Modular representation theory of symmetric groups and p-combinatorics

Christine Bessenrodt

Leibniz Universität Hannover
May 26, 2011
Algebraic Combinatorixx
BIRS

Representations of finite groups

Let G be a finite group, K a field (large enough).
Aims:

- Classify irreducible (and indecomposable) representations
$\rho: G \rightarrow G L(V), V$ a finite dimensional K-vector space.
- Decompose representations into irreducible ones.
- Understand relations between representations.

Ordinary representation theory: Char $K=0$ or Char $K \nmid|G|$
p-modular representation theory: Char $K=p| | G \mid$

Ordinary and modular theory: p-blocks of characters
For $x \in G: \widehat{x^{G}}=\sum_{y \in x^{G}} y$, the class sum to x.
The set of class sums is a basis of $Z(\mathbb{C} G)$.
The central character $\omega_{\chi}: Z(\mathbb{C} G) \rightarrow \mathbb{C}$ to $\chi \in \operatorname{Irr}_{\mathbb{C}}(G)$:

$$
\omega_{\chi}\left(\widehat{x^{G}}\right)=\frac{\left|x^{G}\right| \chi(x)}{\chi(1)} \quad \text { for all } x \in G
$$

Then $\omega_{\chi}\left(\widehat{x^{G}}\right) \in R=$ the ring of algebraic integers..
Let p be a prime, $p \in \wp$ maximal ideal of R. Let $\chi, \psi \in \operatorname{Irr}_{\mathbb{C}}(G)$.

$$
x \sim_{p} \psi: \Leftrightarrow \omega_{\chi}\left(\widehat{x^{G}}\right) \equiv \omega_{\psi}\left(\widehat{x^{G}}\right) \quad \bmod \wp \quad \forall x \in G
$$

The \sim_{p} equivalence classes are the p-blocks of G.

Character table of S_{5}

cycle type	1^{5}	$1^{3} 2$	$1^{2} 3$	14	12^{2}	23	5
length	1	10	20	30	15	20	24
$\mathbf{1}=[5]$	1	1	1	1	1	1	1
$[41]$	4	2	1	0	0	-1	-1
$[32]$	5	1	-1	-1	1	1	0
$\left[31^{2}\right]$	6	0	0	0	-2	0	1
$\left[2^{2} 1\right]$	5	-1	-1	1	1	-1	0
$\left[21^{3}\right]$	4	-2	1	0	0	1	-1
$\operatorname{sgn~=[1^{5}]}$	1	-1	1	-1	1	-1	1

Central characters of S_{5}

cycle type	1^{5}	$1^{3} 2$	$1^{2} 3$	14	12^{2}	23	5
length	1	10	20	30	15	20	24
$\omega_{[5]}$	1	10	20	30	15	20	24
$\omega_{[41]}$	1	5	5	0	0	-5	-6
$\omega_{[32]}$	1	2	-4	-6	3	4	0
$\omega_{\left[31^{2}\right]}$	1	0	0	0	-5	0	4
$\omega_{\left[2^{2} 1\right]}$	1	-2	-4	6	3	-4	0
$\omega_{\left[21^{3}\right]}$	1	-5	5	0	0	5	-6
$\omega_{\left[1^{5}\right]}$	1	-10	20	-30	15	-20	24

Modulo 3:

cycle type	1^{5}	$1^{3} 2$	$1^{2} 3$	14	12^{2}	23	5
length	1	10	20	30	15	20	24
$\omega_{[5]}$	1	1	2	0	0	2	0
$\omega_{[41]}$	1	2	2	0	0	1	0
$\omega_{[32]}$	1	2	2	0	0	1	0
$\omega_{\left[31^{2}\right]}$	1	0	0	0	1	0	1
$\omega_{\left[2^{2} 1\right]}$	1	1	2	0	0	2	0
$\omega_{\left[21^{3}\right]}$	1	1	2	0	0	2	0
$\omega_{\left[1^{5}\right]}$	1	2	2	0	0	1	0

Modulo 3:

cycle type	1^{5}	$1^{3} 2$	$1^{2} 3$	14	12^{2}	23	5
length	1	10	20	30	15	20	24
$\omega_{[5]}$	1	1	2	0	0	2	0
$\omega_{[41]}$	1	2	2	0	0	1	0
$\omega_{[32]}$	1	2	2	0	0	1	0
$\omega_{\left[31^{2}\right]}$	1	0	0	0	1	0	1
$\omega_{\left[2^{2} 1\right]}$	1	1	2	0	0	2	0
$\omega_{\left[21^{3}\right]}$	1	1	2	0	0	2	0
$\omega_{\left[1^{5}\right]}$	1	2	2	0	0	1	0

3-blocks of S_{5}

cycle type	1^{5}	$1^{3} 2$	$1^{2} 3$	14	12^{2}	23	5
length	1	10	20	30	15	20	24
$[5]$	1	1	1	1	1	1	1
$[41]$	4	2	1	0	0	-1	-1
$[32]$	5	1	-1	-1	1	1	0
$\left[31^{2}\right]$	6	0	0	0	-2	0	1
$\left[2^{2} 1\right]$	5	-1	-1	1	1	-1	0
$\left[21^{3}\right]$	4	-2	1	0	0	1	-1
$\left[1^{5}\right]$	1	-1	1	-1	1	-1	1

