we define the ℓ -level section

$$H_{ij}^{\ell}(S) = \{(a, b, i, j) \in H_{ij}(S) \mid a - b = \ell\}.$$

Theorem

Let S be a d-symbol with balanced quotient Q and core C. For all i, j, we have bijective multiset correspondences

 $H_{\{ij\}}(\mathcal{S}) \to H_{\{ij\}}(\mathcal{Q}) \cup H_{\{ij\}}(\mathcal{C}) ,$

with control on the level sections. We glue these bijections together to a universal bijection

 $\omega_{\mathcal{S}}: H(\mathcal{S}) \to H(\mathcal{Q}) \cup H(\mathcal{C})$.

Remark. For $S = (X_0, ..., X_{d-1})$, the differences $|X_i| - |X_j|$ are crucial for controlling the correspondence of the level sections.

Theorem. Let *S*, *Q*, *C* be as above, $i \neq j$, $\Delta = |X_i| - |X_j| \ge 0$. When $\Delta > 0$, we have the following equalities: • For all $\ell > \Delta$: $|H_{ij}^{\ell}(S)| = |H_{ij}^{\ell-\Delta}(Q)|$. • For all $\ell > \Delta$: $|H_{ij}^{\ell-\Delta}(S)| = |H_{ij}^{\ell}(Q)|$.

• For all $0 < \ell < \Delta$: $|H_{ij}^{\ell}(S)| = |H_{ji}^{\Delta - \ell}(Q)| + |H_{ij}^{\ell}(C)|.$

• For
$$\ell = \Delta$$
: $|H_{ij}^{\Delta}(S)| = \begin{cases} |H_{ij}^{0}(Q)| = |H_{\{ij\}}^{0}(Q)| & \text{if } i > j \\ |H_{ji}^{0}(Q)| = |H_{\{ij\}}^{0}(Q)| & \text{if } i < j \end{cases}$

- For $\ell = 0$: $|H_{ji}^{\Delta}(Q)| + |H_{ij}^{0}(C)| = \begin{cases} |H_{ij}^{0}(S)| = |H_{\{ij\}}^{0}(S)| & \text{if } i > j \\ |H_{ji}^{0}(S)| = |H_{\{ij\}}^{0}(S)| & \text{if } i < j \end{cases}$
- $|H_{ij}^{\Delta}(S)| + |H_{ij}^{0}(S)| = |H_{ji}^{\Delta}(Q)| + |H_{ij}^{0}(Q)| + |H_{ij}^{0}(C)|.$

When $\Delta = 0$, we have

•
$$|H^{\ell}_{ij}(S)| = |H^{\ell}_{ij}(Q)|$$
, $H^{\ell}_{ij}(C) = \emptyset$, for all $\ell \ge 0$.

Let $H = \{(a, b, i, j) \mid a \ge b \text{ and } i > j \text{ if } a = b\}$. Consider (generalized) hook length functions $h : H \to \mathbb{R}$ s.t. the value h(a, b, i, j) depends only on $\ell = a - b$, i and j.

Let
$$H = \{(a, b, i, j) \mid a \ge b \text{ and } i > j \text{ if } a = b\}.$$

Consider (generalized) hook length functions $h: H \to \mathbb{R}$ s.t. the value h(a, b, i, j) depends only on $\ell = a - b$, *i* and *j*.

Important hook length functions for *d*-symbols: *d*-hook data tuple:

 $δ = (c_0, c_1, \dots, c_{d-1}; k), c_0, \dots, c_{d-1}, k \in \mathbb{R}, k \ge 0.$ δ-length of $(a, b, i, j) \in H$:

$$h^{\delta}(a,b,i,j)=k(a-b)+c_i-c_j.$$

For any *d*-symbol *S*, the multiset of generalized hook lengths is $\mathcal{H}^{\delta}(S) = \{h^{\delta}(a, b, i, j) \mid (a, b, i, j) \in H(S)\}.$ Important special choices for applications:

- δ = (0, 1, ..., d 1; d) the partition d-hook data tuple.
 Then the δ-length of a hook of S equals the usual hook length a b of the corresponding hook (a, b) of X.
- $\delta = (0, 0, \dots, 0; 1)$ the minimal *d*-hook data tuple.

