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Representations of finite groups

Let G be a finite group, K a field (large enough).

Aims:

Classify irreducible (and indecomposable) representations

ρ : G → GL(V ) , V a finite dimensional K -vector space.

Decompose representations into irreducible ones.

Understand relations between representations.

Ordinary representation theory: CharK = 0 or CharK ∤ |G |

p-modular representation theory: CharK = p | |G |



Ordinary and modular theory: p-blocks of characters

For x ∈ G : x̂G =
∑

y∈xG y , the class sum to x .

The set of class sums is a basis of Z (ℂG ).

The central character ωχ : Z (ℂG )→ ℂ to χ ∈ Irrℂ(G ):

ωχ(x̂G ) =
|xG |χ(x)

χ(1)
for all x ∈ G .

Then ωχ(x̂G ) ∈ R = the ring of algebraic integers..

Let p be a prime, p ∈ ℘ maximal ideal of R. Let χ,ψ ∈ Irrℂ(G ).

χ ∼p ψ :⇔ ωχ(x̂G ) ≡ ωψ(x̂G ) mod ℘ ∀ x ∈ G

The ∼p equivalence classes are the p-blocks of G .



Character table of S5

cycle type 15 132 123 14 122 23 5

length 1 10 20 30 15 20 24

1 =[5] 1 1 1 1 1 1 1
[41] 4 2 1 0 0 −1 −1
[32] 5 1 −1 −1 1 1 0
[312] 6 0 0 0 −2 0 1
[221] 5 −1 −1 1 1 −1 0
[213] 4 −2 1 0 0 1 −1

sgn =[15] 1 −1 1 −1 1 −1 1



Central characters of S5

cycle type 15 132 123 14 122 23 5

length 1 10 20 30 15 20 24

ω[5] 1 10 20 30 15 20 24
ω[41] 1 5 5 0 0 −5 −6
ω[32] 1 2 −4 −6 3 4 0
ω[312] 1 0 0 0 −5 0 4

ω[221] 1 −2 −4 6 3 −4 0

ω[213] 1 −5 5 0 0 5 −6

ω[15] 1 −10 20 −30 15 −20 24



Modulo 3:

cycle type 15 132 123 14 122 23 5

length 1 10 20 30 15 20 24

ω[5] 1 1 2 0 0 2 0
ω[41] 1 2 2 0 0 1 0
ω[32] 1 2 2 0 0 1 0
ω[312] 1 0 0 0 1 0 1

ω[221] 1 1 2 0 0 2 0

ω[213] 1 1 2 0 0 2 0

ω[15] 1 2 2 0 0 1 0



Modulo 3:

cycle type 15 132 123 14 122 23 5

length 1 10 20 30 15 20 24

ω[5] 1 1 2 0 0 2 0
ω[41] 1 2 2 0 0 1 0
ω[32] 1 2 2 0 0 1 0
ω[312] 1 0 0 0 1 0 1

ω[221] 1 1 2 0 0 2 0

ω[213] 1 1 2 0 0 2 0

ω[15] 1 2 2 0 0 1 0



3-blocks of S5

cycle type 15 132 123 14 122 23 5

length 1 10 20 30 15 20 24

[5] 1 1 1 1 1 1 1
[41] 4 2 1 0 0 −1 −1
[32] 5 1 −1 −1 1 1 0
[312] 6 0 0 0 −2 0 1
[221] 5 −1 −1 1 1 −1 0
[213] 4 −2 1 0 0 1 −1
[15] 1 −1 1 −1 1 −1 1

p-blocks of defect 0 (p-cores)
Let χ ∈ Irrℂ(G ); then: {χ} is a p-block ⇔ χ(1)p = |G |p .

In this case: χ(x) = 0 for all p-singular x ∈ G .
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Characters and group structure

Applications of block theory: classification of finite simple groups.

Let p be a prime.
A finite group G is p-nilpotent, if it has a normal subgroup N
such that p ∤ |N | and G/N is a p-group.

Example. S3 is 2-nilpotent, but not 3-nilpotent.

Theorem (Thompson 1970)
If p | χ(1), for all non-linear χ ∈ Irrℂ(G ), then G is p-nilpotent.



Characters and block structure

Generalization of p-nilpotent groups: nilpotent p-blocks.

We say that χ ∈ B is of height 0 if χ(1)p = min
ψ∈B

ψ(1)p.