3-blocks of S_{5}

cycle type	1^{5}	$1^{3} 2$	$1^{2} 3$	14	12^{2}	23	5
length	1	10	20	30	15	20	24
$[5]$	1	1	1	1	1	1	1
$[41]$	4	2	1	0	0	-1	-1
$[32]$	5	1	-1	-1	1	1	0
$\left[31^{2}\right]$	6	0	0	0	-2	0	1
$\left[2^{2} 1\right]$	5	-1	-1	1	1	-1	0
$\left[21^{3}\right]$	4	-2	1	0	0	1	-1
$\left[1^{5}\right]$	1	-1	1	-1	1	-1	1

p-blocks of defect $\mathbf{0}$ (p-cores)
Let $\chi \in \operatorname{Irr}_{\mathbb{C}}(G)$; then: $\{\chi\}$ is a p-block $\Leftrightarrow \chi(1)_{p}=|G|_{p}$.
In this case: $\chi(x)=0$ for all p-singular $x \in G$.

Characters and group structure

Applications of block theory: classification of finite simple groups. Let p be a prime.
A finite group G is p-nilpotent, if it has a normal subgroup N such that $p \nmid|N|$ and G / N is a p-group.

Example. S_{3} is 2-nilpotent, but not 3-nilpotent.
Theorem (Thompson 1970)
If $p \mid \chi(1)$, for all non-linear $\chi \in \operatorname{Irr}_{\mathbb{C}}(G)$, then G is p-nilpotent.

Characters and block structure

Generalization of p-nilpotent groups: nilpotent p-blocks.

Characters and block structure

Generalization of p-nilpotent groups: nilpotent p-blocks.
We say that $\chi \in B$ is of height 0 if $\chi(1)_{p}=\min _{\psi \in B} \psi(1)_{p}$.

Characters and block structure

Generalization of p-nilpotent groups: nilpotent p-blocks.
We say that $\chi \in B$ is of height 0 if $\chi(1)_{p}=\min _{\psi \in B} \psi(1)_{p}$.
Conjecture (Malle-Navarro)
The p-block B of G is nilpotent if and only if all $\chi \in B$ of height 0 have the same degree.

Characters and block structure

Generalization of p-nilpotent groups: nilpotent p-blocks.
We say that $\chi \in B$ is of height 0 if $\chi(1)_{p}=\min _{\psi \in B} \psi(1)_{p}$.

Conjecture (Malle-Navarro)

The p-block B of G is nilpotent if and only if all $\chi \in B$ of height 0 have the same degree.

Theorem (Malle-Navarro 2011)

Let G be quasi-simple, B a p-block which is neither a spin block of the double cover of the alternating group, nor a quasi-isolated block of an exceptional group of Lie type for p a bad prime.
Then the conjecture holds for B.

For the symmetric groups and a prime p :

p-blocks $\leftrightarrow p$-core partitions

Degree computation for irreducible characters:

hook formula

Malle-Navarro: not adequate for the purpose ...
New relative degree formula: factor the character degrees along their p-core degrees.

The Hook Formula

Theorem (Frame, Robinson, Thrall 1954)

Let $\prod \mathcal{H}(\lambda)$ be the product of all hook lengths in $\lambda \vdash n$. Then

$$
[\lambda](1)=\frac{n!}{\prod \mathcal{H}(\lambda)}
$$

Example

Let $\lambda=(5,4,4,2,2) \vdash 17$.

9	8	5	4	1
7	6	3	2	
6	5	2	1	
3	2			
2	1			

$$
\begin{aligned}
{[\lambda](1) } & =\frac{17!}{9 \cdot 8 \cdot 5 \cdot 4 \cdot 1 \cdot 7 \cdot 6 \cdot 3 \cdot 2 \cdot 6 \cdot 5 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 2 \cdot 1} \\
& =1.361 .360
\end{aligned}
$$

Let $d \in \mathbb{N}$. For a partition λ, denote by $\lambda_{(d)}$ its d-core, obtained by removing as many d-hooks as possible.

Example

Let $d=5, \lambda=(5,4,4,2,2) \vdash 17$. Then $\lambda_{(5)}=(3,1,1,1,1)$:

Removal process may be described by the d-quotient $\lambda^{(d)}$, a d-tuple of partitions.

Let $d \in \mathbb{N}$. For a partition λ, denote by $\lambda_{(d)}$ its d-core, obtained by removing as many d-hooks as possible.

Example

Let $d=5, \lambda=(5,4,4,2,2) \vdash 17$. Then $\lambda_{(5)}=(3,1,1,1,1)$:

9	8	5	4	1	9	5			7	2	1
7	6	3	2		7	3			4		
6	5	2	1		3				3		
3	2				2				2		
2					1				1		

Removal process may be described by the d-quotient $\lambda^{(d)}$, a d-tuple of partitions.

Remark. $[\lambda]$ is of height $0 \Leftrightarrow[\lambda](1)_{p}=\left[\lambda_{(p)}\right](1)_{p}=\left|\lambda_{(p)}\right|_{p}$.