Then the δ -length of long hooks (a > b) in S coincides with the hook length in symbols as defined by Malle, and the short hooks (a = b) have δ -length 0.

Theorem

Let
$$S = (X_0, X_1, ..., X_{d-1})$$
 be a *d*-symbol, $x_i = |X_i|$.

Let Q be its balanced quotient, C be its core.

Let $\delta = (c_0, c_1, \dots, c_{d-1}; k)$ be a *d*-hook data tuple, and set $\delta_S = (c_0 + x_0k, c_1 + x_1k, \dots, c_{d-1} + x_{d-1}k; k).$

Then we have the multiset equality

$$\mathcal{H}^{\delta}(\mathcal{S}) = \mathcal{H}^{\delta}(\mathcal{C}) \cup \overline{\mathcal{H}}^{\delta_{\mathcal{S}}}(\mathcal{Q})_{\mathcal{I}}$$

where $\overline{\mathcal{H}}^{\delta_{S}}(Q) = \{\overline{h}^{\delta_{S}}(z) \mid z \in \mathcal{H}(Q)\}\$ is the multiset of all modified δ_{S} -lengths of hooks in Q.

Modified hook lengths

We assume that i, j are such that $\Delta = x_i - x_j \ge 0$.

Let
$$H_{ij}^{\ell} = \{(a, b, i, j) \in H \mid a - b = \ell\}.$$

Then for $z \in H_{\{ij\}}$ we define

$$\overline{h}^{\delta_{\mathcal{S}}}(z) = \begin{cases} h^{\delta_{\mathcal{S}}}(z) & \text{if } z \in H_{ij} \cup H_{ji}^{>\Delta}, \text{ or } z \in H_{ji}^{\Delta} \text{ if } i < j \\ -h^{\delta_{\mathcal{S}}}(z) & \text{otherwise} \end{cases}$$

Crucial property w.r.t. the universal bijection ω_S :

$$h^{\delta}(z) = \begin{cases} h^{\delta}(\omega_{\mathcal{S}}(z)) & \text{if } \omega_{\mathcal{S}}(z) \in H(\mathcal{C}) \\ \overline{h}^{\delta_{\mathcal{S}}}(\omega_{\mathcal{S}}(z)) & \text{if } \omega_{\mathcal{S}}(z) \in H(\mathcal{Q}) \end{cases}$$

Theorem

Let
$$d \in \mathbb{N}$$
, λ a partition, X a β -set for λ , $x_i = |X_i^{(d)}|$.

Let $q_d(X)$ be the d-quotient partition of X.

For $z \in H(q_d(X))$ with hand and foot d-residue i and j + 1, respectively, let

$$\overline{h}(z) = h(z) + (x_i - x_j)d.$$

Let $\overline{\mathcal{H}}(q_d(X))$ be the multiset of all $\overline{h}(z)$, $z \in H(q_d(X))$.

Then we have the multiset equality

$$\mathcal{H}(\lambda) = \mathcal{H}(\lambda_{(d)}) \cup \operatorname{abs}(\overline{\mathcal{H}}(q_d(X)))$$

where $\operatorname{abs}(\overline{\mathcal{H}}(q_d(X)) = \{|m| \mid m \in \overline{\mathcal{H}}(q_d(X))\}.$

Theorem

Let
$$d \in \mathbb{N}$$
, λ a partition, X a β -set for λ , $x_i = |X_i^{(d)}|$.

Let $q_d(X)$ be the d-quotient partition of X.

For $z \in H(q_d(X))$ with hand and foot d-residue i and j + 1, respectively, let

$$\overline{h}(z) = h(z) + (x_i - x_j)d.$$

Let $\overline{\mathcal{H}}(q_d(X))$ be the multiset of all $\overline{h}(z)$, $z \in H(q_d(X))$.

Then we have the multiset equality

$$\mathcal{H}(\lambda) = \mathcal{H}(\lambda_{(d)}) \cup \operatorname{abs}(\overline{\mathcal{H}}(q_d(X)))$$

where $\operatorname{abs}(\overline{\mathcal{H}}(q_d(X)) = \{|m| \mid m \in \overline{\mathcal{H}}(q_d(X))\}.$

Corollary Generalization of the Malle-Navarro formula. In particular, the Malle-Navarro formula **is** the hook formula!