Conjecture (Malle-Navarro)

The p-block B of G is nilpotent if and only if all χ ∈ B of height 0
have the same degree.

Theorem (Malle-Navarro 2011)

Let G be quasi-simple, B a p-block which is neither a spin block of
the double cover of the alternating group, nor a quasi-isolated
block of an exceptional group of Lie type for p a bad prime.
Then the conjecture holds for B.
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For the symmetric groups and a prime p:

p-blocks ↔ p-core partitions

Degree computation for irreducible characters:

hook formula

Malle-Navarro: not adequate for the purpose ...

New relative degree formula:
factor the character degrees along their p-core degrees.



The Hook Formula

Theorem (Frame, Robinson, Thrall 1954)

Let
∏
ℋ(λ) be the product of all hook lengths in λ ⊢ n. Then

[λ](1) =
n!∏
ℋ(λ)

.

Example

Let λ = (5, 4, 4, 2, 2) ⊢ 17.

9 8 5 4 1
7 6 3 2
6 5 2 1
3 2
2 1

[λ](1) =
17!

9⋅8⋅5⋅4⋅1⋅7⋅6⋅3⋅2⋅6⋅5⋅2⋅1⋅3⋅2⋅2⋅1
= 1.361.360



d-cores

Let d ∈ ℕ. For a partition λ, denote by λ(d) its d-core,
obtained by removing as many d-hooks as possible.

Example

Let d = 5, λ = (5, 4, 4, 2, 2) ⊢ 17. Then λ(5) = (3, 1, 1, 1, 1):

9 8 5 4 1
7 6 3 2
6 5 2 1
3 2
2 1

9 5 4 3 1
7 3 2 1
3
2
1

7 2 1
4
3
2
1

Removal process may be described by the d-quotient λ(d), a
d-tuple of partitions.

Remark. [λ] is of height 0 ⇔ [λ](1)p = [λ(p)](1)p = |λ(p)|p.
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Theorem (Malle-Navarro: relative degree formula)

Let p be a prime, λ ⊢ n, λ(p) ⊢ r . Let S be a symbol associated to

the p-quotient λ(p), bi the number of beads on the i th runner of
the p-abacus for λ(p), ci = pbi + i − 1. Then

[λ](1) =
n!

r !

1∏
h hook of S |pℓ(h) + ci(h) − cj(h)|

[λ(p)](1) .

Note on the proof: In his work on unipotent character degrees of
general linear groups (1995), Malle used p-symbols as labels,
defined hooks (and associated lengths) in p-symbols and proved a
‘hook formula’ for the unipotent degrees. Its specialization at
q = 1 is crucial for the relative degree formula.

Suspicion: This is the classical hook formula in disguise.
B.-Gramain-Olsson: Generalized hook lengths in symbols and
partitions, arXiv 1101.5067
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Useful tool: β-sets

Any finite subset X = {a1, . . . , as }> of ℕ0 is a β-set.

This is a β-set for the partition λ = p(X ) with parts the positive
numbers among

ai − (s − i), i = 1, . . . , s.

For the shifts X+k = {a + k | a ∈ X } ∪ {k − 1, . . . , 1, 0}
we have: p(X ) = p(X+k).

The set of first column hook lengths of λ is a β-set for λ.

A d-hook of X is a pair (a, b) ∈ ℕ2
0 with

a ∈ X , b < a, b ∕∈ X and a − b = d .

Removal of this d-hook from X : replace a by b
(↔ removal of a d-hook from λ = p(X )).
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The d-abacus

Place the elements of X as beads on an abacus with d runners!

Example

X = {11,8,6,2,0} is a β-set of p(X ) = λ = (7, 5, 4, 1) ⊢ 17.
Fix d = 3. The 3-abacus representation for X and its 3-core:

0 1 2
3 4 5
6 7 8
9 10 11

0 1 2
3 4 5
6 7 8
9 10 11

3-core C3(X ) = {8, 5, 3, 2, 0}

c3(X ) = p(C3(X )) = p({8, 5, 3, 2, 0}) = (4, 2, 1, 1) = λ(3)

Remarks.

Easy computation of d-core.

d-core independent of removal process!
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d-symbols

A d-symbol is a d-tuple of β-sets S = (X0, . . . ,Xd−1) .