Theorem (Malle-Navarro: relative degree formula)

Let p be a prime, $\lambda \vdash n, \lambda_{(p)} \vdash r$. Let S be a symbol associated to the p-quotient $\lambda^{(p)}, b_{i}$ the number of beads on the $i^{\text {th }}$ runner of the p-abacus for $\lambda_{(p)}, c_{i}=p b_{i}+i-1$. Then

$$
[\lambda](1)=\frac{n!}{r!} \frac{1}{\prod_{h \text { hook of } S}\left|p \ell(h)+c_{i(h)}-c_{j(h)}\right|}\left[\lambda_{(p)}\right](1) .
$$

Note on the proof: In his work on unipotent character degrees of general linear groups (1995), Malle used p-symbols as labels, defined hooks (and associated lengths) in p-symbols and proved a 'hook formula' for the unipotent degrees. Its specialization at $q=1$ is crucial for the relative degree formula.

Theorem (Malle-Navarro: relative degree formula)

Let p be a prime, $\lambda \vdash n, \lambda_{(p)} \vdash r$. Let S be a symbol associated to the p-quotient $\lambda^{(p)}, b_{i}$ the number of beads on the $i^{\text {th }}$ runner of the p-abacus for $\lambda_{(p)}, c_{i}=p b_{i}+i-1$. Then

$$
[\lambda](1)=\frac{n!}{r!} \frac{1}{\prod_{h \text { hook of } S} \mid p \ell(h)+c_{i(h)}-c_{j(h)}}\left[\lambda_{(p)}\right](1) .
$$

Note on the proof: In his work on unipotent character degrees of general linear groups (1995), Malle used p-symbols as labels, defined hooks (and associated lengths) in p-symbols and proved a 'hook formula' for the unipotent degrees. Its specialization at $q=1$ is crucial for the relative degree formula.

Suspicion: This is the classical hook formula in disguise.

Theorem (Malle-Navarro: relative degree formula)

Let p be a prime, $\lambda \vdash n, \lambda_{(p)} \vdash r$. Let S be a symbol associated to the p-quotient $\lambda^{(p)}, b_{i}$ the number of beads on the $i^{\text {th }}$ runner of the p-abacus for $\lambda_{(p)}, c_{i}=p b_{i}+i-1$. Then

$$
[\lambda](1)=\frac{n!}{r!} \frac{1}{\prod_{h \text { hook of } S}\left|p \ell(h)+c_{i(h)}-c_{j(h)}\right|}\left[\lambda_{(p)}\right](1) .
$$

Note on the proof: In his work on unipotent character degrees of general linear groups (1995), Malle used p-symbols as labels, defined hooks (and associated lengths) in p-symbols and proved a 'hook formula' for the unipotent degrees. Its specialization at $q=1$ is crucial for the relative degree formula.

Suspicion: This is the classical hook formula in disguise. B.-Gramain-Olsson: Generalized hook lengths in symbols and partitions, arXiv 1101.5067

Useful tool: β-sets

Any finite subset $\quad X=\left\{a_{1}, \ldots, a_{s}\right\}_{>} \quad$ of \mathbb{N}_{0} is a β-set.
This is a β-set for the partition $\lambda=p(X)$ with parts the positive numbers among

$$
a_{i}-(s-i), i=1, \ldots, s
$$

Useful tool: β-sets

Any finite subset $\quad X=\left\{a_{1}, \ldots, a_{s}\right\}_{>}$of \mathbb{N}_{0} is a β-set.
This is a β-set for the partition $\lambda=p(X)$ with parts the positive numbers among

$$
a_{i}-(s-i), i=1, \ldots, s
$$

- For the shifts $X^{+k}=\{a+k \mid a \in X\} \cup\{k-1, \ldots, 1,0\}$ we have: $\quad p(X)=p\left(X^{+k}\right)$.
- The set of first column hook lengths of λ is a β-set for λ.

Useful tool: β-sets

Any finite subset $\quad X=\left\{a_{1}, \ldots, a_{s}\right\}_{>}$of \mathbb{N}_{0} is a β-set.
This is a β-set for the partition $\lambda=p(X)$ with parts the positive numbers among

$$
a_{i}-(s-i), i=1, \ldots, s
$$

- For the shifts $X^{+k}=\{a+k \mid a \in X\} \cup\{k-1, \ldots, 1,0\}$ we have: $p(X)=p\left(X^{+k}\right)$.
- The set of first column hook lengths of λ is a β-set for λ.

A d-hook of X is a pair $(a, b) \in \mathbb{N}_{0}^{2}$ with

$$
a \in X, b<a, b \notin X \text { and } a-b=d
$$

Removal of this d-hook from X : replace a by b $(\leftrightarrow$ removal of a d-hook from $\lambda=p(X)$).

The d-abacus
Place the elements of X as beads on an abacus with d runners!

Example

$X=\{11,8,6,2,0\}$ is a β-set of $p(X)=\lambda=(7,5,4,1) \vdash 17$.
Fix $d=3$. The 3 -abacus representation for X and its 3-core:

0	1	2
3	4	5
6	7	8
9	10	11

The d-abacus
Place the elements of X as beads on an abacus with d runners!