Example

As before: $\lambda = (7, 5, 4, 1)$, $X = \{11, 8, 6, 2, 0\}$, d = 3.

$$S = (\{2, 0\}, \emptyset, \{3, 2, 0\}), (x_0, x_1, x_2) = (2, 0, 3).$$

3-core and 3-quotient partitions to λ :

$$\lambda_{(3)} = (4, 2, 1, 1), \ q_3(X) = (3, 2, 2, 2).$$

Hook diagrams for λ , $\lambda_{(3)}$, $q_3(X)$:

10	8	7	6	4	2	1	7	4	2	1	6	5	1
7	5	4	3	1			4	1			4	3	
5	3	2	1				2				3	2	
1							1				2	1	

10	8	7	6	4	2	1		6	5	1
7	5	4	3	1			$\stackrel{?}{\longleftrightarrow}$	4	3	
5	3	2	1				\longleftrightarrow	3	2	
1								2	1	

10	8	7	6	4	2	1		6	5	1
7	5	4	3	1			$\stackrel{?}{\longleftrightarrow}$	4	3	
5	3	2	1				\longleftrightarrow	3	2	
1								2	1	

Consider the 3-residue diagram of $q_3(X)$.

Modify the length of each hook in $q_3(X)$ by $3(x_i - x_j)$ according to residues *i* and *j* + 1 of its hand and foot.

				i
	0	1	2	2
	2	0		2 0 2
	1	2		2
	0	1		1
j	2	0	1	

Modify the length of each hook in $q_3(X)$ by $3(x_i - x_j)$ according to residues *i* and *j* + 1 of its hand and foot. Recall: $(x_0, x_1, x_2) = (2, 0, 3)$.

		1		i	$3x_i$ $-3x_j$	-9	-6	0
	0	1 0	2	2	9	6	5	1
	2	0		0	c c	4	Ŭ	-
	1	2		2	0	4	3	
	0	1		1	9	3	2	
	v	T		1	0	2	1	
j	2	0	1		0	-	-	

10	8	7	6	4	2	1		6	5	1
7	5	4	3	1			$\stackrel{?}{\longleftrightarrow}$	4	3	
5	3	2	1				\longleftrightarrow	3	2	
1								2	1	

Modify the length of each hook in $q_3(X)$ by $3(x_i - x_j)$ according to residues *i* and *j* + 1 of its hand and foot. Recall: $(x_0, x_1, x_2) = (2, 0, 3)$.

10	8	7	6	4	2	1		6	5	1
7	5	4	3	1			$\stackrel{?}{\longleftrightarrow}$	4	3	
5	3	2	1				\longleftrightarrow	3	2	
1								2	1	

Finally, take absolute values!

6	8	10		6	8	10
1	3		\rightarrow	1	3	
3	5			3	5	
-7	-5			7	5	

10	8	7	6	4	2	1		6	5	1
7	5	4	3	1			<i>,</i> , ,	4	3	
5	3	2	1				\longleftrightarrow	3	2	
1								2	1	

Finally, take absolute values!

6	8	10		6	8	10
1	3		\rightarrow	1	3	
3	5			3	5	
-7	—5			7	5	

Symbols were introduced by Lusztig (1977) as labels for characters of classical groups; generalized notions of ℓ -cores, (ℓ, e) -cores etc. for symbols.

Symbols were introduced by Lusztig (1977) as labels for characters of classical groups; generalized notions of ℓ -cores, (ℓ, e) -cores etc. for symbols.

Theorem

Let $S = (X_0, X_1, ..., X_{d-1})$ be a d-symbol, $\delta = (0, ..., 0; 1)$, $\ell \in \mathbb{N}$. Let C be the ℓ -core and Q the balanced ℓ -quotient of S. Then we have a multiset equality for the δ -lengths of hooks in S:

$$\mathcal{H}^{\delta}(\mathcal{S}) = \mathcal{H}^{\delta}(\mathcal{C}) \cup \textit{abs}(\mathcal{H}^{\delta_{\ell},s}(\mathcal{Q}))$$

where $abs(\mathcal{H}^{\delta_{\ell,S}}(Q))$ is the multiset of all $|h^{\delta_{\ell,S}}(z)|$, $z \in H(Q)$, $\delta_{\ell,S}$ a modified $d\ell$ -hook data tuple.