We have a bijection

sd : {β-sets} → {d-symbols}

X 7→ (X
(d)
0 , . . . ,X

(d)
d−1),

where X
(d)
j = {k ∈ ℕ0 | kd + j ∈ X }, j = 0, . . . , d − 1.

A hook of S : (a, b, i , j) ∈ ℕ4
0 with i , j ∈ {0, . . . , d − 1},

a ∈ Xi , b ∕∈ Xj , and either a > b, or a = b and i > j .

H(S) = the set of all hooks of S .

Remark. There are canonical bijections between the hooks in X ,
λ = p(X ) and S = sd(X ).
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Example

β-set X = {11, 8, 6, 2, 0} for p(X ) = λ = (7, 5, 4, 1) ⊢ 17.
Let d = 3; 3-abacus representation for X and S = s3(X ):

s3 :

0 1 2

0 1 2
3 4 5
6 7 8
9 10 11

7→
0 1 2

0 0 0
1 1 1
2 2 2
3 3 3

S = ({2, 0}, ∅, {3, 2, 0})

Example: hook (11, 4) in X ↔ hook (3, 1, 2, 1) in S .



Balanced quotients

Let S = (X0, . . . ,Xd−1) be a d-symbol.

S is balanced, if |X0| = . . . = |Xd−1| and 0 ∕∈ Xi for some i .

The balanced quotient of S is the unique balanced d-symbol

Q(S) = (X ′
0 , . . . ,X

′
d−1) with p(X ′

i ) = p(Xi ) for all i .

The core of S is the d-symbol C (S) with i th component

{|Xi |− 1, . . . , 1, 0}, i = 0, . . . , d − 1.

If X = s−1
d (S), the balanced d-quotient of X is the β-set

Qd(X ) = s−1
d (Q(S))

and the d-quotient partition of λ = p(X ) is

qd(X ) = p(Qd(X )) .



Example

Let S = s3(X ) = ({2, 0}, ∅, {3, 2, 0}).
Associated partitions: ((1), ∅, (1, 1)).
Balanced quotient of S : Q(S) = ({2, 0}, {1, 0}, {2, 1}).

Q(S) :

0 0 0
1 1 1
2 2 2
3 3 3

s−1
37−→ Q3(X ) :

0 1 2
3 4 5
6 7 8
9 10 11

q3(X ) = p(Q3(X )) = p({8, 6, 5, 4, 1, 0}) = (3, 2, 2, 2)

Note: |q3(X )|+ |c3(X )| = 9 + 8 = 17 = |p(X )|.



Connections between a β-set X , its associated d-symbol
S = sd(X ) and associated partition λ = p(X ):

qd(X ) Qd(X )
poo sd // Q(S)

λ = p(X )

quot

OO

core
��

X
poo sd //

quot

OO

core

��

S

quot

OO

core

��
λ(d) = cd(X ) Cd(X )

poo sd // C (S)

Note that qd(X ) is not the usual d-quotient for λ!



What are we trying to do about the relative degree formula?

Example

As before: λ = (7, 5, 4, 1), X = {11, 8, 6, 2, 0}, d = 3.

S = ({2, 0}, ∅, {3, 2, 0}), (x0, x1, x2) = (2, 0, 3).

3-core and 3-quotient partitions to λ:

λ(3) = (4, 2, 1, 1), q3(X ) = (3, 2, 2, 2) .

Hook diagrams for λ, λ(3):

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1
1

7 4 2 1
4 1
2
1
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As before: λ = (7, 5, 4, 1), X = {11, 8, 6, 2, 0}, d = 3.

S = ({2, 0}, ∅, {3, 2, 0}), (x0, x1, x2) = (2, 0, 3).

3-core and 3-quotient partitions to λ:

λ(3) = (4, 2, 1, 1), q3(X ) = (3, 2, 2, 2) .

Hook diagrams for λ, q3(X ):

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1
1

?←→ 6 5 1
4 3
3 2
2 1



Let S = (X0, . . . ,Xd−1) be a d-symbol.
We consider only the hooks between runners i and j :

Hij(S) = {(a, b, i , j) | (a, b, i , j) ∈ H(S)} ,

H{ij}(S) = Hij(S) ∪ Hji (S) .

For ℓ ≥ 0 we define the ℓ-level section

Hℓ
ij(S) = {(a, b, i , j) ∈ Hij(S) | a − b = ℓ} .