Example

$X=\{11,8,6,2,0\}$ is a β-set of $p(X)=\lambda=(7,5,4,1) \vdash 17$.
Fix $d=3$. The 3 -abacus representation for X and its 3-core:

$$
\begin{aligned}
& \begin{array}{cccccc}
0 & 1 & 2 & 0 & 1 & 2 \\
3 & 4 & 5 & 3 & 4 & 5 \\
6 & 7 & 8 & 6 & 7 & 8 \\
9 & 10 & 11 & 9 & 10 & 11
\end{array} \\
& \text { 3-core } C_{3}(X)=\{8,5,3,2,0\} \\
& c_{3}(X)=p\left(C_{3}(X)\right)=p(\{8,5,3,2,0\})=(4,2,1,1)=\lambda_{(3)}
\end{aligned}
$$

The d-abacus
Place the elements of X as beads on an abacus with d runners!

Example

$X=\{11,8,6,2,0\}$ is a β-set of $p(X)=\lambda=(7,5,4,1) \vdash 17$.
Fix $d=3$. The 3 -abacus representation for X and its 3-core:

$$
\begin{gathered}
\begin{array}{cccccc}
0 & 1 & 2 & 0 & 1 & 2 \\
3 & 4 & 5 & 3 & 4 & 5 \\
6 & 7 & 8 & 6 & 7 & 8 \\
9 & 10 & 11 & 9 & 10 & 11
\end{array} \\
3 \text {-core } C_{3}(X)=\{8,5,3,2,0\} \\
C_{3}(X)=p\left(C_{3}(X)\right)=p(\{8,5,3,2,0\})=(4,2,1,1)=\lambda_{(3)}
\end{gathered}
$$

Remarks.

- Easy computation of d-core.
- d-core independent of removal process!

d-symbols

A d-symbol is a d-tuple of β-sets $S=\left(X_{0}, \ldots, X_{d-1}\right)$.
We have a bijection

$$
\begin{array}{rlc}
s_{d}:\{\beta \text {-sets }\} & \rightarrow & \{d \text {-symbols }\} \\
X & \mapsto & \left(X_{0}^{(d)}, \ldots, X_{d-1}^{(d)}\right),
\end{array}
$$

where $\quad X_{j}^{(d)}=\left\{k \in \mathbb{N}_{0} \mid k d+j \in X\right\}, j=0, \ldots, d-1$.
A hook of $S: \quad(a, b, i, j) \in \mathbb{N}_{0}^{4}$ with $i, j \in\{0, \ldots, d-1\}$, $a \in X_{i}, b \notin X_{j}$, and either $a>b$, or $a=b$ and $i>j$. $H(S)=$ the set of all hooks of S.

A d-symbol is a d-tuple of β-sets $S=\left(X_{0}, \ldots, X_{d-1}\right)$.
We have a bijection

$$
\begin{array}{rlc}
s_{d}:\{\beta \text {-sets }\} & \rightarrow & \{d \text {-symbols }\} \\
X & \mapsto\left(X_{0}^{(d)}, \ldots, X_{d-1}^{(d)}\right),
\end{array}
$$

where $\quad X_{j}^{(d)}=\left\{k \in \mathbb{N}_{0} \mid k d+j \in X\right\}, j=0, \ldots, d-1$.
A hook of $S: \quad(a, b, i, j) \in \mathbb{N}_{0}^{4}$ with $i, j \in\{0, \ldots, d-1\}$, $a \in X_{i}, b \notin X_{j}$, and either $a>b$, or $a=b$ and $i>j$.
$H(S)=$ the set of all hooks of S.
Remark. There are canonical bijections between the hooks in X, $\lambda=p(X)$ and $S=s_{d}(X)$.

Example

β-set $X=\{11,8,6,2,0\}$ for $p(X)=\lambda=(7,5,4,1) \vdash 17$.
Let $d=3$; 3 -abacus representation for X and $S=s_{3}(X)$:

$$
s_{3}: \begin{array}{ccc}
0 & 1 & 2 \\
\hline 0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
9 & 10 & 11
\end{array} \mapsto \begin{array}{ccc}
0 & 1 & 2 \\
\hline 0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3 \\
& S=(\{2,0\}, \emptyset,\{3,2,0\})
\end{array}
$$

Example: hook $(11,4)$ in $X \leftrightarrow$ hook $(3,1,2,1)$ in S.

Balanced quotients

Let $S=\left(X_{0}, \ldots, X_{d-1}\right)$ be a d-symbol.
S is balanced, if $\left|X_{0}\right|=\ldots=\left|X_{d-1}\right|$ and $0 \notin X_{i}$ for some i.
The balanced quotient of S is the unique balanced d-symbol

$$
Q(S)=\left(X_{0}^{\prime}, \ldots, X_{d-1}^{\prime}\right) \text { with } p\left(X_{i}^{\prime}\right)=p\left(X_{i}\right) \text { for all } i
$$

The core of S is the d-symbol $C(S)$ with $i^{\text {th }}$ component

$$
\left\{\left|X_{i}\right|-1, \ldots, 1,0\right\}, i=0, \ldots, d-1
$$

If $X=s_{d}^{-1}(S)$, the balanced d-quotient of X is the β-set

$$
Q_{d}(X)=s_{d}^{-1}(Q(S))
$$

and the d-quotient partition of $\lambda=p(X)$ is

$$
q_{d}(X)=p\left(Q_{d}(X)\right)
$$

Example

Let $S=s_{3}(X)=(\{2,0\}, \emptyset,\{3,2,0\})$.
Associated partitions: $((1), \emptyset,(1,1))$.
Balanced quotient of $S: \quad Q(S)=(\{2,0\},\{1,0\},\{2,1\})$.

$$
\begin{array}{r}
Q(S): \begin{array}{ccc}
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array} \stackrel{ }{\stackrel{s_{3}^{-1}}{\longleftrightarrow}} Q_{3}(X): \begin{array}{ccc}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
9 & 10 & 11
\end{array} \\
q_{3}(X)=p\left(Q_{3}(X)\right)=p(\{8,6,5,4,1,0\})=(3,2,2,2)
\end{array}
$$

Note: $\left|q_{3}(X)\right|+\left|c_{3}(X)\right|=9+8=17=|p(X)|$.

Connections between a β-set X, its associated d-symbol $S=s_{d}(X)$ and associated partition $\lambda=p(X)$:

Note that $q_{d}(X)$ is not the usual d-quotient for λ !

What are we trying to do about the relative degree formula?

Example

As before: $\lambda=(7,5,4,1), X=\{11,8,6,2,0\}, d=3$.
$S=(\{2,0\}, \emptyset,\{3,2,0\}),\left(x_{0}, x_{1}, x_{2}\right)=(2,0,3)$.
3 -core and 3-quotient partitions to λ :

$$
\lambda_{(3)}=(4,2,1,1), q_{3}(X)=(3,2,2,2) .
$$

What are we trying to do about the relative degree formula?

Example

As before: $\lambda=(7,5,4,1), X=\{11,8,6,2,0\}, d=3$.
$S=(\{2,0\}, \emptyset,\{3,2,0\}),\left(x_{0}, x_{1}, x_{2}\right)=(2,0,3)$.
3 -core and 3-quotient partitions to λ :

$$
\lambda_{(3)}=(4,2,1,1), q_{3}(X)=(3,2,2,2) .
$$

Hook diagrams for $\lambda, \lambda_{(3)}$:

10	8	7	6	4	2	1	7	4	2	1
7	5	4	3	1			4	1		
5	3	2	1				2			
1							1			

What are we trying to do about the relative degree formula?

Example

As before: $\lambda=(7,5,4,1), X=\{11,8,6,2,0\}, d=3$.
$S=(\{2,0\}, \emptyset,\{3,2,0\}),\left(x_{0}, x_{1}, x_{2}\right)=(2,0,3)$.
3 -core and 3-quotient partitions to λ :

$$
\lambda_{(3)}=(4,2,1,1), q_{3}(X)=(3,2,2,2) .
$$

Hook diagrams for $\lambda, \lambda_{(3)}$:

10	8	7	6	4	2	1	7	4	2	1
7	5	4	3	1			4	1		
5	3	2	1				2			
1							1			

What are we trying to do about the relative degree formula?

Example

As before: $\lambda=(7,5,4,1), X=\{11,8,6,2,0\}, d=3$.
$S=(\{2,0\}, \emptyset,\{3,2,0\}),\left(x_{0}, x_{1}, x_{2}\right)=(2,0,3)$.
3 -core and 3 -quotient partitions to λ :

$$
\lambda_{(3)}=(4,2,1,1), q_{3}(X)=(3,2,2,2) .
$$

Hook diagrams for $\lambda, q_{3}(X)$:

10	8	7	6	4	2	1				
7	5	4	3	1						
5	3	2	1				$\stackrel{?}{\longleftrightarrow} \quad$	6	5	1
:---	:---	:---								
4	3									
3	2									
2	1									

Let $S=\left(X_{0}, \ldots, X_{d-1}\right)$ be a d-symbol.
We consider only the hooks between runners i and j :

$$
\begin{aligned}
H_{i j}(S) & =\{(a, b, i, j) \mid(a, b, i, j) \in H(S)\} \\
H_{\{i j\}}(S) & =H_{i j}(S) \cup H_{j i}(S)
\end{aligned}
$$

For $\ell \geq 0$ we define the ℓ-level section

$$
H_{i j}^{\ell}(S)=\left\{(a, b, i, j) \in H_{i j}(S) \mid a-b=\ell\right\} .
$$

Hook correspondence in symbols

Theorem

Let S be a d-symbol with balanced quotient Q and core C. For all i,j, we have bijective multiset correspondences

$$
H_{\{i j\}}(S) \rightarrow H_{\{i j\}}(Q) \cup H_{\{i j\}}(C),
$$

with control on the level sections.
We glue these bijections together to a universal bijection

$$
\omega_{S}: H(S) \rightarrow H(Q) \cup H(C)
$$

Remark. For $S=\left(X_{0}, \ldots, X_{d-1}\right)$, the differences $\left|X_{i}\right|-\left|X_{j}\right|$ are crucial for controlling the correspondence of the level sections.