Hook correspondence in symbols

Theorem

Let S be a d-symbol with balanced quotient Q and core C .
For all i , j , we have bijective multiset correspondences

H{ij}(S)→ H{ij}(Q) ∪ H{ij}(C ) ,

with control on the level sections.
We glue these bijections together to a universal bijection

ωS : H(S)→ H(Q) ∪ H(C ) .

Remark. For S = (X0, . . . ,Xd−1), the differences |Xi |− |Xj | are
crucial for controlling the correspondence of the level sections.



Theorem. Let S , Q, C be as above, i ∕= j , ∆ = |Xi |− |Xj | ≥ 0.
When ∆ > 0, we have the following equalities:
∙ For all ℓ > ∆: |Hℓ

ij(S)| = |Hℓ−∆
ij (Q)|.

∙ For all ℓ > ∆: |Hℓ−∆
ji (S)| = |Hℓ

ji (Q)|.

∙ For all 0 < ℓ < ∆: |Hℓ
ij(S)| = |H∆−ℓ

ji (Q)|+ |Hℓ
ij(C )|.

∙ For ℓ = ∆: |H∆
ij (S)| =

{
|H0

ij (Q)| = |H0
{ij}(Q)| if i > j

|H0
ji (Q)| = |H0

{ij}(Q)| if i < j
.

∙ For ℓ = 0:

|H∆
ji (Q)|+ |H0

ij (C )| =

{
|H0

ij (S)| = |H0
{ij}(S)| if i > j

|H0
ji (S)| = |H0

{ij}(S)| if i < j
.

∙ |H∆
ij (S)|+ |H0

{ij}(S)| = |H∆
ji (Q)|+ |H0

{ij}(Q)|+ |H0
ij (C )|.

When ∆ = 0, we have

∙ |Hℓ
ij(S)| = |Hℓ

ij(Q)|, Hℓ
ij(C ) = ∅, for all ℓ ≥ 0.
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~~~~~~

~~~~~~

n ~ n ~ ~n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~



i > j

n ~ n ~ ~n n n n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n n⋅ ⋅ ⋅

~~~~~~

~~~~~~

j

i

n ~ n ~ ~n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~

j

i ︸ ︷︷ ︸
∆



i > j

n ~ n ~ ~n n n n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n n⋅ ⋅ ⋅

~~~~~~

~~~~~~

j

i ︸ ︷︷ ︸
≥ ∆

n ~ n ~ ~n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~

j

i ︸ ︷︷ ︸
∆



i > j

n ~ n ~ ~n n n n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n n⋅ ⋅ ⋅

~~~~~~

~~~~~~

j

i ︸︷︷︸
> 0

n ~ n ~ ~n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~

j

i ︸ ︷︷ ︸
∆

︸ ︷︷ ︸
> ∆



i > j

n ~ n ~ ~n n n n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n n⋅ ⋅ ⋅

~~~~~~

~~~~~~

j

i

n ~ n ~ ~n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~

j

i ︸ ︷︷ ︸
∆

︸︷︷︸
ℓ ≤ ∆

︸︷︷︸
ℓ ≤ ∆



i > j

n ~ n ~× ~×n n n n n⋅ ⋅ ⋅

~ n ~ ~ n× ~ n× ~ n n⋅ ⋅ ⋅

~~~~~~

~~~~~~

j

i

n ~ n ~ ~n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~

j

i ︸ ︷︷ ︸
∆

︸︷︷︸
ℓ ≤ ∆

︸︷︷︸
ℓ ≤ ∆



i > j

n ~ n ~× ~×n n n n n⋅ ⋅ ⋅

~ n ~ ~ n× ~ n× ~ n n⋅ ⋅ ⋅

~~~~~~

~~~~~~

j

i ︸︷︷︸
∆− ℓ

︸︷︷︸
∆− ℓ

︸︷︷︸
∆− ℓ

n ~ n ~ ~n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~

j

i ︸ ︷︷ ︸
∆

︸︷︷︸
ℓ ≤ ∆

︸︷︷︸
ℓ ≤ ∆



i > j

n ~ n ~× ~×n n n n n⋅ ⋅ ⋅

~ n ~ ~ n× ~ n× ~ n n⋅ ⋅ ⋅

~~~~~~

~~~~~~

j

i ︸︷︷︸
∆− ℓ

︸︷︷︸
∆− ℓ

︸︷︷︸
∆− ℓ

n ~ n ~ ~n n⋅ ⋅ ⋅

~ n ~ ~ n ~ n ~ n⋅ ⋅ ⋅

~~~nnn~~~

~n~~~~~

j

i ︸︷︷︸
∆− ℓ

︸︷︷︸
ℓ ≤ ∆

︸︷︷︸
ℓ ≤ ∆



Let H = {(a, b, i , j) | a ≥ b and i > j if a = b} .

Consider (generalized) hook length functions h : H → ℝ s.t.
the value h(a, b, i , j) depends only on ℓ = a − b, i and j.

Important hook length functions for d-symbols:
d-hook data tuple:

δ = (c0, c1, . . . , cd−1; k), c0, . . . , cd−1, k ∈ ℝ, k ≥ 0.

δ-length of (a, b, i , j) ∈ H:

hδ(a, b, i , j) = k(a − b) + ci − cj .

For any d-symbol S , the multiset of generalized hook lengths is

ℋδ(S) = {hδ(a, b, i , j) | (a, b, i , j) ∈ H(S)}.



Let H = {(a, b, i , j) | a ≥ b and i > j if a = b} .

Consider (generalized) hook length functions h : H → ℝ s.t.
the value h(a, b, i , j) depends only on ℓ = a − b, i and j.

Important hook length functions for d-symbols:
d-hook data tuple:

δ = (c0, c1, . . . , cd−1; k), c0, . . . , cd−1, k ∈ ℝ, k ≥ 0.

δ-length of (a, b, i , j) ∈ H:

hδ(a, b, i , j) = k(a − b) + ci − cj .

For any d-symbol S , the multiset of generalized hook lengths is

ℋδ(S) = {hδ(a, b, i , j) | (a, b, i , j) ∈ H(S)}.



Important special choices for applications:

δ = (0, 1, . . . , d − 1; d) the partition d-hook data tuple.

Then the δ-length of a hook of S equals the usual hook
length a − b of the corresponding hook (a, b) of X .

δ = (0, 0, . . . , 0; 1) the minimal d-hook data tuple.

Then the δ-length of long hooks (a > b) in S coincides with
the hook length in symbols as defined by Malle, and the short
hooks (a = b) have δ-length 0.



The Meta-Theorem

Theorem

Let S = (X0,X1, . . . ,Xd−1) be a d-symbol, xi = |Xi |.

Let Q be its balanced quotient, C be its core.

Let δ = (c0, c1, . . . , cd−1; k) be a d-hook data tuple, and set
δS = (c0 + x0k , c1 + x1k , . . . , cd−1 + xd−1k ; k).

Then we have the multiset equality

ℋδ(S) = ℋδ(C ) ∪ℋδS (Q),

where ℋδS (Q) = {h
δS (z) | z ∈ H(Q)}

is the multiset of all modified δS -lengths of hooks in Q.



Modified hook lengths
We assume that i , j are such that ∆ = xi − xj ≥ 0.

Let Hℓ
ij = {(a, b, i , j) ∈ H | a − b = ℓ}.

Then for z ∈ H{ij} we define

h
δS (z) =

{
hδS (z) if z ∈ Hij ∪ H>∆

ji , or z ∈ H∆
ji if i < j

−hδS (z) otherwise

Crucial property w.r.t. the universal bijection ωS :

hδ(z) =

{
hδ(ωS(z)) if ωS(z) ∈ H(C )

h
δS (ωS(z)) if ωS(z) ∈ H(Q)



Application for partitions

Theorem

Let d ∈ ℕ, λ a partition, X a β-set for λ, xi = |X
(d)
i |.

Let qd(X ) be the d-quotient partition of X .

For z ∈ H(qd(X )) with hand and foot d-residue i and j + 1,
respectively, let

h(z) = h(z) + (xi − xj)d .

Let ℋ(qd(X )) be the multiset of all h(z), z ∈ H(qd(X )).

Then we have the multiset equality

ℋ(λ) = ℋ(λ(d)) ∪ abs(ℋ(qd(X ))

where abs(ℋ(qd(X )) = {|m| | m ∈ ℋ(qd(X ))}.

Corollary Generalization of the Malle-Navarro formula.
In particular, the Malle-Navarro formula is the hook formula!