Theorem. Let S, Q, C be as above, $i \neq j, \Delta=\left|X_{i}\right|-\left|X_{j}\right| \geq 0$. When $\Delta>0$, we have the following equalities:

- For all $\ell>\Delta:\left|H_{i j}^{\ell}(S)\right|=\left|H_{i j}^{\ell-\Delta}(Q)\right|$.
- For all $\ell>\Delta:\left|H_{j i}^{\ell-\Delta}(S)\right|=\left|H_{j i}^{\ell}(Q)\right|$.
- For all $0<\ell<\Delta:\left|H_{i j}^{\ell}(S)\right|=\left|H_{j i}^{\Delta-\ell}(Q)\right|+\left|H_{i j}^{\ell}(C)\right|$.
- For $\ell=\Delta:\left|H_{i j}^{\Delta}(S)\right|=\left\{\begin{array}{ll}\left|H_{i j}^{0}(Q)\right|=\left|H_{\{i j\}}^{0}(Q)\right| & \text { if } i>j \\ \left|H_{j i}^{0}(Q)\right|=\left|H_{\{i j\}}^{0}(Q)\right| & \text { if } i<j\end{array}\right.$.
- For $\ell=0$:
$\left|H_{j i}^{\Delta}(Q)\right|+\left|H_{i j}^{0}(C)\right|=\left\{\begin{array}{ll}\left|H_{i j}^{0}(S)\right|=\left|H_{\{i j\}}^{0}(S)\right| & \text { if } i>j \\ \left|H_{j i}^{0}(S)\right|=\left|H_{\{i j\}}^{0}(S)\right| & \text { if } i<j\end{array}\right.$.
- $\left|H_{i j}^{\Delta}(S)\right|+\left|H_{\{i j\}}^{0}(S)\right|=\left|H_{j i}^{\Delta}(Q)\right|+\left|H_{\{i j\}}^{0}(Q)\right|+\left|H_{i j}^{0}(C)\right|$.

When $\Delta=0$, we have

- $\left|H_{i j}^{\ell}(S)\right|=\left|H_{i j}^{\ell}(Q)\right|, H_{i j}^{\ell}(C)=\emptyset$, for all $\ell \geq 0$.

$1 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \cdots$ $\bullet \bullet \bullet \bullet \ldots$

-००००००००००००

－०००००००००००○…

－官・ーロ○○○○○○○…

-००००००००००००…

$$
i>j
$$
 $$
{ }_{j} \bullet \bullet \bullet \bullet \bullet \bigcirc \cdots
$$
 $$
i \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \cdots
$$

$$
i>j
$$
 $$
{ }_{j} \bullet \bullet \bullet \bullet \bullet \bullet \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \ldots
$$
 $$
; \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bigcirc \underbrace{\bullet \bullet \bigcirc}_{\geq \Delta} \bigcirc \bigcirc \bigcirc \bigcirc \cdots
$$

$$
i>j
$$
 $$
{ }_{j} \bullet \bullet \bullet \bullet \bullet \bigcirc \ldots
$$
 $$
i \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bigcirc \bigcirc \bigcirc \underbrace{\bigcirc}_{>0} \bigcirc \bigcirc \bigcirc \bigcirc \cdots
$$

$$
i>j
$$
 $$
{ }_{j} \bullet \bullet \bullet \bullet \bullet \bullet \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \ldots
$$
 $$
i \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bigcirc \bigcirc 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \cdots
$$

$i>j$

 $\cdots \underbrace{\text { ・ー〇 }}_{\Delta}$
$$
i>j
$$
 $$
{ }_{j} \bullet \bullet \bullet \bullet \bullet \bullet \bigcirc \bigcirc \otimes \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \cdots
$$
 $$
\text { ;-○○○○○ } \underbrace{@}_{\Delta-l} \underbrace{\otimes}_{\Delta-l} \underbrace{\otimes}_{\Delta-l} \bigcirc \bigcirc \bigcirc \cdots
$$

$$
\begin{aligned}
& i>j \\
& \text { j-〇〇〇〇〇○○○○○○○○… } \\
& \text {;-〇〇〇〇○○ } \underbrace{\bullet}_{\Delta-l} \underbrace{\otimes}_{\Delta-l} \underbrace{\otimes}_{\Delta-l} \bigcirc \bigcirc \bigcirc \cdots \\
& \cdots \underbrace{\text { - }}_{\Delta-l}
\end{aligned}
$$

Let $\quad H=\{(a, b, i, j) \mid a \geq b$ and $i>j$ if $a=b\}$.
Consider (generalized) hook length functions $h: H \rightarrow \mathbb{R}$ s.t. the value $h(a, b, i, j)$ depends only on $\ell=a-b, i$ and j.

Let $\quad H=\{(a, b, i, j) \mid a \geq b$ and $i>j$ if $a=b\}$.
Consider (generalized) hook length functions $h: H \rightarrow \mathbb{R}$ s.t. the value $h(a, b, i, j)$ depends only on $\ell=a-b, i$ and j.

Important hook length functions for d-symbols:
d-hook data tuple:

$$
\delta=\left(c_{0}, c_{1}, \ldots, c_{d-1} ; k\right), c_{0}, \ldots, c_{d-1}, k \in \mathbb{R}, k \geq 0
$$

δ-length of $(a, b, i, j) \in H$:

$$
h^{\delta}(a, b, i, j)=k(a-b)+c_{i}-c_{j} .
$$

For any d-symbol S, the multiset of generalized hook lengths is

$$
\mathcal{H}^{\delta}(S)=\left\{h^{\delta}(a, b, i, j) \mid(a, b, i, j) \in H(S)\right\} .
$$

Important special choices for applications:

- $\delta=(0,1, \ldots, d-1 ; d)$ the partition d-hook data tuple.

Then the δ-length of a hook of S equals the usual hook length $a-b$ of the corresponding hook (a, b) of X.

- $\delta=(0,0, \ldots, 0 ; 1)$ the minimal d-hook data tuple.

Then the δ-length of long hooks $(a>b)$ in S coincides with the hook length in symbols as defined by Malle, and the short hooks $(a=b)$ have δ-length 0 .

Theorem

Let $S=\left(X_{0}, X_{1}, \ldots, X_{d-1}\right)$ be a d-symbol, $x_{i}=\left|X_{i}\right|$.
Let Q be its balanced quotient, C be its core.
Let $\delta=\left(c_{0}, c_{1}, \ldots, c_{d-1} ; k\right)$ be a d-hook data tuple, and set $\delta_{S}=\left(c_{0}+x_{0} k, c_{1}+x_{1} k, \ldots, c_{d-1}+x_{d-1} k ; k\right)$.

Then we have the multiset equality

$$
\mathcal{H}^{\delta}(S)=\mathcal{H}^{\delta}(C) \cup \overline{\mathcal{H}}^{\delta}(Q)
$$

where $\overline{\mathcal{H}}^{\delta_{S}}(Q)=\left\{\bar{h}^{\delta S}(z) \mid z \in H(Q)\right\}$
is the multiset of all modified δ_{S}-lengths of hooks in Q.

Modified hook lengths

We assume that i, j are such that $\Delta=x_{i}-x_{j} \geq 0$.
Let $H_{i j}^{\ell}=\{(a, b, i, j) \in H \mid a-b=\ell\}$.
Then for $z \in H_{\{i j\}}$ we define

$$
\bar{h}^{\delta S}(z)=\left\{\begin{aligned}
h^{\delta_{S}}(z) & \text { if } z \in H_{i j} \cup H_{j i}^{>\Delta}, \text { or } z \in H_{j i}^{\Delta} \text { if } i<j \\
-h^{\delta_{S}}(z) & \text { otherwise }
\end{aligned}\right.
$$

Crucial property w.r.t. the universal bijection ω_{S} :

$$
h^{\delta}(z)=\left\{\begin{array}{lll}
h^{\delta}\left(\omega_{S}(z)\right) & \text { if } & \omega_{S}(z) \in H(C) \\
\bar{h}^{\delta_{S}}\left(\omega_{S}(z)\right) & \text { if } & \omega_{S}(z) \in H(Q)
\end{array}\right.
$$

Application for partitions

Theorem

Let $d \in \mathbb{N}, \lambda$ a partition, X a β-set for $\lambda, x_{i}=\left|X_{i}^{(d)}\right|$.
Let $q_{d}(X)$ be the d-quotient partition of X.
For $z \in H\left(q_{d}(X)\right)$ with hand and foot d-residue i and $j+1$, respectively, let

$$
\bar{h}(z)=h(z)+\left(x_{i}-x_{j}\right) d
$$

Let $\overline{\mathcal{H}}\left(q_{d}(X)\right)$ be the multiset of all $\bar{h}(z), z \in H\left(q_{d}(X)\right)$.
Then we have the multiset equality

$$
\mathcal{H}(\lambda)=\mathcal{H}\left(\lambda_{(d)}\right) \cup \operatorname{abs}\left(\overline{\mathcal{H}}\left(q_{d}(X)\right)\right.
$$

where $\quad \operatorname{abs}\left(\overline{\mathcal{H}}\left(q_{d}(X)\right)=\left\{|m| \mid m \in \overline{\mathcal{H}}\left(q_{d}(X)\right)\right\}\right.$.

Application for partitions

Theorem

Let $d \in \mathbb{N}, \lambda$ a partition, X a β-set for $\lambda, x_{i}=\left|X_{i}^{(d)}\right|$.
Let $q_{d}(X)$ be the d-quotient partition of X.
For $z \in H\left(q_{d}(X)\right)$ with hand and foot d-residue i and $j+1$, respectively, let

$$
\bar{h}(z)=h(z)+\left(x_{i}-x_{j}\right) d
$$

Let $\overline{\mathcal{H}}\left(q_{d}(X)\right)$ be the multiset of all $\bar{h}(z), z \in H\left(q_{d}(X)\right)$.
Then we have the multiset equality

$$
\mathcal{H}(\lambda)=\mathcal{H}\left(\lambda_{(d)}\right) \cup \operatorname{abs}\left(\overline{\mathcal{H}}\left(q_{d}(X)\right)\right.
$$

where $\quad \operatorname{abs}\left(\overline{\mathcal{H}}\left(q_{d}(X)\right)=\left\{|m| \mid m \in \overline{\mathcal{H}}\left(q_{d}(X)\right)\right\}\right.$.
Corollary Generalization of the Malle-Navarro formula. In particular, the Malle-Navarro formula is the hook formula!