Application for partitions

Theorem

Let d ∈ ℕ, λ a partition, X a β-set for λ, xi = |X
(d)
i |.

Let qd(X ) be the d-quotient partition of X .

For z ∈ H(qd(X )) with hand and foot d-residue i and j + 1,
respectively, let

h(z) = h(z) + (xi − xj)d .

Let ℋ(qd(X )) be the multiset of all h(z), z ∈ H(qd(X )).

Then we have the multiset equality

ℋ(λ) = ℋ(λ(d)) ∪ abs(ℋ(qd(X ))

where abs(ℋ(qd(X )) = {|m| | m ∈ ℋ(qd(X ))}.

Corollary Generalization of the Malle-Navarro formula.
In particular, the Malle-Navarro formula is the hook formula!



Example

As before: λ = (7, 5, 4, 1), X = {11, 8, 6, 2, 0}, d = 3.

S = ({2, 0}, ∅, {3, 2, 0}), (x0, x1, x2) = (2, 0, 3).

3-core and 3-quotient partitions to λ:

λ(3) = (4, 2, 1, 1), q3(X ) = (3, 2, 2, 2) .

Hook diagrams for λ, λ(3), q3(X ):

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1
1

7 4 2 1
4 1
2
1

6 5 1
4 3
3 2
2 1



Hook diagrams for λ, q3(X ):

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1
1

?←→ 6 5 1
4 3
3 2
2 1

Finally, take absolute values!



Hook diagrams for λ, q3(X ):

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1
1

?←→ 6 5 1
4 3
3 2
2 1

Consider the 3-residue diagram of q3(X ).

Finally, take absolute
values!

0 1 2
2 0
1 2
0 1



Hook diagrams for λ, q3(X ):

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1
1

?←→ 6 5 1
4 3
3 2
2 1

Modify the length of each hook in q3(X ) by 3(xi − xj) according
to residues i and j + 1 of its hand and foot.

Recall: (x0, x1, x2) = (2, 0, 3).
Finally, take absolute values!

i

0 1 2 2
2 0 0
1 2 2
0 1 1

j 2 0 1



Hook diagrams for λ, q3(X ):

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1
1

?←→ 6 5 1
4 3
3 2
2 1

Modify the length of each hook in q3(X ) by 3(xi − xj) according
to residues i and j + 1 of its hand and foot.
Recall: (x0, x1, x2) = (2, 0, 3).

Finally, take absolute values!

i

0 1 2 2
2 0 0
1 2 2
0 1 1

j 2 0 1

3xi\
−3xj −9 −6 0

9 6 5 1
6 4 3
9 3 2
0 2 1



Hook diagrams for λ, q3(X ):

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1
1

?←→ 6 5 1
4 3
3 2
2 1

Modify the length of each hook in q3(X ) by 3(xi − xj) according
to residues i and j + 1 of its hand and foot.
Recall: (x0, x1, x2) = (2, 0, 3).

Finally, take absolute values!

3xi\
−3xj −9 −6 0

9 6 5 1
6 4 3
9 3 2
0 2 1

→ 6 8 10
1 3
3 5

−7 −5



Hook diagrams for λ, q3(X ):

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1
1

?←→ 6 5 1
4 3
3 2
2 1

Finally, take absolute values!

6 8 10
1 3
3 5

−7 −5

→ 6 8 10
1 3
3 5
7 5



Hook diagrams for λ, q3(X ):

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1
1

←→ 6 5 1
4 3
3 2
2 1

Finally, take absolute values!

6 8 10
1 3
3 5

−7 −5

→ 6 8 10
1 3
3 5
7 5



Generalizations

Symbols were introduced by Lusztig (1977) as labels for characters
of classical groups; generalized notions of ℓ-cores, (ℓ, e)-cores etc.
for symbols.

Theorem

Let S = (X0,X1, . . . ,Xd−1) be a d-symbol, δ = (0, . . . , 0; 1), ℓ ∈ ℕ.
Let C be the ℓ-core and Q the balanced ℓ-quotient of S.
Then we have a multiset equality for the δ-lengths of hooks in S:

ℋδ(S) = ℋδ(C ) ∪ abs(ℋδℓ,S (Q))

where abs(ℋδℓ,S (Q)) is the multiset of all |hδℓ,S (z)|, z ∈ H(Q),
δℓ,S a modified dℓ-hook data tuple.
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