Example

As before: $\lambda=(7,5,4,1), X=\{11,8,6,2,0\}, d=3$.
$S=(\{2,0\}, \emptyset,\{3,2,0\}),\left(x_{0}, x_{1}, x_{2}\right)=(2,0,3)$.
3 -core and 3 -quotient partitions to λ :

$$
\lambda_{(3)}=(4,2,1,1), q_{3}(X)=(3,2,2,2) .
$$

Hook diagrams for $\lambda, \lambda_{(3)}, q_{3}(X)$:

10	8	7	6	4	2	1	7	4	2	1	6	5	1
7	5	4	3	1			4	1			4	3	
5	3	2	1				2				3	2	
1						1			2	1			

Hook diagrams for $\lambda, q_{3}(X)$:

10	8	7	6	4	2	1				
7	5	4	3	1						
5	3	2	1				$\quad \stackrel{?}{\longleftrightarrow} \quad$	6	5	1
:---	:---	:---								
4	3									
3	2									
2	1									

Hook diagrams for $\lambda, q_{3}(X)$:

10	8	7	6	4	2	1				
7	5	4	3	1						
5	3	2	1				$\stackrel{?}{\longleftrightarrow} \quad$	6	5	1
:---	:---	:---								
4	3									
3	2									
2	1									

Consider the 3-residue diagram of $q_{3}(X)$.

$$
\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & \\
1 & 2 & \\
0 & 1 &
\end{array}
$$

Hook diagrams for $\lambda, q_{3}(X)$:

10	8	7	6	4	2	1				
7	5	4	3	1						
5	3	2	1				$\stackrel{?}{\longleftrightarrow} \quad$	6	5	1
:---	:---	:---								
4	3									
3	2									
2	1									

Modify the length of each hook in $q_{3}(X)$ by $3\left(x_{i}-x_{j}\right)$ according to residues i and $j+1$ of its hand and foot.

				i
	0	1	2	$\mathbf{2}$
	2	0		$\mathbf{0}$
	1	2		$\mathbf{2}$
	0	1		$\mathbf{1}$
j	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	

Hook diagrams for $\lambda, q_{3}(X)$:

10	8	7	6	4	2	1				
7	5	4	3	1						
5	3	2	1				$\stackrel{?}{\longleftrightarrow} \quad$	6	5	1
:---	:---	:---								
4	3									
3	2									
2	1									

Modify the length of each hook in $q_{3}(X)$ by $3\left(x_{i}-x_{j}\right)$ according to residues i and $j+1$ of its hand and foot.
Recall: $\left(x_{0}, x_{1}, x_{2}\right)=(2,0,3)$.

				i
	0	1	2	$\mathbf{2}$
	2	0		$\mathbf{0}$
	1	2		$\mathbf{2}$
	0	1		$\mathbf{1}$
j	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	

$3 x_{i} \backslash^{-3 x_{j}}$	$-\mathbf{9}$	$-\mathbf{6}$	$\mathbf{0}$
$\mathbf{9}$	6	5	1
$\mathbf{6}$	4	3	
$\mathbf{9}$	3	2	
$\mathbf{0}$	2	1	

Hook diagrams for $\lambda, q_{3}(X)$:

10	8	7	6	4	2	1				
7	5	4	3	1						
5	3	2	1				$\stackrel{?}{\longleftrightarrow} \quad$	6	5	1
:---	:---	:---								
4	3									
3	2									
2	1									

Modify the length of each hook in $q_{3}(X)$ by $3\left(x_{i}-x_{j}\right)$ according to residues i and $j+1$ of its hand and foot.
Recall: $\left(x_{0}, x_{1}, x_{2}\right)=(2,0,3)$.

$3 x_{i} \backslash^{-3 x_{j}}$	$-\mathbf{9}$	$-\mathbf{6}$	$\mathbf{0}$				
$\mathbf{9}$	6	5	1		6	8	10
$\mathbf{6}$	4	3		\rightarrow	1	3	
$\mathbf{9}$	3	2			3	5	
$\mathbf{0}$	2	1			-7	-5	

Hook diagrams for $\lambda, q_{3}(X)$:

10	8	7	6	4	2	1				
7	5	4	3	1						
5	3	2	1				$\stackrel{?}{\longleftrightarrow} \quad$	6	5	1
:---	:---	:---								
4	3									
3	2									
2	1									

Finally, take absolute values!

6	8	10				
1	3		\rightarrow	6	8	10
3	5			3		
-7	-5			5		
3	5					

Hook diagrams for $\lambda, q_{3}(X)$:

10	8	7	6	4	2	1				
7	5	4	3	1						
5	3	2	1				$\quad \longleftrightarrow$	6	5	1
:---	:---	:---								
4	3									
3	2									
2	1									

Finally, take absolute values!

6	8	10				
1	3		\rightarrow	6	8	10
3	5					
3						
-7	-5			7	5	

Generalizations

Symbols were introduced by Lusztig (1977) as labels for characters of classical groups; generalized notions of ℓ-cores, (ℓ, e)-cores etc. for symbols.

Generalizations

Symbols were introduced by Lusztig (1977) as labels for characters of classical groups; generalized notions of ℓ-cores, (ℓ, e)-cores etc. for symbols.

Theorem

Let $S=\left(X_{0}, X_{1}, \ldots, X_{d-1}\right)$ be a d-symbol, $\delta=(0, \ldots, 0 ; 1), \ell \in \mathbb{N}$. Let C be the ℓ-core and Q the balanced ℓ-quotient of S.
Then we have a multiset equality for the δ-lengths of hooks in S :

$$
\mathcal{H}^{\delta}(S)=\mathcal{H}^{\delta}(C) \cup \operatorname{abs}\left(\mathcal{H}^{\delta_{\ell, S}}(Q)\right)
$$

where $\operatorname{abs}\left(\mathcal{H}^{\delta_{\ell, S}}(Q)\right)$ is the multiset of all $\left|h^{\delta_{\ell, S}}(z)\right|, z \in H(Q)$, $\delta_{\ell, S}$ a modified $d \ell$-hook data tuple.

